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Abstract. Multirobot systems for exploring initially unknown environ-
ments are often subject to communication constraints, due to the limited
range of their transmission devices and to mission requirements. In order
to make decisions about where the robots should move, a communication
map that encodes knowledge of the locations from which communication
is possible is usually employed. Typically, simple line of sight or circle
communication models (that are rather independent of the specific envi-
ronment in which the exploration is carried out) are considered. In this
paper, we make a step forward and present a multirobot system that
learns and updates a communication map during the exploration mis-
sion. In particular, we propose methods to incrementally update vertices,
corresponding to the locations visited by robots, and edges, correspond-
ing to communication links, of a graph according to the measured power
of radio-frequency signals and to the predictions made by a model based
on Gaussian Processes. Experimental results obtained in simulation show
that the proposed methods build and update rich communication maps
specific for the environments being visited and that the availability of
these maps can improve the exploration performance.

Keywords: multirobot systems; exploration; communication.

1 Introduction

Exploration of initially unknown environments – namely the incremental discov-
ery of their physical features – is a task involved in several applications, including
map building, search, monitoring, and patrolling. Use of multirobot systems for
this purpose is particularly challenging in the presence of constraints on commu-
nication [5,10,12,13,15,20,23]. Such constraints are due to limited ranges of the
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robots’ communication devices and to mission requirements, like guaranteeing a
continuous or recurrent connection with a base station [1].
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R4
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Fig. 1. Representation of the constrained exploration problem, where robots (R1-R5)
need to be connected, either directly or in multihop, to the base station (BS). The
explored area (green) together with the communication graph built by considering a
conservative range line-of-sight communication model (blue) are illustrated. The red
dashed lines indicate links that can be added with the approach proposed in this paper.

Multirobot systems for communication-constrained exploration make use of
some form of knowledge about the locations from which communication is pos-
sible. This knowledge, encoded in a communication map, is used to decide where
to move the robots in order to efficiently discover the unknown parts of the
environment while satisfying the constraints. Usually, communication maps are
built using simple rules that only partially account for the actual environment in
which robots operate. For example, a communication is considered possible be-
tween two locations if they are visible from each other and closer than a threshold
distance [5, 10, 21, 23]. In this way, communication between two close locations
separated by a thin wall is not considered possible although it can be very likely
in practice. Recently, a method that exploits Gaussian Processes for building
more rich and reliable communication maps from measurements collected by
robots has been proposed [4,17], but this approach considers the construction of
communication maps as a stand-alone task not connected to exploration.

In this paper, we present a multirobot system for exploring initially unknown
environments under communication constraints. Originally, the proposed system
updates the communication map during the mission. In particular, we start from
the multirobot system of [5] that explores environments under recurrent connec-
tivity constraints (namely, robots must be connected to a base station when
they acquire new information) and we enrich it with a communication map rep-
resented as a communication graph. This graph is incrementally updated, as the
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exploration progresses, with the vertices corresponding to the locations visited
by the robots and with the edges generated according to the measured power of
radio-frequency signals and to the prediction of possible communication links re-
trieved from the model of [4]. Fig. 1 shows an instance of such a problem, where
online updates of the communication graph can allow the robots to be more
efficient in exploring the environment. Indeed, with an enriched communication
graph, the system can exploit the possibility of communicating directly between
the base station and two locations (through the two dashed red links), without
setting up any relay chain for multihop communication. Experimental results
obtained in simulation show that our proposed methods maintain an updated
communication graph that can be used to improve exploration performance.

The main original contribution of this paper is thus the introduction of a
multirobot system for exploration that is able, at the same time, to learn and
update a graph representing pairs of locations from where communication be-
tween robots is possible. Such a contribution allows a multirobot exploration
system to be more effective and efficient in exploring environments and at the
same time to keep a good situational awareness.

This paper is organized as follows. The next section reviews the relevant
related work. Section 3 illustrates the proposed multirobot system for exploration
and the methods it uses to build and update communication maps. Section 4
reports experimental results obtained in simulation. Finally, Section 5 concludes
the paper.

2 Related Work

Constraints on communication for exploring multirobot systems are usually im-
posed by the limited communication range of robots and by mission require-
ments. Such requirements can impose that robots are connected at all times –
see, e.g., [12–14,20] – or recurrently – such as in [5,10,15,16,23]. A common trait
of exploring multirobot systems that consider such constraints is the availabil-
ity of some form of knowledge about where the robots can communicate. This
knowledge – typically used for deciding where to move the robots – can be repre-
sented as a communication map: given two locations p and q in the environment,
it returns whether a communication is possible between p and q.

Communication maps are often built (although not always explicitly stored)
according to simple fixed communication models that tend to be conservative in
establishing if a communication between two locations is possible. For instance,
some papers, like [5, 10, 21, 23], consider a line of sight communication model
in which two robots can communicate with each other only if the line segment
connecting their locations is entirely contained in the known free space and it is
not longer than a threshold value d. This knowledge is used to plan rendezvous
between robots [21] or to asynchronously assign locations to robots [23]. Also, [10]
uses a communication map built on a line of sight communication model to let
robots regain connection with the base station after a fixed time interval.
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A similar approach builds communication maps considering that a robot r1
can communicate with a robot r2 if r2 is located within a circle centered in the
current location of r1 and with radius d (the communication range threshold),
independently of the presence of obstacles. Papers that follow this approach
include [5,10,13–16,21]. Communication maps derived from the circle model are
used to place explorer and relay robots in [15, 16] and to build a tree in which
exploring robots are the leaves and link stations are the inner nodes in [13,14].

A more complex and realistic way to build communication maps is to consider
two robots able to communicate if the estimated power of the radio-frequency
signal between their locations is large enough. For instance, an estimate of the
signal power P (in dBm) at a distance d from a source can be calculated using
the empirical formula of [3]:

P = P0 − 10 ·N · log10(d/d0)−min{nW, C} ·WAF, (1)

where P0 denotes the reference signal value at distance d0, N is the ratio of
power loss with the distance, nW is the number of walls traversed by the signal,
C is the maximum number of walls, and WAF is the wall attenuation factor.
Typically, it is assumed that two robots are able to communicate if P > −93
dBm. The validity of this empirical model is corroborated by works in which
Eq. (1) is used to estimate signal power in order to assign robots to locations
where they can communicate with the base station, and to arrange rendezvous
between robots [21,26].

The above systems consider communication maps built according to commu-
nication models (line of sight, circle, signal power) that basically depend on the
distance between two locations. More realistic ways for building communication
maps according to actual signal measurements collected in an environment have
been recently proposed. For instance, Gaussian Processes are used to model sig-
nal power distribution [4, 17]. Such a model is updated incrementally as more
measurements are acquired. However, this method has been used stand-alone
and has not been integrated in any exploration system, as we do in this paper.

Finally, it is worth mentioning other systems for coordinated multirobot ex-
ploration under communication constraints not using any communication map.
For example, in some systems, communication is considered as an unpredictable
event that can be opportunistically exploited [2,7,8,27]; others use communica-
tion devices that store messages and are spread in the environment [6, 12].

3 The Proposed System

We consider two-dimensional environments which are initially unknown and are
explored by a system composed of multiple mobile robots R = {r1, r2, . . . , rm}
and of a fixed Base Station (BS). The presence of a BS is required in applica-
tions in which human operators have to supervise the exploration process (e.g.,
in search and rescue). Each robot ri can perceive the surrounding environment
using a laser range scanner and can communicate with other robots and with
the BS using an onboard radio-frequency transceiver (such as WiFi). We assume
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that, when communication is possible, the bandwidth is enough to support in-
formation exchange within our system. Moreover, we assume that the possibility
of a communication between two locations depends only on the locations and
on the (generally unknown) environment; for instance, there are no transient
disturbances of the signal.

Our system basically operates as follows (similarly to that of [5]).

(1) Each robot perceives the surrounding environment with its laser range scan-
ner and sends the perceived data to the BS.

(2) The BS uses a graph-based SLAM algorithm [24] to localize the robots and
to merge the perceived data in an occupancy grid map. (We assume that
localization is accurate enough for our purposes.)

(3) The BS calculates a new assignment of robots either to frontiers (i.e., to
locations between known and unknown portions of the environment) or to
other locations to form a connected configuration in which every robot can
communicate with the BS. Then, the BS sends the updated map and the
assignment to the robots.

(4) Each robot receives the updated map and assigned location, plans a path to
such location, moves to it, and, when the location is reached, iterates from
Step (1). Possible collisions between robots are managed opportunistically
when they are detected using procedures that locally adjust the paths of the
robots.

The exploration strategy employed in Step (3) guarantees that the robots are
connected when they reach their assigned locations. New plans are submitted
by the BS as soon as a given number of robots (1 in our experiments) become
ready. (Informally, a robot is ready if it has relayed all the information to the
BS.) Assignment of robots to locations is performed by solving a constrained
optimization problem. In particular, the algorithm, given a set of locations in
the known portion of the environment, selects the robot-location assignments
that maximize an objective function – a weighted sum of the distance the robot
has to travel and of the amount of new area the robot is expected to perceive
from that location. The robot-location assignments must satisfy the constraint
that all the robots form a relay chain that allows multihop communication with
the BS. The formulation as an Integer Linear Program is the same of [5] and is
not reported here. Please refer to [5] for full details.

To evaluate the constraint mentioned above and to decide if robot-location
assignments guarantee connection with the BS (before the robots actually move),
a communication map is required. Differently from [5], where the assignment
of robots to locations is performed assuming either a line of sight or a circle
communication model (see previous section), here we build a communication
map based on the actual measurements collected by the robots and we update it
as the exploration progresses. Specifically, a (undirected) communication graph
G = (V,E) is maintained and updated on top of the occupancy grid map. Each
vertex in V denotes a location of the environment, while each edge (u, v) in E
denotes the presence of a bidirectional communication link between the locations
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represented by the vertices u and v. The vertices in V are updated, at each
iteration of Step (3), by adding the locations reached by the robots.

In Step (4), while moving, robots poll each other (at a frequency of 1 Hz)
to obtain radio-frequency signal strength measurements. These measurements
are sent to the BS (as soon as the robots are in communication with it at their
target locations), that adds them to a queue Q storing all the signal strength
measurements performed from the start of the exploration. A generic element
of Q is denoted by q = 〈pi, pj , Si,j〉, where pi and pj are the locations of the
transmitting robot ri and the receiving robot rj respectively, when the mea-
surement is taken and Si,j is the received signal power. Note that, in general,
communication links are not symmetric [9] – i.e., Si,j 6= Sj,i – therefore both
measurements are stored.

A conservative prior on the communication model is used to derive the pres-
ence of the “safest” set of edges (communication links). We now present some
methods able to enrich such a conservative communication graph with measure-
ments collected in Q.

3.1 Edge addition

The first method is called edge addition and consists in adding edges to E
directly from measurements q, ensuring that bidirectional communication is
possible. Specifically, for each u and v in V , if there exist two measurements
q = 〈pi, pj , Si,j〉 and q′ = 〈pk, pl, Sk,l〉 such that:

1. the locations pi, pj (pk, pl) are in line of sight and closer than a threshold
α to vertices u and v (v and u) in V , respectively, which are currently not
connected by any edge in E and

2. the measured signal powers Si,j and Sk,l are larger than a threshold β,

then the edge (u, v) is added to E.
The first condition ensures that the measurements are correctly associated

with the vertices u and v, and the second one ensures that there is enough
signal strength to exchange messages in both directions. Note that the value of α
determines the degree of spatial approximation that is introduced by considering
the signal power Si,j (Sk,l) actually measured between pi and pj (pk and pl), as
if it was measured between u and v (v and u).

3.2 Edge prediction

The second method for updating the graph G is called edge prediction and
consists in predicting the presence of edges according to a Gaussian Process
model trained with all the measurements Q collected so far. A Gaussian Process
(GP) is a set of random variables for which each subset follows a Gaussian multi-
variate distribution [19]. Here, we adopt the approach of [4] that uses a GP to
represent the signal strength distribution over the environment. By using GPs,
each prediction is associated with a confidence value. Such extra information
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can be used for deciding which communication links can be considered reliable
enough for addition to the graph G that is used for planning movements of
robots.

In particular, we define a matrix X = [x1,x2, . . . ,xn] that contains all the
n = |Q| location pairs (each x is an ordered pair with the location of the trans-
mitting robot and that of the receiving robot) between which the robots have
measured the signal power, and a vector Y = [y1, y2, . . . , yn] that contains the
corresponding measured values. Assume that the measured values are generated
by an (unknown) noisy process Y = f(X) + ε (with ε ∼ N (0, σ2

n)). A GP is
trained to estimate the posterior distribution over f(). The key idea is that the
covariance between two function values, f(x) and f(x′), depends on the input
values themselves, x and x′. This dependency can be specified via a covariance,
or kernel, function k(x,x′), which in this paper is assumed to be a squared
exponential:

k(x,x′) = σ2
f exp

(
− 1

2l2
(|x− x′|)2

)
, (2)

whose parameters are the signal variance σ2
f and length scale l2, which determine

how strongly input values correlate. This choice is motivated by the simplicity
and applicability of such a kernel function, when no a priori information is avail-
able on the structure of the underlying function The GP is then fully specified
by the parameter array θ = [σ2

f , l
2, σ2

n]T . Notice that the covariance between
function values decreases with the distance between their corresponding input
values. The correlation between the observed measurements is given by:

cov(Y) = K(X,X) + σ2
nI, (3)

where K(X,X) is the covariance matrix of the input values and I is the identity
matrix. As shown in [19], it is possible to learn parameters θ based on the
training data X and Y using hyperparameter estimation. An estimate of θ can
be computed by maximizing the observations log-likelihood:

θ? = arg max
θ

log p(Y|X, θ), (4)

where:

log p(Y|X, θ) = −1

2

(
YT cov(Y)−1Y− log |cov(Y)| − n log 2π

)
. (5)

Note that optimizing Eq. (5) takes O(n3) because of the inversion of the covari-
ance matrix. Therefore, to construct our GP in real time, we use only a subset
of the measurements in Q – obtained by sub-sampling Q and taking pairs of
measurements (〈pi, pj , Si,j〉 and 〈pj , pi, Sj,i〉) separated by at least 30 seconds
and farther than 2 m from locations of any previous measurement pair.

We can now define a matrix W that represents the pairs of vertices (lo-
cations) where to predict the signal power values. In particular, called W =
[w1,w2, . . . ,w`]T a set of arbitrary pairs of vertices of G, p(f(W) | X,Y) ∼
N (µW,ΣW), where the mean vector is obtained as:

µW = K(W,X)cov(Y)−1Y (6)
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Office Open Cluttered

Fig. 2. Simulation environments, approximate size 80× 60 m. Red squares denote the
BS and the robots’ starting locations.

and represents the estimate f̂(W), while the covariance matrix is given by:

ΣW = K(W,W)−K(W,X)cov(Y)−1K(W,X)T . (7)

In particular, the main diagonal of ΣW is usually called predictive variance and
is used to measure the uncertainty of estimates in W.

Such a model is then used to add an edge (vi, vj) to E if the predicted signal

powers f̂i,j = f̂([w]) between vi and vj and f̂j,i = f̂([w′]) between vj and vi are
large enough and have enough low predictive variances δ2i,j = Σ[w], δ

2
j,i = Σ[w′].

More precisely, given a threshold γ, an edge (vi, vj) is added to E if:

f̂i,j − 2δi,j ≥ γ ∧ f̂j,i − 2δj,i ≥ γ. (8)

In order to maintain up-to-date communication maps, this training process
is re-started every 45 seconds and, when it ends, the communication graph G is
updated.

3.3 Combination of edge addition and edge prediction

The above methods can be used independently of each other. However, it can
also be useful to use them in sequence, starting from the same Q. In this way,
the edge prediction method will add edges that are not initially added by the
edge addition method.

4 Experiments

We implemented the proposed system in ROS [18] considering a team of 4 Turtle-
Bots and a fixed BS, and run an extensive set of simulations in ROS/Stage [25]
to assess its performance. The exploration strategy is implemented as a plugin
of the “nav2d exploration” package of the “nav2d” stack5, which is also used
for multirobot (graph-based) SLAM and path planning. By default, ROS/Stage
assumes full communication among all the robots and the BS. Therefore, we

5 http://wiki.ros.org/nav2d

http://wiki.ros.org/nav2d
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implemented a communication simulator which is able to allow/forbid message
passing between the robots according to the realistic communication model pre-
sented in [3] and reported as Eq. (1). For all the experiments, we set P0 = −38
dBm, d0 = 1 m, N = 2.3, WAF = 3.37, and C = 5 (which are realistic
values for the WiFi transceivers as tested with real TurtleBots). To increase
the realism of our simulations, we add a small amount of Gaussian noise with
zero mean and unitary variance to the nominal signal strength calculated with
Eq. (1). We consider the three environments shown in Fig. 2, displaying differ-
ent features. Office and Open are from the Radish repository [11] (“sdr site b”
and “acapulco convention center”, respectively), while Cluttered is from the
MRESim [22] repository (“grass”). For each environment, we complete 5 ex-
ploration runs with a deadline of 20 minutes.

Our experimental campaign aims at comparing the number of edges in the
communication graphs built by edge addition, edge prediction, and their combi-
nation w.r.t. the basic exploration strategy presented in [5] – representative of
the state-of-the-art multirobot exploration systems that consider communication
maps not based on actual measurements. Moreover, we compare the amount of
average explored area and of average traveled distance obtainable by using edge
addition, edge prediction, and their combination and by the basic exploration
strategy. In all cases, we assume that the BS has the following prior on the com-
munication model to compute new plans: any two agents (robots and BS) can
safely assume to be able to communicate with each other when their distance is
not greater than 15 m, as empirically tested with TurtleBots. Such an assumption
guarantees an initialization of the communication graph for the basic strategy.
In general, this assumption can be changed and our proposed method is not
affected by it. For edge addition and edge prediction, the following parameters
are used: α = 3 m, β = −80 dBm, and γ = −93 dBm. This choice of the param-
eters guarantees that each edge added to the communication graph represents
an actual communication link.

Table 1 shows the average number of edges (over runs) of the communica-
tion graphs built by edge addition, edge prediction, and their combination for
Office. The number of vertices is similar in the communication graphs built by
all the methods. For the edges added in the case of combination, edge addition
contributes to approx. 25% of the total number of edges while edge prediction
adds the remaining 75%. It is clear that the proposed methods are able to build
much richer communication graphs (i.e., with many more edges) than the basic
exploration strategy. This means that the assignment of robots to locations to
satisfy the connectivity constraint with the BS can exploit a larger number of op-
portunities (see Fig. 1 for an example of utility of richer communication maps).
These results are consistent also for other environments (Tables 2 and 3) and we
can conclude that the combination of edge addition and of edge prediction adds
more edges to the communication graph, as expected.

Fig. 3 shows the exploration performance in Office. For each of the two met-
rics, the performance is shown as a set of time-stamped histograms displaying
average values (over runs) with standard deviation bars. As the mission unfolds,
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basic edge addition edge prediction combination

833 997 2283 3123
Table 1. Average number of edges in the communication graphs of Office after 20
minutes of exploration.

basic edge addition edge prediction combination

1124 1178 2252 3158
Table 2. Average number of edges in the communication graphs of Open after 20
minutes of exploration.

we can notice that the usage of the combination method provides advantages
w.r.t. the state-of-the-art basic strategy, more in terms of explored area than
of average traveled distance. The performance gains obtained by the two in-
dividual methods (edge addition and edge prediction), instead, is less evident.
This suggests that exploration performance can be improved by a combination
of measurement-grounded (edge addition) and speculative (edge prediction) up-
dating of the communication graph. We note that the performance gain in terms
of explored area of edge prediction and of combination increases as the explo-
ration proceeds. This can be motivated by the fact that the GP is trained with
more samples and returns more accurate predictions. As such, the BS can allo-
cate robots more effectively in the environment. A nice feature of the GP-based
approach to derive new communication links is that it provides a communication
map that allows predictions over the whole environment.

Fig. 3. Performance in Office: explored area (left) and average traveled distance (right).
Each histogram reports average and standard deviation.

Fig. 4 shows the performance obtained in Open. In this environment, none of
the proposed methods seems to be able to provide significant advantages w.r.t.
the basic strategy in terms of explored area. However, the combination method
results in a consistently shorter average traveled distance. Such a difference in
performance gains compared to Office could be due to the simpler and less struc-
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basic edge addition edge prediction combination

1187 1424 2498 4115
Table 3. Average number of edges in the communication graphs of Cluttered after 20
minutes of exploration.

tured environment in Open: a robot can almost always reach a given location by
moving directly there and robots can travel short distances to construct relay
chains that connect new frontiers to the BS. This opportunity is better exploited
by the combination method that leverages on a richer communication graph (see
Table 2).

Fig. 4. Performance in Open.

Fig. 5 shows the performance obtained in Cluttered. In terms of explored
area, the combination method seems to provide an advantage comparable to
that obtained in Office. In terms of average traveled distance, instead, data do
not allow to draw strong conclusions.

Fig. 5. Performance in Cluttered.
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5 Conclusions

In this paper, we presented a multirobot system that explores initially unknown
environments while maintaining recurrent connectivity with a base station un-
der limited communication ranges. The system makes decisions about where the
robots should move according to a representation, embedded in a graph, of the
pairs of locations from which robots can communicate. The main original con-
tribution of this paper is the online updating of the communication graph as
the exploration progresses, according both to measurements of radio-frequency
signal strength performed by the robots and to prediction of signal strength
values performed using Gaussian Processes. This contrasts with other systems
proposed in the literature that do not consider actual measurements collected
in the environment to build the communication map used to assign robots to
locations in the environment. Experimental activities performed in simulation
show that the proposed methods are able to build richer communication maps,
which can provide advantages to the exploration process, especially in struc-
tured environments. We are currently implementing and testing the system on
real TurtleBots to further assess the outcomes of this paper (building on results
that validate the GP model for WiFi signals [4, 17]).

Future work includes the enhancement of our methods for updating commu-
nication graphs; for instance, using correlated α and β values for edge addition,
such that the closer a robot to a vertex (small α), the less restrictive the power
threshold (large β). Other exploration strategies could be considered in addi-
tion to the frontier-based strategy we employed. Moreover, the extension of our
methods to time-varying environments in which edges representing communica-
tion links could also be deleted is worth investigation. More generally, it would
be interesting to develop exploration strategies that drive robots around to seek,
at the same time, the coverage of the environment and the building of reliable
communication maps.
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