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Abstract— This paper addresses the question of how a previ-
ously available control policy πs can be used as a supervisor to
more quickly and safely train a new learned control policy πL

for a robot. A weighted average of the supervisor and learned
policies is used during trials, with a heavier weight initially on
the supervisor, in order to allow safe and useful physical trials
while the learned policy is still ineffective. During the process,
the weight is adjusted to favor the learned policy. As weights
are adjusted, the learned network must compensate so as to
give safe and reasonable outputs under the different weights.
A pioneer network is introduced that pre-learns a policy that
performs similarly to the current learned policy under the
planned next step for new weights; this pioneer network then
replaces the currently learned network in the next set of trials.
Experiments in OpenAI Gym demonstrate the effectiveness of
the proposed method.

I. INTRODUCTION

In the early stages of training, outputs from a learning
policy can be unreasonable and lead to catastrophic failures.
Motivated by the twin goals of better data efficiency and
fewer failures in learning-based control, we propose an
algorithm to leverage a possibly imperfect external super-
visor policy to help accelerate the learning, and introduce
the concept of a pioneer policy to realize safe progressive
updates of the learner policy. In our framework, the training
signals come from both the interactions with the environment
and the supervisor policy, and the goal is that eventually the
learner policy surpasses or at least matches the performance
of the supervisor policy.

Consider a problem of robot control in which a traditional
manually designed control policy is available and effective.
However, new un-modeled conditions may arise: a drone may
encounter shifting wind patterns or pick up an unsteady load
for manipulation, or a self-driving vehicle may encounter
unfamiliar lighting conditions or slick roads. The goal of
this paper is to use a previously available control policy πs
to more safely and effectively learn a new control policy πL
using deep reinforcement learning. Once a policy is learned,
it may in turn be used as a supervisor to bootstrap the
learning of better policies as training data becomes available.

Define πc to be the current policy at a particular time, and
compute it as a weighted linear combination of πs and πL:

πc = kπs + (1− k)πL. (1)
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(a) LunarLanderContinuous-v2
environment

(b) InvertedPendulum-v1 envi-
ronment

(c) HalfCheetah-v1 environment (d) Reacher-v1 environment

Fig. 1: OpenAI gym environments used as experiment tasks.

Initially, k is set close to 1, so the resulting control policy
is dominated by the supervisor. Trials are conducted and πL
is learned with the objective of improving πc with regards
to the current task. Once a target score has been achieved, k
is reduced by some percent, for example, 4%.

Notice that if k is reduced suddenly, the policy πc also
changes suddenly at any point where πs and πL indicate
different controls. This may cause a robot to take surprising
and perhaps dangerous actions. To avoid this issue, during
training of πL, we also train a pioneer policy πp simulta-
neously, but for a different weighting of the supervisor k′:
k′πs + (1 − k′)πp. In order resolve the discontinuity, the
pioneer network is trained with the goal that:

πc = k′πs + (1− k′)πp. (2)

Once πp and πL both reach desired objectives, then k is
updated and πL is replaced by the pioneer network πp.

II. RELATED WORK

Recent progress in deep learning has led to several success
stories in various domains [13], [8], [9]. Nevertheless, several
practical issues for learning-based control remain under-
explored, including efficiency and safety of the training
process.

Supervised learning. Supervised learning is the machine
learning task of inferring a function from labeled training
data [14], finding a mapping between the input object and a
desired output value while minimizing an error signal. Linear
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regression and multivariate linear regression [19], for in-
stance, aim at finding a linear relationship between variables.
Logistic regression [4], [7] considers specifically mapping
the independent input variables to a binary output, while
Naive Bayes classifiers [15], [17] map the input to multiple
categories. Support Vector Machines (SVM) [22], [1] are
efficient large-margin classifiers for both linear and non-
linear classifications. Recently, deep neural networks have
been widely and successfully adopted for many supervised
learning tasks.

Supervised learning of an effective control policy requires
a large number of state-action pairs, which are impractical
to manually annotate. Imitation learning, which is generally
supervised learning, works with an expert policy to query op-
timal action given a state. To sample state-action pairs to train
a policy with supervised learning, one widely used method
is DAGGER [18]. DAGGER iteratively collects trajectories
using the current policy and then queries the expert policy at
states along the trajectories for optimal actions to augment
the training data to update the policy. DAGGER cannot
produce a policy better than the expert policy. Further, in
practice, it is not always possible to obtain an expert policy.
In our work, we assume access to a supervisor policy, which
may not be optimal, but provides reasonable performance.
In the current work, the trained policy may provide better
performance than the supervisor.

Reinforcement learning and Deep reinforcement learn-
ing. Reinforcement learning (RL) is often applied to prob-
lems involving decision making and maximizing feedback
rewards as a performance signal. Markov decision processes
(MDP) [16] provide a framework for modeling decision
making. Watkins [24] proposed the Q-learning algorithm as
a model-free technique for solving finite MDP problems. Q-
learning works by learning a state-action value function that
predicts the expected reward given an action at a state.

Deep neural networks have been introduced to reinforce-
ment learning (DRL) for training policies from end-to-end
to solve complex problems. A recent break through is the
DQN from Minh et al. [13], [12], in which neural networks
are used to approximate the Q function for high dimensional
state space. Levine et al. [9] developed an end-to-end DRL
method that maps raw image input to robot motor controls.
Silver et al. [20] combined tree search and DQN to beat the
best human Go player. For continuous control, Lillicrap [10]
combined deep Q-learning with an actor-critic framework to
learn a deterministic policy (DDPG).

Most of the DRL methods require a huge amount of
training data to find a good policy. As the community is
aware of this issue, many methods have been proposed to
accelerate training. Popular techniques include adopting the
advantage function from Schulman et al., adding auxiliary
tasks [5] and asynchronous methods [11]. These methods
are complementary to our proposed solution, with which we
can potentially further accelerate the RL training.

We approach this problem by introducing a supervisor pol-
icy in training. We assume the existence of a reasonably good
policy as a supervisor during training. The learner policy

learns from both the RL training signals and the supervisor
policy. We observe significant acceleration of the learning
process with respect to learning without a supervisor. A
relevant work from Hester et al. [3] also propose to add
supervised loss in RL training. However, their method does
not address the safety issue in RL training. Although the
leaner policy improves quickly in generally in that work,
there are sometimes unexpected behaviors, which may lead
to catastrophic failures of the overall system.

Safe reinforcement learning. Safe reinforcement learning
highlights the importance of ensuring a reasonable system
performance while searching for a new and improved pol-
icy [23]. We refer readers to [2] for a more comprehensive
literature survey.

Quite recently, Kahn et al. [6], proposed an uncertainty
measure used to control the speed of the robot during
learning to avoid collision. For some tasks, e.g., stabilizing
a quadrotor, a smaller magnitude of actions may not make
the training safe. Our framework is general, and not task-
specific.

III. BACKGROUND

In this section, we review the mathematical background of
Q-learning and the technique of applying an artificial neural
network to represent the actor-value function, including its
extension to a continuous action space. Techniques discussed
in this section will be applied in the next section where we
combine a supervisor with a learning actor.

In a standard reinforcement learning setup, an agent inter-
acts with an environment E in discrete time-steps. Let st be
the observation of the environment at time t, at be the action
taken, and rt be a scalar reward feedback. We consider the
action to be real valued at ∈ RN and the environment is
fully observed.

A policy π : S → P(A) maps the state space S to a
probability distribution over the action space A. A policy
determines the behavior of an agent. In the continuous action
space, an actor function µ : S → A is a policy that
deterministically maps a state to a specific action. The reward
of an action taken at a state is described by r(st, at). The sum
of discounted future rewards Rt =

∑T
i=t γ

(i− t)r(st, at) is
the return from a state, where γ ∈ [0, 1] is a constant discount
factor.

The action-value function, or Q function, describes the
expected return in state st after taking an action at and
thereafter under policy π:

Qπ = E[Rt|st, at]. (3)

Q-learning [24] uses a greedy policy to determine the
action under current state that maximizes the return (the Q
value).

The Bellman equation, as a necessary condition for opti-
mality, is widely used to represent Q function in a recursive
manner:

Qπ = Ert,st+1
[r(st, at) + γEat+1

[Qπ(st+1, at+1)]]. (4)



If both S and A are discrete, the Q function, a map of S
to A can be described using a table. When S is continuous,
Deep Q networks (DQN) construct a network to represent
the Q function. Let θQ be the parameter of Qπ network. We
optimize θQ by minimizing the loss:

L(θQ) = E[(Q(st, at|θQ)− yt)2], (5)

where
yt = r(st, at) + γQπ(st+1, π(st+1)) (6)

is the observed return. Practically, the dependence on yt on
parameters θQ is frequently ignored; we do the same. By
iteratively updating the parameters, DQN predicts the return
more and more accurately, thus better actions will be chosen.

DQN works only for discrete action spaces. In the case
where actions are from a continuous space, we construct
a new neural network to represent a deterministic actor
function µ : S → A. With the deterministic actor function,
we reduce the inner expectation and modify the Bellman
equation (4) as follows:

Qµ = Ert,st+1
[r(st, at) + γQµ(st+1, µ(st+1))]. (7)

Lillicrap et al. [10] used an actor-critic approach to
optimize an actor-value function and actor policy, based on
the Deterministic Policy Gradient (DPG) method by Silver
et al. [21].

The Q function as a critic network is still optimized by
minimizing the loss defined in Equation (5). Let θµ be the
parameters of the actor network. Silver et al. [21] proved
that the actor network can be updated by applying the policy
gradient as in equation (8):

∇θµJ ≈ Est [∇θµQ(st, a|θQ)|a=µ(st|θµ)]. (8)

Following the chain rule, we have:

∇θµJ ≈ Est [∇aQ(st, a|θQ)|a=µ(st|θµ)∇θµµ(st|θ
µ)]. (9)

In practice, direct implementation of equation 5 and 9 with
neural networks has proven unstable in many cases. Lillicrap
et al. [10] addressed this problem by adding target networks
for both critic and actor as inspired by Minh et al. [12].
The parameters θ′ of target networks are updated by slowly
tracking the learned networks: θ′ = τθ + (1 − τ)θ′, where
τ � 1 is a scalar factor.

IV. OUR METHOD

Learning from scratch using the algorithms discussed
above is impractical in many real world tasks. The large
number of trials and errors can be destructive for agents like
unmanned aerial vehicle and many other robots. In a real
world learning process, however, supervisors significantly
improve the performance of a learner and reduce the number
of failures.

Inspired by real world learning experience, we introduce
a supervisor into the reinforcement learning process. This
section gives detailed explanation of how to combine a
supervisor policy and a learning network to train the network
and perform tasks at the same time. We slowly reduce and

Algorithm 1 Supervised deep reinforcement learning

1: Randomly initialize critic Q(s, a|θQ), actor µa(s|θµ)
and pioneer µp(s|θµt2) networks.

2: Initialize target network Q′ and µ′
a with parameters

θQ
′ ← θQ and θµ

′ ← θµ

3: Initialize replay buffer R and Rp
4: Initialize pioneer buffer threshold rp
5: Initialize k ← 1
6: for episode = 1 to M do
7: Initialize a random process N for exploration.
8: Initialize temporary buffer Re
9: Reset environment and receive initial observation

state s1.
10: for t = 1, T do
11: Select action at = µ(s|θµ) and execute
12: Observe reward rt and new state st+1

13: Store transition (st, at, rt, st+1) in R and Re
14: Sample N transitions (si, ai, ri, si+1) from R
15: Set yi = ri + γQ′(si+1, µ

′(si+1)|θQ
′
)

16: Update critic by minimizing loss:
17: L = 1

N

∑
i(yi −Q(si, ai|θQ))

18: Update the actor using sampled policy gradient:
19: ∇θµJ ≈ 1

N {(1− k)
∑
i∇aQ(si, ai)∇θµµa(si)

20: +k
∑
i[µ(si)− ai]}

21: Update the target networks:
22: θQ

′
= τθQ + (1− τ)θQ′

23: θµ
′
= τθµ + (1− τ)θµ′

24: if episode total reward ≥ rp then
25: Move transitions from Re to Rp
26: Copy the learning network to pioneer: θµt2 ← θµ

27: Sample transaction (sj , aj , rj , sj+1) from Rp
28: Update the pioneer policy by applying gradient:
29: ∇θµt2Jp =

∑
j [µp(sj |θ

µ
t2)− aj ]

30: Empty Re
31: Decrease k if a target score is achieved.
32: Re-initialize the learning network θµ ← θµt2 if k is

decreased.
33: Increase rp

S

Supervisor policy

Learning policy

Pioneer policy

µs

µa

µp

Critic Network

µc = kµs + (1 + k)µa

µ′c = k′µs + (1 + k′)µp

Loss

QS

Fig. 2: The framework: based on the actor-critic framework,
we introduce a supervisor policy, a learning policy, and a
pioneer policy. The combined action µc is executed. The
pioneer policy is trained such that µ′

c outputs similar results
as µc with an updated weight k. The learning policy is then
replaced by µp.



eventually remove the supervisor contribution throughout the
learning process.

Let supervisor µs : S → A be a deterministic actor
function, µa : S → A be our learning policy. We combine
the two policies plus some exploration as a new policy, called
the combined policy:

µ(s) = kµs(s) + (1− k)µa(s) +Nt (10)

where the combination factor k ∈ [0, 1] is a scalar and Nt
is a noise process that diminishes as time increases.

In our proposed algorithm, the critic function Q(s, a|θQ) is
also modeled by an artificial neural network with parameters
θQ, the actor network µa(s|θµ) is modeled by another multi-
layer neural network, where θµ is the parameters of the
actor network. Because µs is a fixed policy, θµ is also the
parameters of the combined actor network µ(s|θµ).

A. Improving the combined actor

Assuming k is a constant factor, we consider how to
improve the combined policy during learning.

The critic network parameters θQ are optimized by mini-
mizing the loss as defined in equation (5). The actor network
parameters are updated by applying gradient defined in
equation (8). But after applying the chain rule, because µ
is a combined policy, equation (8) becomes:

∇θµJa ≈ Est [∇θµQ(st, a|θQ)|a=µ(st|θµ)]
= Est [∇aQ(st, a|θQ)|a=µ(st|θµ)∇θµµ(st|θ

µ)]

= Est [∇aQ(st, a|θQ)|a=µ(st|θµ) · ∇θµµa(st|θ
µ)]

· (1− k)
(11)

Equation (11) considers only the performance improve-
ment of the combined policy. To better train the learning
policy, we also want the learning policy to behave as closely
as possible to the supervisor. The parameters θµ of the
learning network can also be updated by minimizing the loss:

L(θµ) =
1

2
E[(µa(s|θµ)− µs(s))2], (12)

whose corresponding gradient is:

∇θµJs = E[µa(s|θµ)− µs(s)]. (13)

In order to improve the performance of a combined
network and learn from the supervisor at the same time, we
apply a combined gradient to the learning actor network, as
defined in the following equation

∇θµJ = ∇θµJa + λ∇θµJs, (14)

where λ is a scalar factor.

B. Reducing supervision

We now consider reducing the contribution of the super-
visor to our combined policy.

Let kt1 be the value of k at time t1. We choose kt2 to be no
larger than kt1 for any t2 ≥ t1. Notice that when k → 0, the
combined actor is the learning actor. However, equation (14)
prevents the learning actor from being much better than the

supervisor if λ is a constant number. Assuming the learning
actor has learned the supervisor policy, we set λ ← k so
the learning network can improve without relying on the
supervisor.

In practice, we update the k value after achiving a target
score for one or more epochs, so the combined policy has
more time to be improved and stablize. Let µt1 be the
combined policy at time t1, kt1 be the k value at time t1.
Assuming that at time t2 > t1, µt1 is well trained and
µt2 6= µt1 , shifting the combined policy from µt1 to µt2
can result in bad performance.

We address the problem by adding a copy of the learning
network µp(s|θµt2), named the pioneer network, representing
the learning actor at time t2, where θµt2 are the parameters.
Knowing the value of kt2 and parameters θµt1 of the learning
actor at time t1, the combined policy at the time-step t2 is
known:

µp(st2 |θ
µ
t2) = kt2µs(st2) + (1− kt2)µa(st2 |θ

µ
t2) +Nt+1.

(15)
Before shifting the combined policy from µt1 to µt2 , we

optimize the pioneer network such that it behaves as similarly
to previous combined policies as possible. Parameters θµt2 are
updated by minimizing

L(θµt2) =
1

2
E[(µp(s)− a)2] (16)

where a is the output by previous combined policies. This
is equivalent to applying gradients

∇θµt2Jp = E[µp(s)− a] (17)

to the pioneer network.
Applying gradients (17) using randomly sampled previous

transitions requires previous combined policies to have stably
good performance. In practice, this requirement is not always
satisfied. We use a priority replay buffer to store and sample
state-action pairs with high returns.

In our implementation, we adapt the idea of using target
networks from Lillicrap et al. [10] and Minh et al. [12],
to prevent actor and critic networks from divergence. Algo-
rithm 1 is the pseudo-code of our algorithm.

When the combination factor k gets to zero, our method
is reduced to DDPG algorithm. So the learning policy is
guaranteed to improve its performance over more trails.

V. EXPERIMENTS

In this section, we test our method under several OpenAI
Gym [?] environments and discuss the impact of pioneer
network and supervisors with different performances. Our
primary environment is LunarLanderContinuous-v2, which
operates a landing agent by setting main engine and side
engine forces to land on a pad centered at (0, 0). In this
environment, if an episode’s total return is less than 0, the
agent has crashed, if the return is larger than 200 the agent
is landed successfully, otherwise, the agent has landed but
not in the desired range.



A. Pioneer network

We also performed an experiment to test the difference
of adding a pioneer network. We first trained a supervisor
using DDPG method. After 1500 episodes of training, the
supervisor performance is relatively stable. Its 100-episode
average return is above 200. Our learning network has the
exact same structure as the supervisor. We reduced the
combination factor k by 6% for every 4 episodes. After 300
episodes, the supervisor contribution was less than 1%.

Fig. 3: Comparison of the combined actor performances with
and without the pioneer network. The x-axis is the number
of episodes and the y-axis is the total reward in one episode.
The pink curve shows the performance with the pioneer
network while the blue curve is without the pioneer. Data
smoothed for visual purposes.

Figure 3 shows the comparison of the combined actor
performance with and without the pioneer network. Without
a pioneer network, the combined actor performance drops
sharply when the combination factor k is less than 0.47. Then
performance improves throughout the remainder of training.
With the pioneer network, the performance is much more
stable (average reward larger than 200) and the learning
process is much faster than when learning from scratch.
This indicates the pioneer network significantly improves the
stability of the learning process.

Although there are still crashes (reward below 0) with the
pioneer added, we suspect this is caused by the imperfect
supervisor; running the supervisor alone also leads to some
crashes.

B. Supervisor impact

The next experiment is for testing the combined actor
performance under different supervisors. Our supervisors
are trained as in Section V-A. We pick two supervisors:
one (bad supervisor) trained for 1000 episodes whose 100-
episode average performance is around 100 and one (good
supervisor) trained for 1500 episodes whose 100-episode
average performance is above 200. We enable the pioneer
network in both experiments and reduce the combination
factor k by 6% for every 4 episodes.

Figure 4 shows the comparison of learning from good and
bad supervisors. When learning from the good supervisor,
the combined actor performance is stably good (rewards
mostly above 200). However, with a bad supervisor, after 300

Fig. 4: Comparison of combined actor performance trained
under supervision of both a good (pink) and bad (green)
policies. Data smoothed for visualization.

episodes, the rewards are between 130 and 160 and improve
slowly.

Fig. 5: Network performance under the supervision of a
bad supervisor. The blue curve is the performance of the
supervisor alone and the green curve is the performance of
the combined actor.

Figure 5 shows the comparison of our combined actor and
the supervisor. The combined actor performs better than the
supervisor alone. In 300 episodes, the supervisor crashed 54
times and successfully landed 30 times, while the combined
actor crashed only 23 times and successfully landed 37 times.

Figure 5 indicates our method is learning and improving
the performance of a given supervisor.

Figure 6 shows comparison of performances in the first
340 episodes for different methods. The DDPG algorithm
achieved no successful landing, our method with a good
supervisor is consistently landing with success, and without
pioneer network, the performance over the training process
is very unstable.

C. Mujoco environments

We also ran several Mujoco environments to test our algo-
rithm in different continuous control tasks under supervisors
with different performance qualities.

For the InvertedPendulum-v1(Figure 1b) environment the
goal is to swing up a pendulum and make it stand as
long as possible. Getting a reward of higher than 950 is
considered “solved”. We also use DDPG algorithm to train
two supervisors: a bad one capable of getting rewards around
255 and a good one capable of getting rewards over 950. We
decrease the combination factor by 10% for every 5 episodes
until supervisor is contributing less than 1%.



Fig. 6: Performance curves in the first 340 episodes for the
DDPG method (orange), our proposed method with a good
supervisor (pink), our method without pioneer network (blue)
and our method using a bad performance supervisor (green).

The result of training with a good supervisor is shown in
Figure 7. With a good supervisor, our combined policy gets
the highest rewards (1000) over all trails.

Fig. 7: Training to stand a pendulum with a good supervisor.
Our method is achieving rewards of 1000 over the whole
process.

However, training with a bad supervisor is only slightly
better than using the supervisor alone in this environment.
We believe the reason is that, in this specific task, the
distribution of states under a good supervisor policy is very
concentrated in a small region where the pendulum is close
to stand. A bad supervisor generates states distributed much
wider in the state space; it seems a lot of effort is spent
on states that are less important. This experiment indicates
that if a supervisor policy is not good enough, the learning
policy will not improve significantly. The next experiment on
HalfCheetah-v1 environment uses a supervisor that is close
to solve the task.

The goal for the HalfCheetah-v1(Figure 1c) environment is
to control actions of a 2D cheetah robot and keep it running
as long as possible. Getting a reward of higher than 4800
is considered “solved”. We trained using a bad supervisor
that gains rewards around 4300. This supervisor was trained
for over 5000 epoches, and not able to improve for 10000
more epoches, indicating a neural network not complicated
enough. Performance is shown in Figure 8

We also run our method on Reacher-v1 (Figure 1d)
environment. The goal for this environment is to control
a 2R arm to reach and stay in a goal position. Getting a
reward of higher than -3.75 is considered “solved”. We used a
supervisor policy that gains on average rewards of -5, which

Fig. 8: Training to run a 2D cheetah robot with a bad
supervisor. Our combined actor is graduately performing
better than the supervisor and finally achieved a target score
of 4800.

is still far from solving the task in this environment. Our
combined actor is getting similar performance. See Figure 9.
Considering that training this supervisor took over 10000
episodes. Having a similar near-solution policy trained in
350 episodes is not bad. Our explination for this experiment
is the same as in the InvertedPendulum-v1 experiment, if
a supervisor is too far from acheiving a good score, the
learning policy will also have hard time to make good
improvement.

Fig. 9: Reacher-v1 environment. Our combined actor (light
blue) is performing similar as the supervisor (dark blue).

VI. CONCLUSION

In this work, we introduced an algorithm to safely and
quickly learn from a supervisor policy and eventually im-
prove performance. We combined a supervisor with a learn-
ing network, and gradually decay the contribution of super-
visor to force the learning network to learn from previous
executions. By introducing a pioneer network, we are able
to stabilize the combined policy performance over the whole
learning process.

The proposed method can be considered as an efficient
way of reducing exploration and exploitation on state-action
pair space. Simulated experiments proved the efficiency of
the algorithm; next steps include applying this algorithm to
real-world robot systems.
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