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Abstract— This paper presents a novel risk vector-based near
miss prediction and obstacle avoidance method. The proposed
method uses the sensor readings about the pose of the other
obstacles to infer their motion model (velocity and heading)
and, accordingly, adapt the risk assessment and take corrective
actions if necessary. Relative vector calculations allow the
method to perform in real-time. The algorithm has 1.68 times
faster computation performance with less change of motion
than other methods and it enables a robot to avoid 25 obstacles
in a congested area. Fallback behaviors are also proposed
in case of faulty sensors or situation changes. Simulation
experiments with parameters inferred from experiments in the
ocean with our custom-made robotic boat show the flexibility
and adaptability of the proposed method to many obstacles
present in the environment. Results highlight more efficient
trajectories and comparable safety as other state-of-the-art
methods, as well as robustness to failures.

I. INTRODUCTION

The goal of this paper is to enable safe navigation of
marine autonomous surface vehicles (ASVs) via an adaptive
real-time static and dynamic obstacle avoidance method. The
proposed method presents more flexibility compared to other
methods — see Fig. 1 for an illustration of trajectories fol-
lowed by an ASV using a state-of-the-art method compared
to the one followed using our proposed method.

Current methods for marine vessel obstacle avoidance
(e.g., [1]-[3]) have shown safe behavior and ability to avoid
static and dynamic obstacles, following COLREGs, Conven-
tion on the International Rules for Preventing Collisions at
Sea [4]. One of the main criteria taken into account includes
the Closest Point of Approach (CPA) — the positions at
which two dynamically moving objects get to their closest
possible distance. Such a factor does not encode velocity
or direction of the controlled or other vehicles, resulting in
the algorithm working in a conservative manner that requires
increased computational and operational time. Some methods
have been developed to address this problem by taking into
account velocity and direction of other obstacles [5]-[7]. By
analyzing the Velocity Obstacle (VO) cone and choosing an
action, the corresponding vector is determined to lie outside
of that cone. The velocity relationship between the controlled
ASV and an obstacle is not explicitly considered, resulting
in potentially ineffective trajectories, e.g., passing ahead of
the obstacle.

To address the above mentioned problems, in this paper,
we propose a novel risk vector-based near miss prediction
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Fig. 1: Obstacle avoidance behaviors from a state-of-the-art
COLREG-constrained method keeping a fixed CPA (left) vs.
our adaptive method (right) able to achieve the same CPA
but with less traveled distance, under head-on and crossing
scenarios. Red vehicle: obstacle. Blue: controlled ASV.

and obstacle avoidance method. The proposed methodol-
ogy is based on calculating the risk according to, in ad-
dition to the CPA, the encountering angle and velocities
of the vehicles to foster an adaptive avoidance behavior.
The methodology is based on relative vector calculations
to make the proposed method perform in real-time for risk
assessment and action decision. We also include a sequence
of fallback algorithms to account for noise in the sensors and
ensure the safety of the vehicles. This allows the trajectory
to be as safe as the previous methods but with improved
performance in terms of traveled distance and computation
time. After calibrating parameters of a simulated ASV with
experiments with a real ASV, numerous simulations under
different encountering scenarios, number of obstacles, and
failures validate the proposed approach.

This paper provides the following main contributions:

o« A flexible risk vector-based near miss prediction
method!, which evaluates dynamic encounters (e.g.,
head-on, overtaking, and crossing) adapting to the spe-
cific condition based on different size, velocity, and
compliance with COLREGs;

« Relative vector-based predictions for real-time control,
resulting in assessment of situation and corresponding
action that can be computed in a few milliseconds;

« Fallback behaviors to react to unexpected behaviours

IThe code will be made opensource on our lab website https://
rlab.cs.dartmouth.edu
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of obstacles, such as close-quarter situations after an
action, or sensor failure; and

o Experimental evaluation and comparison with CPA- or
VO-based methods that highlights the feasibility of our
approach in avoiding multiple obstacles.

This work represents a first effort towards a context-
aware collision avoidance method that can be applicable to
ASVs and Maritime Autonomous Surface Ships (MASS), to
ensure safer navigation. This will result in the advancement
of many important applications, including environmental
monitoring, military missions, search and rescue, and oil spill
response [8].

This paper is structured as follows: the next section shows
the related work in maritime obstacle avoidance. Section III
describes the proposed approach including the framework
of risk vector-based concept and near miss computation.
Section IV presents results and demonstrations of the pro-
posed method with different encounter situations and the
number of obstacles. Finally, Section V highlights strengths
and potential extensions.

II. RELATED WORK

Collision avoidance and planning for robots have been
studied for decades in literature, with methods that use
techniques spanning from control theory to algorithms, and
that search a collision-free path in a global domain vs.
a local domain [9]. In the robotics literature, example of
methods include RRT-based [10], PRM-based [11] for global
methods; and Vector Field Histogram [12], Dynamic Window
Approach [13], velocity based [5] for local methods.

For maritime navigation, the literature has focused on
the collision avoidance from obstacles happening in the
local domain [14], as many of the obstacles are not known
until discovered with the on-board sensors. Recently, [15]
proposed metrics to evaluate how compliant an algorithm is
to COLREGs. Most of the research on maritime collision
avoidance for autonomous vessels assess the situation and
accordingly decide on the actions considering different cri-
teria: operability in diverse encounter situations and mobility
(static or dynamic obstacle) [2], [16], complexity of decision-
making on an evasive action [17]-[19], safety metric repre-
sented by Closest Point of Approach (CPA) (or variations of
CPA) [3], [20], compliance with COLREG [4], [21], vector-
based velocity obstacle [6], [22], the number of obstacles in
the corresponding circumstances [1], [21], and feasibility of
contingency maneuver in case of unexpected close-quarter
situations [18], [23]. An important concept is the concept of
near miss, defined as a situation where a collision did not
happen, but a slight change in motion could have resulted
into collision, typically based on Distance to CPA or Time
to CPA [24].

Such metrics do not account for the specific encountering
situation, such as the current velocity of the obstacles, the
vector’s encounter relationship with the controlled vehicle, or
obstacle size, resulting sometimes in an analysis that does not
reflect the actual near miss. We address the problem of “how
to assess the risk in a more adaptive way, according to the

specific encountering scenario, so that appropriate maneuvers
are taken by the ASV?”.

III. APPROACH

Our approach assesses the risk and determines the actions
to avoid collisions from obstacles that are within the ASV
sensor range. We assume that any obstacle within that
range can be detected. We also relax this assumption in
our experiments, simulating a sensor failure to evaluate the
responsiveness of our algorithm. While obstacle detection
from, e.g., cameras, LIDAR, RADAR, is an interesting
research direction, it is out of the scope of this paper.

In addition, we assume that our ASV is a Give-way vehi-
cle, following the COLREG definition [4]: our vehicle takes
a preemptive action to avoid a collision, while other dynamic
obstacles are considered as Stand-on vehicles, which means
they have the right of way [4]. The reason for this choice is
to robustly consider the worst case for the controlled vehicle,
thus taking a conservative behavior, as in many cases, people
do not follow the rules even if they shall act as a Give-way
vehicle by the rules.

To simplify our presentation, we describe the concept
and method of risk vector and near miss calculation in a
single obstacle situation. The multi-obstacle situation can be
extended and handled by our method as shown in Section I'V.

A. Relative perspective

Computations necessary for algorithms — e.g., motions,
poses, tangents to a boundary of an obstacle — are modeled
in two ways: a relative perspective with respect to the ASV’s
reference frame {R}, and a relative perspective with respect
to the obstacle’s reference frame {O}. For efficiency and
computational loads, the proposed method has a significant
advantage over other methods that reason in the global
reference frame {W}, e.g., [14]. In other words, between
two variables changing simultaneously, the relative approach
reduces complexity by considering only one variable from
the fixed perspective (with respect to {O}) as shown in
Fig. 2. Specifically, the relative motion vector of own ASV

Fig. 2: Conceptual diagram for boundary setup, risk vector,
predicted track, near miss, and evasive action computation
when Case 1 with respect to {O} — 37 NC. Red vehicle:
obstacle. Blue vehicle: own ASV.



with respect to the obstacle can be represented by
relpjo = T (Xr — %0) ()

where T?V is the homogeneous transformation matrix of
{O} with respect to {W}. In addition, own ASV’s pose with
respect to the obstacle is defined as

xpjo = TH Xr 2)

where xp|o is a relative pose of the ASV with respect to
{0}, and xp is a relative pose of the ASV with respect to
{W}. In the same way, relp|r and xor are derived.

B. Boundary and Risk vector

The concept of risk vector for collision assessment is
based on a virtual boundary — so called ship domain — of an
obstacle [3], [20], where the controlled ASV shouldn’t enter.
The boundary is divided into two areas: risky boundary
(R), where evasive maneuvers can be evaluated “safely”;
and collision boundary (C), when inside, it is regarded as
collision - see Fig. 2. Here, the risky boundary follows
a linear model for the collision risk [14], [20]. When the
obstacle is within the ASV sensible range (L), the method
evaluates the situation depending on whether it will go
through the collision boundary, the risky boundary, or neither
of them. Based on the adaptive modeling of the ship domain
[18], [20], R and C with respect to the obstacle’s reference
frame are derived as:

Co=Lr+ Lo +vo*t, +vgxt, 3)
C, = Cy + ke )

where C, is a semi-major axis of C, C, is semi-minor axis
of C, Lr, Lo is the length of the ASV and the obstacle, vg,
vo is the speed of the ASV and the obstacle (m/s), t,, is a
unit time (s) and k¢ is ratio between major and minor axis
of the domain [25], and

Ry =Cy xkr (5
'Ry = Cy * kR (6)

where R, is a semi-major axis of R, R, is semi-minor axis
of R, and kg is abort distance coefficient from C based on a
requirement of a tactical diameter: the diameter of a turning
circle requiring the minimum maneuverability [26].

While the ASV passes the risky boundary, the risk vector
is defined as:

risk(xgjo) = urjo(Vf(Xrj0) - urj0) (7)
Vf(xgrjo) - urjo = Atane) ®)
where vum o, 1s directional derivative based on a unit vector

uR|0» UR|o is a vector with a direction from the controlled
ASV position to the center position of the obstacle on the
obstacle reference frame, f(xpg|o) is a linear cost function
determining the risk vector toward the center position of the
obstacle [14] on ASV position xg|0, A is a level of danger
based on types of vehicles [3], and v is slope angle with
direction to the center of the obstacle in 3D.
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Fig. 3: System architecture.

C. Near miss definition

Assume that the vehicles — obstacles and controlled
robots — are following the set course at a constant speed.
The state vector for the pose is expressed in xp =
[IR yR]T and X0 = [.730 yo}T where TRyYR, O, YO
are global GPS coordinates of an ASV and obstacle
on a Cartesian coordinate system. Hence, the true mo-
tion vectors on the global frame can be expressed in
).(R = [J'}R yR]T = [URCOSHR vRsinﬁR]T and )'(o =
[70 90]T = [vocosfp vosinfp]T where vg and vo is
the velocity of the speed for the robot and obstacle, and 6r
and O is the heading angle based on clock-wise direction
from 0° as North.

We propose a novel near miss calculation considering
factors such as movements of vehicles, encounter situations,
and time and distance during encounters. For an expected
trajectory 7 followed by the ASV, which enters the risky
boundary R of an obstacle at time ¢;, and gets to the CPA
at time tcp,, , the near miss T(T) is defined as:

0(T) = / relpo - risk(xz/0) dsr|o ©)
Tr

where 7 is the expected trajectory of the ASV, relgo
and sgjo are a relative motion vector and the trajectory
of the robot with respect to the obstacle reference frame.
The computation indicates that, intuitively, the higher relative
velocity, the higher collision near miss.
Considering the sensor data coming at discrete time inter-
vals, the near miss computation becomes [27], [28]:
(T = Zrelimo -risk;(xg|0) Asgjo (10)
i=1
where n is the number of sensing data points that depends
on the sensor frequency.

D. Near miss-based obstacle avoidance

An action prediction step in Fig. 3 is based on predictions
starting at time ¢y when an ASV detects/tracks an obstacle
— see pose of own ASV in Fig. 2.

The proposed method outputs an evasive action depending
on a relationship between 7 and R, C.

T =xpjo+s s.tVsecS(relgo) (11)



S(relR|O) = {trelR‘O | te FN [to,tmax]} (12)

where S(relg|o) is the linear span of vector relg o, tmax
is a maximum monitoring time limit, and F is a set of time
stamps according to the sensor frequency. In general, ¢,,.x
can be determined by the time that can be derived from
maximum sensor range £ divided by Hrel R\OH'

1) Case 1 — 3T NC: The ASV is expected to collide with
the obstacle by entering C as shown in Fig. 2. The proposed
method makes the ASV take an action in comparison with
tangent lines to C by changing rel’ Rjo- 2 relative motion
vector of the ASV with respect to {O} when the ASV’s
heading is changed to 6. According to Equations (1) and
(), rel’ rJo can be derived by changing the heading of own
ASV from initial Xg while x is fixed.

As shown in Fig. 2, there exist two tangent lines except
for a case that ASV is on the edge of C. The ASV’s vector
matching the tangent line can be derived by the following
system of linear equations:

{H%H

where p(f) is tangent point on C when the heading is 6,
5‘%\0 and )'(fj%ol o 1s velocity of ASV when the heading is 0
and the initial heading 6, respectively.

In such a case, Equation (13) returns two heading angles.
Let 6, and 03 be the headings corresponding to the tangent
lines. The algorithm compares values between I'(7g_) and
['(7p,) and takes an action based on a safety threshold:

I'(7)
win(T(75,),0(75,)) ="

where T'(7p) is the near miss as per the changed heading,
I'(7s,,) and I'(Tg,) are defined as the upper-bound near miss
as per the heading 0,, 63, and p is the safety threshold for
the evasive action depending on operator’s preference.

Since p is determined adaptively in a same way as pre-
ferred CPA [3], [20] by an operator, the proposed method can
react on the encounter situation in a more flexible way than
other methods [16], [22]. For instance, the lower threshold,
the safer action as the ASV will clear out of the obstacle
with less T'(7p) as well as more safe distance.

Moreover, the final heading is found by a relative rela-
tionship with either 6, or 6. For example, if 6, is located
on the left side of Ay, 6 can be found by turning the ASV’s
heading more to the left from 6, i.e., the upper-bound angle
in this case. The obstacle avoidance control action is initiated
immediately according to the calculated 6.

2) Case 2 — AT N Cand 3T NR: The ASV is expected
not to collide with the obstacle, but to pass within R. In
this case, from the same method to get aforementioned
tangency, let ¢’ be either 6, or 63 satisfying the condition
min(|6, — 6o, |0 — 6o]). There are two possible scenarios:

o 11:((77%?)) < p where the current heading (6y) already

meets the requirement of the safety threshold based on
the close tangent bound from 6y. Thus, the ASV is

rel? X p(d)=0
rlo X P(0) 13

< 0o

(14)

not required to change the current track to avoid the
obstacle.
(T

F(%;‘f)) > p where the heading should be changed from

0p. In such a case, 6 is found based on the upper bound

I'(7p/) in the same way as Case I to make E((;’;H,)) <p

3) Case 3- AT NC and AT NR: The ASV is expected
to enter neither C nor R. Therefore, the ASV can safely pass
the obstacle without changing action.

4) Additional case - velocity: Based on the same method
we introduced above, the robot can also change velocity only
or velocity and heading together for a new relg|o. This is
mostly done in case of restricted visibility or requirement of
situational awareness. The velocity and the heading change
option will be effective considering advantages of heading
change and velocity change. The comparison will be dis-
cussed in Section IV-A.

E. Abnormality monitoring

In the previous sections, we assumed that the obstacle
keeps the same velocity and heading. In general, this is not
true and we propose a method — detailed in Algorithm 1 — to
detect changes to recalculate the action to avoid the obstacle.

Algorithm 1 Abnormality monitoring

Input: %o, X5, Qo, Qu, L, tireq
Output: 0

1: if (£ / tfreq) remainder = O then

2: if (]|%xo — X/o]| > Q) or
%0 3/0 ) > () then

lzrollllzoll
3: 6 < recalculate near miss-based action
4: X0 +— X/o

5: return 6

(arccos

X0 and Xp, are a current and a previous motion vector, {2y
and €2, are monitoring thresholds for the heading and the
velocity of the obstacle, ¢ is current time, and £y, is the
monitoring period for the change. For instance, if the obstacle
changes motion over €2,, 2y from the previous monitoring
time, the ASV finds it to be a new risky situation and initiate
calculation. Thus, the algorithm can prevent the obstacle
from approaching the ASV abruptly.

F. Contingency maneuver

The proactive measures described in Sections III-D and
III-E might not be enough when the controlled ASV is
suddenly in a close-quarter situation, e.g., in case of inter-
mittently lost signals from sensors (RADAR, LiDAR, AIS,
GPS), or a suspicious approach for the sake of piracy or
fishing [29], [30]. We propose Algorithm 2 to determine a
contingency maneuver based on the ASV’s abort distance
Qg4, with 6.,; hard-over angle for the change of heading. 2,4
is calculated by max(C, * kq, Lr * k) as per the literature
[31] where k4 is an abort threshold set by an operator.

Typically, 6., is considered to be over 35° [15]. Without
iterative finding for 6 described in Section III-D and Sec-
tion III-E, the algorithm finds it immediately by reflection
of 6.,:. Thus, the ASV can take a hard-over action to avoid
an imminent collision.



Algorithm 2 Contingency maneuver

Input: xo, Xr, 0o, Ocxt, Q4
Output: 0
1: if (HXo _XR” < Qy4) then
2:  recalculate tangent heading 6., 63
3: 0" + 04 or O3 making min(|6, — 0o, |05 — o))
4 00 —0Oepr or 0 0 + Ocat
5: return 6

| . "“'l" _
Fig. 4: Tested ASV model, Catabot (left) and its motion
(right) in the Caribbean Sea.

G. Clearing evaluation

Let’s say that obstacle avoidance is performed including
trivial and non-trivial situations described in Section III-D
to III-F. We proposed an evaluation process to confirm that
the ASV is cleared from an obstacle. Then, the state model
changes the ASV to the normal mission mode so that it
can reach a goal point and perform an original task such
as environmental monitoring.

The clearing status is calculated by two factors: distance
between the ASV and the obstacle and angle between the
relative motion vector and risk gradient vector. In other

relgo-u
[lretrio]|Iull
situation clear or not. For the angle, it is based on the concept
that the dot product of the two vectors when they each other
becomes 0 — orthogonal — and turns into the negative —
cleared. The thresholds can be determined by the operation.
In general, the distance can be the same as DCPA setting
and the angle can be the 112.5° [4].

words, ||[xo —xg|| and arccos makes the

IV. RESULTS

Our proposed method has been tested using simula-
tions, where vehicle model parameters have been extracted
performing real experiments with our custom-made ASYV,
Catabot, a catamaran-hull type ASV, which uses a differ-
ential drive mechanism — see Fig. 4. First, we consider
one-obstacle situations, to show the method ideal behavior.
Second, we validate the robustness under more complex
scenarios: sensor signal lost and abnormal behaviors of mul-
tiple obstacles. Lastly, we show a comparison with previous
studies.

A. One-obstacle scenarios

1) Case I: typical situations, as per [4], are considered
Overtaking, Head-on, and Crossing — with a single dynamic
obstacle, as shown in Fig. 5. In this case, the velocity v is
constant and our algorithm changes only the heading 6 of

TABLE I: Comparison of obstacle avoidance per each case.
t. is the computation time by averaging 10 iterations of the
simulations. 6y is 45° in all cases.

Situation [0-80] °T [ T'(Tgy) | T(Tg) | CPA [m] [ Ci[m] te [s]

Overtaking 16 120.73 38.49 33.12 15 0.006077
Head-on 37 119.83 55.39 31.93 15 0.010876
Crossingl 17 45.46 19.46 18.18 15 0.007202
Crossing2 14 49.48 24.44 18.72 15 0.006336

Catabot. The obstacle has the same principal dimension as
Catabot — Lo as 2.5m. We set its velocity v, as 1m/s to
allow the analysis of the overtaking scenario. The experiment
was designed by placing the initial position of the obstacle
outside of £. The quantitative results are shown in Table I. To
evaluate an action, we used the following metrics. |6 — ] is
the angular change from the initial heading. Larger |6 — 6|
stands for large offset from the intended trajectory. We
compare I'(Ty) with I'(7g, ). This represents how the evasive
action is effective in lowering the potential risk of collision.
The relationship between CPA and C, represents the safety
clearance from the obstacle. Last, computation time t. for
finding the action.

Comparing Head-on (Fig. 5a) and Overtaking (Fig. 5b),
the first one has a relatively higher nearmiss than the second
one due to the opposite heading of the obstacle with respect
to Catabot, despite a short encounter time. This derives
from the fact that near miss is calculated considering relative
vectors (Equation (10)). The resulting action is a hard turn-
over for Head-on. The computation time is also slightly
higher compared to the Overtaking situation, as the algorithm
needs to iterate for more angles to find an action that is safe.

Figures 5c and 5d show two Crossing situations, with
the obstacle moving in two opposite directions. In both
cases, our algorithm finds the collision-avoidance action by
turning the heading to the stern of the obstacle. Note that,
according to COLREG rule 17, in Fig. 5d the obstacle was
supposed to be the Give-way. However, because we assumed
that the obstacles will always be the Stand-on, our ASV
becomes the Give-way. The COLREG rules 15 and 17 would
also mandate to always take an action to our right, which
our vehicle did not follow: our algorithm determined more
efficient to go to the left and pass behind the vehicle, keeping
the required safe CPA.

In all cases, using our definition of near miss I'(7y, ) allows
for (1) optimized action taken by the ASV, and (2) sufficient
clearance with the obstacle, as shown comparing C, with
CPA in Table I.

2) Case 2: Our algorithm can also choose an action
changing either velocity or velocity and heading together.
The results are shown in Table II and Fig. 6 according to the
three possible actions in the same situation as of Crossing
1. It is noted that H (Heading-based) method has advantage
of efficiency without decreasing vy and has a reasonable
CPA despite the smallest. V (velocity-based) method waits
for the obstacle to pass by ahead of Catabot thus, it has the
largest CPA and time margin to assess the situation while
it maintains 6. Finally, H-V (Heading- and Velocity-based)
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method consolidates the advantage of the H and V. Since
the passing time of R will be the longest, v is the largest.
However, it has a relatively small change of 6 by decreasing
vg and still has a reasonable CPA.

3) Case 3: We tested scenarios when one ASV encounters
another ASV with the same obstacle avoidance procedure.
As shown in Fig. 7, the algorithm makes both vehicles take
relevant maneuvers to safely pass, e.g., Catabot2 taking an
action despite being overtaken (Give-way vehicle) in Fig. 7a.

B. Multi-obstacle and Sensor failure scenarios

1) Case 1: Fig. 8 shows a scenario of random static
and dynamic obstacles with a traffic congestion (total 25
obstacles) within 400m x 400 m area, similar to a heavy
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Fig. 7: Our method applied to two identical ASVs (Red —
Catabotl, Blue — Catabot2, both represented with R ellipse
at the last position). Catabotl speed 3m/s and original
heading 45°. Catabot2 speed and original heading (a) 1 m/s,
45°, (b) 3m/s, 225°, (c) 3m/s, 270°.

traffic environment full of fishing boats, large commercial
vessels, and fishing buoys in areas such as Singapore strait
and South or East China Sea [32]. The size, velocity, and
heading are different for each obstacle and set randomly from
a range of realistic values. In all experiments, Catabot could
avoid collisions and reach the destination. Fig. 9a shows
when obstacle detection happened and how distance changed.
After the nearmiss-based action was initiated, the obstacle
was cleared even if it tried to approach Catabot. We found
out that the minimum C, was 15 m and the obstacles entered
in the collision area. The action taken to avoid collision over
time is shown in Fig. 9b and is derived from the calculated
nearmiss value, shown in Fig. 9c. Note that, while only 6
obstacles are displayed in Fig. 9c, our algorithm considers
all obstacles that are in the sensor range. Others do not
contribute to an actual risk, and thus do not make the ASV
change action. In such a scenario, the computation time for
assessing the risk and determining the action for obstacles
detected was 0.01008s on average; whereas 0.00101s for
the other obstacles which Carabot assessed that it could
safely pass without an action. These computational time
results show that our method can perform real-time with
many obstacles.

Our proposed algorithm also ensures obstacle avoidance
in case of unexpected behaviors (Section III-E), such as
sudden change by an obstacle of heading and/or velocity. An
example in our scenario is from obstacle 5. Catabot analyzed
obstacle 5 at time step 12s and found out it is safe to pass
without an action. However, as the obstacle 5 is following
a zig-zag path (Fig. 8), Catabot performed a recalculation
according to the periodic monitoring. As Catabot is expected
to pass R over the nearmiss threshold p, it initiated an action
to avoid obstacle 5.

2) Case 2: Despite the very high traffic in the previous
scenario, the contingency maneuver (Section III-F) did not
trigger. To test such a maneuver, we performed another
robustness test: the obstacle is detected after a while inside
the sensor range, simulating a false negative — scenario that
can happen with, e.g., a RADAR and wooden fishing boats
or buoys [33]. We configured the experiment by making
the obstacle detectable only when very close to CatabotThe
spawned obstacle was static and located in (155, 155) at
time step 60s. Catabot sensor detects the obstacle only
after 60s, at 36.2m from the obstacle (the sensor range is
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TABLE III: Comparison of computation time with other
methods [3]: VI as volume integration, MCS as Monte Carlo
simulation, PF as probability flow, and our method (unit: s).

VI MCS PF Our method
Overtaking 0.31310 0.56081 0.01907 0.01138
Head-on 0.30385 0.59596 0.01809 0.00745
Crossing 0.32662 0.56002 0.01779 0.00746

100 m). After assessing the motion of the dynamic obstacle,
our method calculates normal nearmiss-based action at 65
toward 87°. Because the obstacle is inside {24 as the sensor
failed to detect it beforehand, Catabot did a contingency
maneuver to 110° and cleared the obstacle at 76s. In this
case, the computation time was 0.013 85 s for the nearmiss-
based action and 0.00081s for the contingency maneuver.
Note, a contingency maneuver overrides the normal obstacle
avoidance to ensure the ASV safety.

C. Comparison

We qualitatively and quantitatively evaluate the proposed

algorithm with other papers:

¢ Opverall performance of the computational time is shown
in Table III using experimental setup and result as [3]. In
the worst case — overtaking, our nearmiss-based method
performs 1.68 times faster than other methods.

o The proposed method considers an effective and effi-
cient maneuver than the state of the art VO method
[5]. Fig. 10a shows that our method passes the stern of
the obstacle with |6 — 6| as 14° and maintained speed
as 3.0m/s, whereas VO methods passed the ahead of
the the obstacle, which can cause a navigational burden
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action. (a) Distance obstacle comparison: Obstacle 17, 20,
23, 25 were not detected being out of L. (b) Intended course
input and heading follow-up. (c) Obstacle’s nearmiss change
triggering action. After 230 s and clearance of obstacles, the
intended course is back to the mission destination.
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Fig. 10: Comparison with the literature (a) Crossing 2 situ-
ation in Fig. 5d compared with VO method [5] (b) multiple
obstacle crossing scenario in [1].

until it fully cleared, with |@ — 0| as 26° and reduced
speed as 1.8m/s. In addition, if the state-of-the-art
method were only constrained by COLREG, the stand-
on vehicle would not take a proper action under this
scenario in contrast to our method’s preemptive action.

« The proposed method avoids obstacles while attaining
smaller angle changes. Based on the same configuration
of the paper [1], we compare the trajectory of the
controlled ASV as shown in Fig. 10b. Our method
avoided the obstacles with the worst CPA as 19.26 m.

« Differently from previous methods on single or a couple
of multiple encounters, our algorithm could make the
ASV navigate within heavy traffics. By far, no other
maritime collision avoidance method tested over 20
obstacles — the most was 16 [18].

e Our method has a motion model which means it follows
the actual rate of turn. This outperforms previous works



which do not cover smooth turning [27], [28].

V. CONCLUSION AND FUTURE WORK

This paper presented a novel obstacle avoidance method
based on risk vectors and near miss computation in real-time.
The proposed method in simulation complying with actual
robot motion models validates applications to successful
collision avoidance in robust environments with multiple
number of obstacles and their arbitrary motions. In a single
obstacle scenario, our algorithm outperforms a state-of-art
methods by performing 1.68 times faster computation as
well as more efficient action resulting in similar clearnace,
e.g., 14° heading alteration at same speed by our method
under a crossing situation, while 26° heading alteration with
40% speed reduction by the other methods. In addition, an
ASV based on our algorithm is able to avoid 25 obstacles
in a congested traffic scenario with fast computation time as
0.001 01 s on average. This method can be applied regardless
of the geometric size of the vehicle, including not only small
low-cost vehicles such as ASVs but also large high-cost
vessels such as MASS. In addition to the application in 2D
contexts, potential expansion into 3D space with risk vectors
and fast algorithms is expected to work effectively.

Our future work is to test the proposed algorithm in the
field with a real ASV. In addition, we are investigating
obstacle detection with the sensors to develop a full pipeline.
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