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Abstract—This paper considers an assembly problem.
Let there be two interlocking parts, only one of which may be
cut into pieces. How many pieces should we cut the divisible
part into to separate the parts using a sequence of rigid-
body motions? In this initial exploration, we primarily consider
2-D polygonal parts. This paper presents an algorithm that
computes a lower bound on the number of pieces that the divisible
part must be cut into. This paper also presents a complete
algorithm that constructs a set of cuts and a motion plan for
disassembly, yielding an upper bound on the required number
of pieces. Applications of the future extension of this paper
to 3-D may include robot self-assembly, interlocking 3-D model
design, search-and-rescue, packaging, and robotic surgery.

Note to Practitioners—This paper presents an opposite problem
of immobilization or caging. Given two interlocking parts, only
one of which may be cut into pieces. How can we unimmobi-
lize or uncage one from another? We explore this problem in two
aspects: the lower bound and the upper bound on the number
of pieces that the divisible part must be cut into. This paper is
an early theoretical exploration of this problem. We verified our
methods in a virtual 2-D environment instead of building physical
structures. Extension of this paper to 3-D could have many
applications, including robot self-assembly, 3-D fabrication model
design, search-and-rescue, packaging, and robotic surgery.

Index Terms— Assembly, interlocking structure, manipulation,
manufacturing, material/parts handling, theoretical foundations.

I. INTRODUCTION

SSEMBLY of parts is one of the oldest problems in
robotics. This paper considers a variant of the assembly
problem in which some parts can be cut into pieces and others
cannot be. How many pieces must an amber fossil be cut into
to extract a fly? How many pieces must a model ship be broken
into in order to construct a ship-in-a-bottle? How many pieces
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Fig. 1. Mammoth in the ice and one necessary solution to remove ice without
damaging the mammoth body. Rotations are all in negative (clockwise)
direction here. (a) Mammoth body (gray) inside an ice cube (white). We want
to separate the mammoth and the ice (except the hole) by breaking the ice
into pieces. (b) Edges with the same color can be locally separated from the
atomic part using a single rotation about the corresponding rotation centers.

must rubble be cut into to rescue an injured person? How
should styrofoam packaging be assembled to support a delicate
object for transport?

As an initial exploration, we consider planar devices com-
posed of one polygon of each of the two material types.
We allow arbitrary rigid body motion of the parts after cutting;
the cuts may be along arbitrary curves. Fig. 1(a) shows an
example of a mammoth in an ice cube. The gray material may
not be cut, but the white material may be cut to be separated
from the indivisible, or atomic, part.

We provide algorithms to find lower and upper bounds
on the number of pieces that the device must be cut into.
We also provide a provably complete algorithm for design and
for determining an assembly sequence. Fig. 1(b) shows three
rotation centers that could be used to locally separate ice edges
of corresponding colors from the mammoth; the ice must be
cut into at least three pieces. However, there is no guarantee
that three is a sufficient number, because global properties of
the geometry also matter; we find that cutting into 61 pieces
is sufficient [see Fig. 10(c)].

We believe that extension to 3-D would have practical
value for many problems in 3-D printing and prototyping for
robotics. Many structures cannot be printed out of a single
material; robots may contain atomic components, such as
motors, wires, microcontrollers, and batteries that cannot be
cut into pieces, supported by a rigid but divisible structure
that fits around and supports the atomic components. We can
also imagine applications in other areas, including search-and-
rescue and robotic surgery.

However, the focus of this paper is not on applications, but
on the exploration of a fundamental robotics problem: the diffi-
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culty of assembly, measured by the number of required pieces,
if some of the parts can themselves be disassembled. Such
analysis of lower and upper bounds on physical complexity
forms a useful basis for thinking about robotics problems, just
as bounds on computational complexity are useful in computer
science. Because the difficulty of assembly appears to depend
on the shapes of the parts in nontrivial ways, we cannot simply
provide an interesting bound directly; however, we can devise
algorithms that compute bounds for an input shape. These
bounds may give insights into the question of which shapes are
hard, which are easy, and how to design appropriate shapes.

There are both local and global properties of the geometry
that may cause a part to need to be cut into many pieces.
Locally, two contacting rigid bodies may be interlocked, in the
same way that a robot grasp may interlock with a part,
effectively forming a single rigid body that must be cut to
allow separation. Globally, there may be narrow openings
through which only small parts can fit the classic piano
mover’s problem.

When computing a necessary number of pieces, we focus
on the local geometry, and relax or ignore the global geo-
metric constraints. We consider cutting the interlocking parts
into sufficiently many pieces such that there is no single
immobilizing grasp, using a geometric method inspired by
Reuleaux’s method [21], [25] to formulate the problem as a
minimum-set-cover problem. Computationally, minimum-set-
cover is NP-complete, but can be approximated in polynomial
time to within a logarithmic factor. In future work, better lower
bounds might be found by also considering global constraints.

We also give an algorithm to compute a sufficient number of
pieces, by constructing cuts and an assembly order that respect
global and local constraints. We prove that as long as atomic
components do not contain voids, the parts can be cut into a
finite set of pieces and disassembled using only translation;
rotations are not required.

This paper extends [42] to include a linear-algebraic for-
mulation of the lower bound algorithm and also discusses the
geometry of shapes that require so many cuts to disassemble.

A. Related Work

This paper is closest in spirit to work on k-moldability.
In the k-moldability problem, a separable k-piece mold is
taken apart using a single translation per piece to expose
a molded atomic part [17], [23]. Ravi and Srinivasan [24]
give a list of criteria to aid the engineer in making deci-
sions of parting surfaces. Priyadarshi and Gupta [23] used
accessible directions to decompose molds into a small number
of pieces. Exact-cast-mold design methods require models to
be moldable or resulted in a large number of mold pieces.
Herholz et al. [15] deform a model into an approximate but
moldable shape, and then decompose mold pieces.

The primary contribution of this paper is the relaxation
of the requirement that the mold can be separated using
single translations; this allows the study of the fundamental
theoretical limits of disassembly. Most of the structures studied
in this paper are not k-moldable, because there is no set
of directions from which all of the divisible structure is
visible; some portions of the structure are occluded. We show
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that in fact, any structure without inaccessible voids can be
disassembled using only sequences of translations. The lower
and upper bounds that we study are true physical bounds—
they hold over any sequence of rigid body motions, not just
single translations or rotations.

This paper is also inspired by Snoeyink’s work on the
number of hands required to disassemble a collection of rigid
parts [32]. Because we allow parts to be cut, simultaneous
motions are not required for disassembly. In the Carpenter’s
Rule problem studied by Connelly et al. [10], Streinu [36],
and others, the rigid pieces are also all atomic and connected
by joints, typically requiring many simultaneous motions.

This paper is, therefore, somewhat closer in spirit to work
by Wang and Balkcom [39] that studies the number of fingers
needed to tie a knot—in that work, the string is treated as
a collection of rigid bodies, but the joints may be placed
arbitrarily, essentially cutting the carpenter’s rule, without
disconnecting the pieces. This paper is also close in spirit to
work by Bell et al. [5] that studies the number of pieces that
a mechanical knotting device must be cut into to extract the
knotted string.

There has been significant work in the graphics community
in computational fabrication. Song et al.’s [33] approach to
fabricating large 3-D objects was to break the shell of the
object into pieces and assemble after fabrication. Hu ez al. [16]
presented a method to decompose 3-D object into a set of
pyramidal shapes such that no support material is needed when
3-D printing the model. Fu et al. [14] and Song et al. [34]
studied computational interlocking furniture design.

Our approach to the lower bounds problem, in particu-
lar, grows out of seminal work on immobilizing rigid bod-
ies or grasping. Traditional geometric approaches to grasping
attempt to prevent all possible sliding and rotational motions
of a polygonal object by placing fingers around the object.
Reuleaux [25] is credited with the concept of form closure.
Mishra et al. [22] proved the sufficiency of four fingers to
immobilize any polygonal object. Czyzowicz et al. [11], [12]
showed that polygons without parallel edges can be immobi-
lized using three fingers. Rimon and Burdick [27], [28] showed
how two-finger grasps can be analyzed using the second-
order immobility. Cheong et al. [7] provided an algorithm
to compute all immobilizing grasps of a simple polygon.
Cheong et al. [8] also showed that n + 3 contacts suffice to
immobilize a chain of n hinged polygons.

A polygonal object can be caged by surrounding an object
with fingers, such that the object has some freedom locally but
cannot escape the cage. Some of the earliest work on caging
was by Rimon and Blake [26]. Allen et al. [1] and Vahedi and
van der Stappen [38] proposed algorithms to find all caging
grasps of two disk fingers. Erickson et al. [13] studied the
case of three-finger caging for an arbitrary convex polygon.
Makita and Maeda [20] extend the caging problem from
2-D to 3-D with multifingers. This paper, instead of caging
an object, can be viewed as removing contacting pieces to
uncage a polygon in the plane.

A classic problem of self-assembly is to move a set of small
robots to specified target positions; some of the challenges
with narrow corridors and coordination are similar to those
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faced in this paper. Kotay et al. [18], for example, designed a
robotic module, groups of which aggregate into 3-D structures.
Rus and Vona’s [31] early work on the crystalline robot
presented an algorithm to do self-reconfiguration. Recently,
working on the problem of scale, Rubenstein et al. [30]
provided an algorithm for moving kilobots one-by-one to form
certain planar shapes. Arbuckle and Requicha [2] allowed
identical memoryless agents to construct and repair arbitrary
shapes in the plane. Zhang et al.’s own work [40] on assembly
of interlocking structures, nine kinds of blocks are used to
build large-scale voxelized models such that all blocks are
interlocked and the whole structure is rigid as a whole. Self-
assembly and modular robots in the presence of obstacles have
also been extensively studied. Becker et al. [4] proposed an
algorithm to efficiently control a large population of robots
in this scenario. Rubenstein et al. [29] used multiple robotic
units to manipulate the positions of obstacles.

II. COMPUTING A LOWER BOUND
ON THE NUMBER OF PIECES

Let A and B be two interlocked parts, where A is atomic
and B is divisible. What is a lower bound on the number
of parts that B must be partitioned into such that A and B
can be separated, so that A and parts of B are at any desired
arbitrary distance? In this section, we propose algorithms to
compute such lower bound for any given shapes. We introduce
two approaches to attack this problem: a geometric method
inspired by Reuleaux’s graphical method for analyzing con-
strained motion of planar rigid bodies and a linear-algebraic
approach.

A. Graphical Method Analyzing the Rotation
Centers of Boundary Points

The approach is inspired by the analysis of contact modes
for contacting 2-D rigid bodies [3], [21], as well as by
Reuleaux’s graphical method for analyzing whether a collec-
tion of points fully constrains (or in our case, is constrained
by) the motion of a rigid body [25].

We first replace the divisible body B with a collection
of points P from B along the boundary of A; whichever
points we choose, at least these points must be separated from
A using a collection of rigid-body motions. For simplicity,
we place three points per edge: one in the center and one
at each endpoint. Choosing more points may allow a larger
lower bound to be computed at the cost of some additional
computation.

Now consider any subset of these points. Can this subset
be contained in a single rigid piece after cutting, in such a
way that the rigid piece may be separated from A? In order to
separate this piece from A, there must at least instantaneously
be a single rigid body motion that does not cause collision for
any of the points.

Every motion of a planar rigid body is instantaneously
a rotation or a translation. Does there exists a translation
direction or a rotation center that allows separation? How do
we compute good (large) subsets of P that can move together
without considering the power set over P?

(@ (b)

Reuleaus’s graphical method for analyzing if a contact point or a

Fig. 2.
collection of points fully constrain(s) the motion of a rigid body. (a) Contacting
point p can rotate in positive direction about centers in 4+ area and in negative
direction about centers in — area. (b) Normal lines through the contact points
form a set of cells, such that the number of points that may be separated from
the gray part is maximized by choosing a rotation center at a cell vertex.

Theorem 1: If n points P of a planar rigid body B are in
contact with a polygonal rigid body A, then there are at most
n(n —1)/2 + 2n maximal subsets of P, such that each subset
may be moved together as a rigid body without colliding
with A, and any other noncolliding subset is contained within
one of the maximal subsets.

Proof 1: We would like to group subsets of points in P
and see if they can be separated from A as a group. Let us
first consider rotations. To find a compatible group, we might
choose a particular rotation center and a positive or negative
direction for rotation. Then, find all points in P that separate
from (or at least do not collide with) A under that motion;
we have found a compatible subset. This is our basic approach;
but how many potential rotations must we consider, and how
many compatible subsets may be generated?

Consider a rotation center » somewhere in the plane, with an
associated direction, either positive (counterclockwise) or neg-
ative rotation (clockwise). Reuleaux’s method makes use of the
fact that for a particular point p;, for most choices of rotation
center, one direction of rotation (either positive or negative)
is permissible, while the other causes collision of p; with A.
Along the normal to the edge of A at p;, either negative or pos-
itive rotation is possible. Let P. C P be the set of points
compatible with rotation center and direction r. If we move r
along a continuous trajectory, membership in P, only changes,
as r crosses one of the normals through one of the points in P.
The constraint is least restrictive along the normals themselves;
so to compute the maximal subsets of compatible points, such
that any other compatible subset is either a singleton or a
subset of a computed subset, we need only consider rotation
centers at the intersections of the normals, as shown in Fig. 2.
The normal lines form an arrangement [35], [37], and there
are n(n — 1)/2 possible intersections, each with at most one
corresponding maximal subset (see Fig. 2). Once candidate
maximal subsets have been generated, discard any that are
contained within other computed subsets.

Any translation of a set of points can be viewed as a rotation
about a center infinitely far. To test translation directions, for
each point p;, we choose two directions each along its normal
directions of both connecting edges. (Any point on the edge is
also considered a vertex connecting two parallel edges.) This
is equivalent to selecting points infinitely far from p; on both
normal direction lines. Each point p;, if included in a subset,
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forbids an open half-plane of translation directions. So for
each point, it is sufficient to test two translation directions,
each corresponding to sliding in one direction or another along
the point’s normals. Collect all 2n directions, and for each
direction, test the remaining points against that direction to
generate candidate maximal subsets.

In total, we have done n(n — 1)/2 + 2n tests representing
the same amount of subsets of P. |

Theorem 1 implies an algorithm for computing a lower
bound on the number of pieces that the divisible part must be
cut into to allow assembly or disassembly. Compute the max-
imal subsets as suggested; then, solve the minimum-set-cover
problem to find the minimum number of such sets needed to
separate all points in P from A. If the number of maximal
subsets is small, minimum-set-cover may be solved exactly.
The pseudocode is described in Algorithm 1. The simple
examples presented in this paper were solved exactly using
integer-linear programming. If there are a large number of
subsets, then a greedy approach yields a solution in polynomial
time, with guaranteed logarithmic approximation quality.

Algorithm 1: Graphical Method to Compute the Lower Bound
1: procedure COMPUTELOWERBOUND(P)
2:  for all point p € P do
3: Generate two lines going through p and perpen-
dicular to each connected edge.
Add the two lines to set L
end for
for every pair of non-parallel lines in L do
Compute intersection i.
F(i, +) < find all points in P with feasible motions
using i as rotation center in the positive direction.
9: F (i, —) < find all points in P with feasible motions
using i as rotation center in the negative direction.
10:  end for
11:  Run minimum set cover algorithm over F (i, +/—) for
all intersections such that all points in P are covered.
12: end procedure

® N>R

Based on the angle of two edges connecting a point, contact
points are classified into three kinds: convex vertex, concave
vertex, and edge vertex. An edge vertex connects two parallel
edges. For each edge connecting a vertex, we draw a line par-
allel to the normal and going through the vertex (lines 2 and 3).
With two lines, the plane is divided into four areas allowing
positive or negative rotation centers. Each area is closed on
the boundaries. Fig. 3(a) is an example of a convex vertex;
the space is divided into four areas: Aj, Ay, Az, and A4,
where A allows positive rotation centers for vertex Pi, A3
allows negative rotation centers, and A, and A4 allow positive
and negative rotation centers. Mathematically, each area is
represented using two linear inequality constraints. Given a
rotation center and a rotation direction, we test if a vertex can
rotate about the center by checking which area the rotation
center falls into. Each rotation center and rotation direction
is tested for concave vertex and edge vertex separation in the
same way.
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Fig. 3.
positive rotation centers, whereas the red area allows negative rotation centers.
No points can rotate about centers in the empty areas. (a) Convex vertex.
(b) Concave vertex. (c) Edge vertex.

Three kinds of vertices in a polygon. The blue areas allow

For each normal line going through contact points, the algo-
rithm finds intersections with all other normal lines. Therefore,
a set I of O(n?) intersection points are maintained, where n
is the number of normal lines. For each intersection point,
we test both positive and negative rotation centers against
every contact point on the atomic part (lines 8 and 9). Let
F(i,d) be the set of contact points that can rotate about
intersection 7 in direction d without colliding with the atomic
part instantaneously. The algorithm also tests F (i, d) for all
i €l and d € {4, —} and eliminates the sets containing the
exact same contact points. (If a set is a subset of another,
we only keep the larger set.)

Because the intersections are on the boundary of areas,
testing if a point can rotate about an intersection point by
checking linear inequalities might suffer numerical issues
caused by floating point arithmetic. A solution is to triangulate
the intersections and use the triangle centers as rotation centers
to test against all contacts on the atomic part boundaries.

We now have a set of sets each containing contact that can
rotate about the same center in the same direction. With a
minimum-set-cover algorithm, we find the minimum number
of sets that covers all contacts (line 11). Contacts in the same
set are partitioned into the same piece of a divisible material
to be separated from the atomic part. The minimum-set-cover
problem is NP-complete, so the algorithm to find an exact
solution can take a long time if the number of subsets is large.

To accelerate the computation, we may, instead, use a
greedy algorithm to rapidly solve the set cover problem
approximately. Given a set of n subsets, Chvatal [9] showed
that the approximation ratio H (n) of the greedy algorithm is
H(n) = >7;_,(1/k) < In(n+1). Dividing the result from the
greedy algorithm by the approximation factor, we have a lower
bound on the number of pieces that the divisible material must
be cut into to separate from the atomic part.

Fig. 1(b) shows a solution of the necessary number of pieces
needed to extract the planar mammoth from the ice. If two
points on the same edge are in the same set, the segments
between the points are considered able to rotate about centers
in the same region as the two points. In this case, three sets
cover all edges.

Edges containing points in the same set are not necessarily
connected. Whether there exist cuts to separate edges exactly
into the derived sets as connected rigid bodies is an open
question, as is whether those bodies can be extracted after
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Fig. 4. Three examples of analyzing necessary number of pieces for the
divisible part. In each example, edges with the same color are in the same
set. (a) Cavity. Orange edges translate to the left, and green edges rotate about
the green point in negative direction. (b) Spiral. Black edges rotate about the
black point in positive direction, and orange edges rotate about the orange
point in negative direction. Green edges translate to the right. (c) Dumbbell.
Four sets of edges in four colors. Each set of edges rotates about centers with
the same color. Rotation directions: positive for black, negative for the rest.

TABLE I
LOWER BOUND ANALYSIS EXAMPLES

shape edges largest set size | set cover size | time cost
cavity 8 144 2 0.2018 s
spiral 14 612 3 1.8764 s
dumbbell 12 1104 4 7.2543 s
mammoth 64 12012 3 540.327 s

initial separation. This technique, thus, yields only a lower
bound, and we expect that the lower bound might be signifi-
cantly improved in future work.

Results for other shapes can be found in Fig. 4. A few
statistics are shown in Table I. Time costs were measured on
a 2016-model MacBook Pro with a 2.6-GHz Intel processor
and a 8-GB 1600-MHz DD R3 memory and are intended only
to give a sense of the practicality of analysis of structures with
various numbers of edges. From Table I, we can see that with
the increase of maximum number of rotation sets, the time
cost increases dramatically, as we would expect for an O (n?)
check of rotation centers and a linear-integer program optimal
solution to minimum-set-cover; we expect that much larger
problems could be solved with good approximation by using
greedy minimum-set-cover techniques.

B. Linear-Algebraic Method for Lower Bounding
the Number of Pieces

The geometric method described is hard to extend to
3-D parts. Although the focus of this paper is on planar parts,
we now show how to design a linear-algebraic approach to the
same problem, as a guide for future extension to 3-D.

As in the previous section, consider a finite set of points P
contacting the boundary of A. Can a subset of points be set in
the same rigid piece of divisible part and separate from A? In
this section, we attack the problem by analyzing the motion
of contact points using a set of linear inequalities.

Let x; be the Cartesian location of point p;, and let
x = [x0,...,xn] be the vector representing locations of all
points. We describe rigid-body motions of the atomic part
using (1), where ¢ is the configuration of the atomic part and
J(g) is the collection of Jacobian matrices of all points in P

the current configuration

J(q)g = x. (1

Consider a point » on an edge e. The point has a feasible
motion if the angle between its speed x, and the edge
normal 7, is smaller than 90°, or

Ne + Xy :ne'Jv(q)é]ZO (2)

where J, is the Jacobian of vertex ». For convex vertices
connected with two edges, a motion is feasible if the vertex
is not penetrating either edges. A concave vertex motion is
feasible if the vertex is not penetrating both edges connecting
the concave vertex.

Let N be a matrix that collects normals to A at the contacts
in such a way that nonpenetrating motion of contacts [see (2)]
can be described as

NJg > 0. 3)

For simplicity, we phrase the problem slightly differently
and consider motions of the atomic part, which are symmetric
to the motions of the divisible boundary. How many rigid
motions (with |g| > 0) of the atomic part do we need, such
that every point in P does not penetrate for at least one of the
motions? Since parts A and B are interlocked, there does not
exist a single motion ¢ of the atomic part that satisfies (3).
We want to find a set of actions Q = {q1, q2, ..} such that
every selected point on the boundary of the atomic part has at
least one feasible motion satisfying (2).

Define M = NJ. For any particular velocity u = ¢,
the product Mu has some rows with nonnegative values caus-
ing some contacts’ feasible motion constraints to be satisfied,
and some negative values that cause impingement. Let the
contacts with feasible motions be given by

s(u) ={p € P : p has a feasible motion under u}. (4)

If u; is a positive scaling of u;, the s(u;) = s(u ;). Therefore,
we can always normalize the configuration velocity of the
atomic part so that |u| = 1. Consider the feasible motion
constraints of a contact point as half-spaces in a 3-D configu-
ration space. Two linearly independent configuration velocities
u; and uj have the same set of contacts with feasible motions,
if u; and uy fall into the same subspace formed by the same
set of constraints.

Theorem 2: The collection of all feasible motion constraints
for every contact point is a set of at most 2n half-spaces in a
3-D space partitioning the space into O(n?) convex cones.

Proof 2: The trivial solution ¢ = O tells us that the
boundary of every half-space (a plane) goes through the origin.
Thus, the 3-D space is partitioned into convex cones.

We next consider the number of convex cones. Let f(d, n)
denote the maximum number of cells in a d-D space under n
cuts. In 2-D, n cuts (each going through the origin) partition
the space into at most 2n parts, because every cut goes through
at most two parts and partitions each part into two parts.
Therefore, f(2,n) = 2n. In d-D space, every cut goes through
at most f(d — 1,n — 1) cells and adds as many new cells.
Therefore

fd,n)=fd,n—1)+ f(d—-1,n—1). 5)
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Fig. 5. Analysis of a simple atomic shape and visualization of constraints for
points A, B, and C. (a) Simple atomic shape. Three points A, B, and C are
selected for analysis. (b) Two red linear constraints are for point A, because
it is on a concave vertex. The yellow constraint is for point B, and the green
constraint is for point C.

So f(3,n) — f3,n—1) = fQ,n—1) = 2(n — 1), and
f(3,1) = 2. Therefore, f(3,n) = O(n?). |

Fig. 5 shows an example of analysis using the method
proposed in this section for an atomic shape with one concave
vertex. The coordinates are: A = (—1,0), B = (1,4/3), and
C = (0,-2). Let (x, y,0) be the configuration of the atomic
shape; constraints for point A are —3x + y + 0 > 0 and
—X+y +6 > 0. The constraint for point B is 5)'c+3)'1+2<9' >0,
and the constraint for point C is y > 0. Constraints are shown
in Fig. 5(b).

Theorem 2 implies an algorithm to compute the lower bound
on the number of pieces that the divisible part must be cut into
to allow assembly or disassembly. Construct the convex cones
in the 3-D space. In each convex cone, select a point and
compute the set of contact points that will not collide with
the atomic part under this motion. Run minimum set-cover
algorithm to find out the minimum number of sets such that
all contact points in P have at least one feasible motion.
Algorithm 2 gives the pesudocode.

Line 6 of Algorithm 2 selects two linearly independent
constraints and computes the null space. This is because
any three linearly independent constraints, all going through
the origin, intersect only at the origin. Intersections of the
null space and a unit sphere are candidates of configuration
velocities, and their corresponding contact points with feasible
motions are computed (line 7). Since every intersection is on
the boundary of a convex cone, using this velocity to compute
contacts with feasible motions might also suffer numerical
issues. The solution is similar to the graphical method. Since
the null space of every two linearly independent constraints is
a line, we list all these lines and intersect with a unit sphere.
Triangulate the points on the surface of the unit sphere, and
use the center of each triangle to compute contact points with
feasible motions.

C. Shape Hard to Disassemble

If the atomic part is a convex shape, the divisible part can
always be partitioned into two pieces to be separated from
the atomic part. Fig. 6(a) shows an atomic shape with four

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Algorithm 2: Linear-Algebraic Method to Compute the Lower
Bound
1: procedure COMPUTELOWERBOUND(P)
2:  Split every convex and concave point into two overlap
ping points each on an edge connected to the original
point.
3: Construct matrix N - Jg > 0 as the matrix to describe
non-penetrating motion of all contact points. Define
M= NJ.
4. R < all combinations of two linearly independent rows
in matrix M.
5. for combination in R do
Let x” be solution for M'x = 0 and |x| = 1, where
M’ is a matrix with two rows from the combination.

7: F(x") < the subset of points with feasible motions
under x’.

8:  end for

9:  Run a set-cover algorithm over F(x) for all x computed
in step 6 to find a minimum number of configuration
velocities whose sets of feasible motion points cover all
contacts

10: end procedure

® U4
+Rh-
U3
(a) (b)

Fig. 6. Two examples of atomic shapes that require divisible part to be
disassembled into at least four or five parts to be separated. (a) Atomic part
with four concave vertices. Points on the boundary must be partitioned into
four pieces to separate from the atomic part. (b) Graphical analysis of concave
vertices in Fig. 6(a). Blue areas allow positive rotation centers, whereas red
areas allow negative rotation centers. (c) Five concave vertices. No pair can
rotate together. Blue areas allow positive rotation centers, whereas red areas
allow negative rotation centers.

concave vertices. To separate every point on the boundary of
the shape, the divisible part must be broken into no less than
four pieces. Fig. 6(b) shows an analysis of the four-concave-
vertex shape. Each vertex rotates about a point in the blue
region in positive direction or a point in the red region in
negative direction. No two points have overlapping positive
regions or overlapping negative regions. Therefore, no concave
vertices share the same rotation center.

Extending the idea of having no overlapping rotation areas
for any pair of concave points, we construct a shape with n
concave vertices and require the divisible part to be partitioned
into at least n pieces.

Theorem 3: Given n concave vertices, there exists an
atomic shape whose surrounding divisible material must be
disassembled into at least n pieces to separate from the atomic
shape.

Proof 3: We first draw a circle, equally divide the circle into
n arcs, and put a vertex at the center of each arc. The radius
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(a) (®) (©

Fig. 7. Gridding the divisible part to find sufficient pieces to separate parts.
(a) Two interlocked parts where the gray part is atomic and the rest is divisible.
Gridding the divisible part into small enough cells and removing them will
separate both parts. (b) Between two adjacent convex shapes, there exists a
square that can move freely from one to another without leaving either shape.
(c) Partitioning the space using a (green) square of width //2 guarantees that
there exists at least one square in the transition square.

of each arc is 2z /n. Let the angle between the two edges of a
convex vertex be 0 < a < 2z /n. The angles of cones allowing
positive or negative rotation centers are also a, and no two
positive areas or negative areas intersect. Thus, the surrounding
divisible material of any shape with these n concave vertices
each has two edges forming an a angle that must be broken
into at least n pieces to be removed from the atomic part.
Fig. 6(c) shows an example with five concave vertices. The
resulting shape is similar to Fig. 6(a) but with five leaves.

III. COMPUTING A SUFFICIENT NUMBER OF PIECES

In this section, we present a complete algorithm that chooses
where to cut the divisible part B, and finds a motion plan to
achieve separation from the indivisible part A. We want to
find an upper bound on the minimum number of pieces B
that can be cut into to move each piece out of a planar box
that contains both A and B.

The algorithm first decomposes the part into a small number
of convex polygons and moves pieces within these convex
shapes; the number of pieces depends on the number and
size of polygons. In our implementation, we used a Delaunay
triangulation, but better bounds could be achieved by finding
larger convex components.

After decomposition of B into convex polygons, con-
sider two adjacent convex polygons that share an edge
[see Fig. 7(b)]. Flipping one polygon about the shared edge
and intersecting with the other polygon give a new convex
polygon. Inside the new polygon, we compute a largest inner
square with one edge on the shared edge. This square, called
the transit square, can move freely between the two convex
polygons without leaving the interior.

We would like to find an axis-aligned grid such that at least
one complete grid cell fits entirely within the transit squares
for each pair of adjacent convex polygons. For each transit
square, we find the largest axis-aligned inscribed square, divide
the width by two [shown in Fig. 7(c)], and take the minimum
over all such values as the width of cells in the grid.

To find the size of the largest axis-aligned square, assume
that the width of the outer square is L and the small angle
between the x-axis and the edges of the square is a. There
exists another square of edge length /| = L(1 — 2 - tana/
(1 + tan @)?)(1/?) inside the outer square.

(2) (W) (©

Fig. 8. Moving cells inside a convex shape and between multiple convex
shapes. (a) Squares in a grid space can move to any target position with no
collision following the order of their distances to the target. (b) Cells can also
move to any target square (red) with no collision in the grid space bounded by
a convex polygon using the same method. (c) Convex polygons form a graph.
Edges are weighted by the size of transit squares connecting polygon pairs.
Removing the smallest edges but keeping the graph connectivity improves the
grid square size.

We intersect the grid cells with the convex polygons to
create small pieces that we will call components. We will
extract the material from each convex polygon; we will say
that a polygon that has already had its material extracted
is empty, and one that has not is full. We will prove that
components can move from one full convex polygon to an
adjacent empty polygon without leaving either convex polygon
(and thus without collision with atomic parts or uncleared
divisible parts), assuming each component disappears once it
has completely entered the empty polygon. This is sufficient to
prove inductively that the entire structure can be disassembled.

Lemma 1: In a planar grid of square cells with a designated
target square, continuous translation of each grid cell to the
target will not cause collision, if the cells are translated in
order of L, distance from the target.

Proof 4: Let S be a square whose bottom-left point is at
position (xp, y1), moving in one direction toward the target
square O, with bottom-left point at (x,, y,). Without loss of
generality, assume x; > 0,y; > 0 and x, = 0,y, = 0, and
that the width of each cell is 1. We know that, during the
motion, every point of square S; is bounded by the rectangle
R defined by its bottom-left point (0, 0) and top-right point
(x1 4+ 1, y;1 + 1) [see Fig. 8(a)].

Assume S collides with a square S whose bottom-left
point is at (x2,y2), x2,y2 € Z*. Then, 0 < x, < x; and
0 < y2 < y1; otherwise, no point in the square is in R. Because
0S8 is along the diagonal of R, OSj is the longest edge in
triangle AOS1S>. So |0S8,| < [0Sy, and square S would
have been moved before S using the proposed order. |

Although we claim and prove Lemma 1 in the plane,
it extends easily to similar results in arbitrary dimensions.
We now come to the main result of this section in the
following.

Theorem 4: Given an intersection of a set of nonover-
lapping unit squares (grids) with a pair of adjacent convex
polygons, such that at least one complete grid cell is com-
pletely contained within each of the transit squares of the
polygons, the intersection parts of one convex polygon can
be moved into the other convex polygon without collisions,
using the intersections of the cells with the polygons as
components, assuming that each component disappears once
it has completely entered the empty polygon.
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TABLE II

ANALYSIS OF SUFFICIENT NUMBER OF PIECES
FOR A FEW EXAMPLE SHAPES

N

4

/
~4

[

shape components | pieces | decompose time | planning time

cavity 144 6 0.862 s 0.822' s

spiral 462 26 0.786 s 1.500 s
dumbbell 269 8 0.529 s 0.496 s
mammoth 61 9954 16.816 s 149.192 s

Fig. 9. Moving components through a chain of convex polygons. White
polygons are empty, and the gray one is filled. Using the pairs of transit
squares, cells can move between any two adjacent polygons, or through a
chain of connected polygons.

Proof 5: Lemma 1 indicates that cells in a grid can be
translated to a target in order of distance without collision.
Since all motions of all points in cells are along straight lines
during translation, the result extends trivially to a case where
the space is constrained to a convex polygon, and the cells are
clipped by the convex polygon, as are the previously defined
components.

We therefore have the following approach. First, empty
the transit square in the full polygon into the transit square
in the empty polygon, by sorting the grid cells in order of
distance from an arbitrarily chosen complete grid cell in the
empty polygon and translating those cells to the target in that
order; since the pair of transit squares is together a convex
polygon, there are no collisions. Then, choose a target cell
in the now-empty transit square in the first polygon. Sort
the components in the polygon based on their distance from
the target cell. In this order, first translate each component
first into the transit square, and then into the adjacent empty
polygon. |

A. Algorithm 1: Simple Separation

The previous theorem suggests a simple, but complete,
algorithm for cutting and separating the interlocked parts.
First, using triangulation or some other means, decompose B
and its containing square (from which we would like to
remove B) into convex polygons. Polygons within B will
be full, and polygons outside of B will be empty. Define
a boundary polygon as a polygon that is connected by a
sequence of adjacent empty polygons (the exit sequence) to
the outside of the containing square, the exit.

Fig. 9 shows the approach for extraction. Choose a boundary
polygon and an exit sequence. Extract components from that
polygon one at a time in the order suggested in the proof
of the theorem. As each component enters the exit sequence,
move it through the sequence of empty polygons to the exit,
using translation first to and then through each pair of transit
squares along the exit sequence.

A greedy way of finding a good grid size is to first build
a graph with convex polygon centers as vertices and convex
pairs as edges. Each edge is weighted by the size of transit
squares connecting polygon pairs. Keep removing the smallest
edges but maintain the connectivity of the graph until no more
edge can be removed. Then, compute the grid that fits in the
smallest transit square [see Fig. 8(c)].

Vb

(©)

Fig. 10. Decompositions of separable parts into pieces. Colors are reused as
needed; each set of the same color components is a single piece. (a) Cavity.
The divisible part is divided into six pieces. (b) Spiral. The divisible part
is divided into 26 pieces. (c) Mammoth. The divisible part is divided into
61 pieces.

B. Algorithm 2: Greedy Separation With Grouped
Components

There are many shortcomings of Algorithm 1. For example,
if there is a tiny shape in the convex decomposition of the
divisible part, the cell size will be very small. Inspired by
Zhang et al.’s [41] work of moving grids along axis, in this
section, we propose an algorithm to plan a path for every cell
generated by the decomposition algorithm. Based on the paths,
we aggregate components into pieces and cut only along piece
divisions; this will greatly reduce the number of pieces needed.

Let the path of a component be P = [po, p1, p2,--., Pnls
where p; € P is the intermediate position after the ith control
and pg is the initial position of the component, where a control
is a single translation. Define the control sequence for the
component as C = [c1, 2, ..., Cy], Where ¢; = p; — pi—1 1S
the ith control.

A simple greedy approach to grouping components is as fol-
lows. Components may be whole (entire grid cells) or partial.
We first deal only with whole components. Simulate motions
of all of the whole components in each of the four cardinal
directions. For each direction, count the number of compo-
nents that reach the exit area, and may be grouped together
based on 4-connectivity; greedily, choose the direction that
gives the fewest such grouped pieces.

Add the resulting cleared squares as a target area, and
attempt motion in each of the four cardinal translation direc-
tions, potentially creating new piece groups; attempt to then
move these new groups to the exit.

Table II shows some statistics for the sufficient decompo-
sition for some example shapes and a few illustrative run
times. The main time cost is spent on testing collisions.
Decomposition solutions are shown in Fig. 10.

IV. CONCLUSION

We proposed the problem of separating a divisible polygon
from an interlocked atomic polygon by cutting. We explored
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lower and upper bounds on the number of pieces that the
divisible part must be cut into and presented algorithms to
make the cuts and achieve the separation using a sequence
of translations. Both bounds are very conservative; the main
contribution of this paper is the proposal of the problem and
an initial exploration of solutions.

Improving the quality of bounds is of great interest for
future work. In the section of computing the necessary number
of pieces that the divisible part must be cut into, we only
considered some sets of points immediately adjacent to the
edges of the atomic part, ignoring global properties. For
example, extremely small exit corridors through the atomic
part should increase the lower bound. Such properties might
be considered by how large a component might be before it
“plugs” a hole in configuration space.

While computing a sufficient number of pieces, the algo-
rithm first decomposes the divisible part into convex polygons
and then computes a grid resolution using all pairs of adjacent
polygons. The algorithm can generate a large number of
pieces if there exists a single narrow corridor anywhere in
the divisible part. Different convex decomposition methods
might also yield better decompositions, as might the selection
of good disassembly sequences [6], [19].

In future work, we would also like to expand the problem
scope. We expect that most practical problems in this area are
3-D, rather than planar. Also, we can imagine situations where
there are several atomic components and several divisible
components. How should such multicomponent 3-D puzzles
be designed, assembled, or disassembled?
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