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Abstract—Identifying in-water obstacles is fundamental for
safe navigation of Autonomous Surface Vehicles (ASVs). This
paper presents a model-free method for segmenting individual
in-water objects (e.g., swimmers, buoys, boats) and shorelines
from LiDAR sensor data. To reduce the computational require-
ment, our method first converts the 3D point cloud into a
2D spherical projection image. Then, an algorithm based on
the integration of a breadth-first search and a variant of a
hierarchical agglomerative clustering segments the points ac-
cording to different objects. Our method addresses the sparsity
and instability of the point cloud in the aquatic domain - a
characteristic that makes the methods developed for self-driving
cars not directly applicable for in-water obstacle segmentation,
as demonstrated in our experiments. Our method is compared
with other state-of-the-art approaches and is validated both in
simulation and in real-world ASV deployments, with different
objects and encountering scenarios. The proposed method is
effective in segmenting in-water obstacles not known a priori,
in real-time, outperforming other state-of-the art methods.

I. INTRODUCTION

The goal of this paper is to detect and segment objects
from real-time LiDAR data, mounted on Autonomous Sur-
face Vehicles (ASVs) operating in aquatic environments,
such as lakes and oceans — see Fig. 1. This task is fun-
damental for ASVs’ situational awareness to safely navigate
around other obstacles, such as buoys, boats, and swimmers.

Current work on in-water obstacle detection primarily uses
cameras. Publicly available datasets in the marine domain are
solely comprised of camera images [1]-[3]. However, cam-
eras have limitations: (1) restricted range and Field of View
(FOV) and (2) restricted visibility in dynamic conditions,
e.g., fog, rain, and nighttime. Systems fusing cameras with
other sensors typically require additional high computation,
such as GPU for deep learning methods [4], [5].

LiDAR is more expensive and constrained in its applicabil-
ity in some scenarios (e.g., extremely bad weather) compared
to RADAR, but provides more accurate information and can
operate better when conditions are not ideal for cameras.
Self-driving cars have been using LiDAR-based methods,
showing success in object segmentation — the process of
identifying 3D points belonging to the same object — such
as pedestrians or other cars in many scenarios [6], [7].
The aquatic domain introduces a number of challenges to
such methods: compared to urban domain, LiDAR data are
more likely to be affected by sparsity and instability [8],
[9], making segmentation difficult. In the ASV’s case, there
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Fig. 1: Robotic boat Catabot with Velodyne VLP-16 scanner
(left) performs LiDAR-based obstacle detection and segmen-
tation based on the spherical projection image (right).

are no measurements available about the water surface due
to the attenuation of the signal, ego-motions of both ASV
and in-water objects are affected by water dynamics, and
detection of objects is typically much farther (in order of
tens of meters), because of marine traffic safety and vehicle
maneuverability, making less dense and stable point cloud
data compared to the ground case where vehicles are within
5 to 10m. Fig. 2 and the Appendix show a number of
examples of point clouds from the Velodyne VLP-16 in
the two different domains, highlighting this issue. A couple
of methods recently appeared for ASVs, addressing static
obstacles detection [10] or navigations in urban waterways
[11]. Reliable approaches for in-water obstacles segmenta-
tion are needed to make ASVs operate safely in other type
of environments that are not as structured, such as lakes and
oceans and where obstacles are not known a priori.

We present an efficient LiDAR-based obstacle detection
and segmentation algorithm, tailored to the LiDAR data in
the aquatic domain. The proposed method generates a 2D
spherical projection image from raw 3D point clouds, finds
connected components with Breadth-First Search (BFS), and
clusters those components to segment in-water obstacles.
Our method segments the objects based on compatibility
of geometric distributions — orientation with respect to the
sensor, orientation between neighboring clusters, and mini-
mum separation distance between neighboring clusters. This
method enables robustness to occlusion between objects,
sparsity, and instability in the marine domain. The output is
a point-wise segmentation, distinguishing 3D point clouds
into each object as shown in Fig. 1. Our algorithm was
compared with other state-of-the art approaches to analyze
the performance of segmenting in-water obstacles of which
data collected by diverse real-world scenarios. For validation
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Fig. 2: Schematic diagram of a typical scenario in urban
and aquatic environments and raw real LiDAR (Velodyne
VLP-16) point cloud data comparison between a self-driving
car! (left) and our ASV (right). In aquatic environments
obstacles are typically farther than in urban ones, resulting
in sparser point clouds. d is distance of an object from the
scanner and n is the number of point clouds for the two
obstacles (circles in cyan and magenta).

and applicability, we used a Velodyne VLP-16 LiDAR,
one of the most common scanners with relatively low cost
(~4K USD) rather than higher resolution models which are
extremely expensive — e.g., 32, 64 channels (~30K, ~80K
USD). The proposed method showed to reliably segment
objects, outperforming other state-of-the art methods, as well
as showed efficient capability for real-time application to
computationally limited mobile platforms.
This paper provides the following contributions:

e A model-free approach to segment point clouds in
aquatic domains with connected components and clus-
ters via fast and effective processing of 2D spherical
images;

¢ A real-time online application of in-water obstacle de-
tection and segmentation performed both in simulations
and in field experiments with a real ASV;

e A feasibility and robustness validation through diverse
scenarios in lakes and oceans, covering different coastal
lines and several types of obstacles, e.g., boats, kayaks,
swimmers, buoys, and docks.

Towards a full real-time obstacle avoidance system, we
plan as future direction to extend the proposed algorithm
by the registered data over the span of the past frames, for
multi-object tracking.

II. RELATED WORK

Point cloud segmentation — i.e., classification of 3D points
to objects — has been pushed forward by advances in the self-
driving car industry and the availability of datasets collected
in urban environments — e.g., KITTI [12]-[14]. Two classes
of methods can be identified: one purely based on LiDAR
(e.g., [6], [15]-[17]), and one where multiple sensors are

Velodyne LiDAR sample data for Monterey highway https://
velodynelidar.com/

fused (e.g., [18]-[20]). These approaches can be again cate-
gorized into two data processing formats: 2D representation
after applying a transformation to the point cloud [6], [16],
[18], [20], and 3D representation, either directly using the
raw 3D point clouds [17] or some approximation methods,
e.g., voxel [15], [19]. Given the sparsity and instability of the
3D point cloud in the aquatic domain [8], [9], as highlighted
in the previous section, we select a 2D representation for
computational efficiency.

For ASVs, point cloud segmentation work appears to be
at its early stage, with no datasets readily available. Current
methods mainly focus on obstacle detection, identifying if an
obstacle exists or not, with camera sensors [21]. Recently,
a couple of algorithms fused LiDAR with other sensors
(RADAR and camera) for maritime detection [4], [22]. The
main focus of [4] was situational awareness and avoid-
ance with comprehensive sensor system, making it highly
expensive for computation and design. Haghbayan et al.
[22] addressed the maritime object detection and recognition
problem. Their method was tested on recorded dataset only
and not on-board. As ASVs are mainly deployed in unknown
local environments [23], with not complete information of
existing obstacles, compared to commercial vessels deployed
in charted oceans, approaches using prior information are not
suitable for ASVs deployed in those areas. A recent LiDAR-
based method [10] has shown to detect static obstacles using
occupancy grid mapping. Another LiDAR-based study [11]
applied an open-source package [24] to operate in urban
waterways. Urban waterways provide structure that can be
exploited to identify areas outside of the water, e.g., build-
ings, to then segment the remaining points for detecting the
in-water obstacles. Muhovi€ et al. [25] proposed a method
that uses point clouds from an ASV’s stereo camera to fit
the water plane, but does not segment obstacles.

This paper addresses the problem of “how can an ASV,
operating in an unstructured environment where obstacles
are not known a priori, detect and segment the surrounding
scene, e.g., waterborne obstacles and shorelines, by only
using low-cost 3D LiDAR?”. The focus is on small ASVs,
with limited computational resources available on-board.

III. OBSTACLE SEGMENTATION APPROACH

Our obstacle segmentation approach is model-free and is
based on transforming a 3D point cloud, by applying a spher-
ical projection for efficiency of traversal, and integrating a
BFS and a variant of hierarchical agglomerative clustering to
find connected components by a graph search among sparse
and instable marine point clouds.

While our method works with any 3D LiDAR sensor that
provides point cloud data (z, y, z of the measured points), to
ground the following presentation, we consider our custom-
made ASV Catabot [26] — Fig. 1 (left). Catabot is equipped
with a relatively low-cost Velodyne VLP-16 LiDAR with a
360° horizontal and 30° vertical FOVs and other proprio-
ceptive and exteroceptive sensors, including GPS, IMU, and
sonar. The LiDAR is set at a height of 0.3 m, with a 1m for
x, z translation from the lowest part of the body frame, to



minimize occlusions from its own ASV body and to optimize
sensor reading stability. To eliminate 3D points from the
robot itself, the first pre-processing step uses crop box filter.

A. Spherical Projection Transformation

The filtered 3D point cloud input is converted into a
2D spherical projection image. The spherical projection is
represented as a 2D matrix where each row and column
corresponds to a given angle in a vertical and horizontal FOV,
respectively, and the value is the distance [6], [16]. This rep-
resentation allows the algorithm to exploit locality of nearby
points for efficient data traversal, compared to 3D point
clouds [7]. The image size, especially the column length,
can be downsampled. Scale value can be decided upon
available computational power and point cloud distribution,
as discussed in Section IV. Given the sparsity of marine point
clouds, which do not require high-resolution 2D spherical
images, we use 16 x 512 images for the spherical projection.
The column width setup is identical to downsampling with
horizontal resolution of about 0.7° (compared to VLP-16’s
1800 points and 0.2° horizontal resolution). Other values,
discussed in Section IV, were experimentally tested.

B. Connected Component Searching

We use a BFS algorithm on the 2D spherical image (4-
connected) to find a first coarse set of connected compo-
nents, satisfying geometrical conditions — angle or distance
threshold (additional consideration compared to [6]) between
neighboring points to capture points of the same object. BFS
has a time complexity of O(n) (n number of pixels).

One simplified aspect of the aquatic domain LiDAR data
is that there is no need for ground plane labeling and
segmentation, necessary for ground vehicles [6], [7], [13],
[27]: we observe that no measurements are available about
the water surface, due to attenuation of the laser signal.

Let’s consider the example in Fig. 3 (top) which shows a
magnified part of a real point cloud: there are two objects,
a boat with a fisherman and a sailboat. After BFS, each of
them have separate components despite being part of the
same object — cl and c2 are the boat hull and the fisherman,
respectively; ¢3 and c4 are the sailboat and mast. In general,
BFS traversal might result in more segmented components
than the number of objects. Indeed, the whole point cloud
depicted in Fig. 3 (top) results in 8 components returned,
where only two objects were in the magnified part of the
entire frame. This is due to the fact that more sparsity in
point clouds leads to pixels in a spherical image be disjoint
with blank gaps. Also, BFS might over-segment an object
by splitting it into multiple components; this observation was
noticed by Bogoslavskyi and Stachniss [6] when laser reflec-
tions were mostly parallel to a line connecting sensor and
object. Waterborne obstacles typically have curved external
shapes [8], [25]. Such a shape results in the angle threshold
condition for neighborhoods failing to capture the group as
a single component. This is uncommon in the urban case,
but it occurs frequently in the marine domain.

Algorithm 1 Connected Component Clustering

Input:
e hash table for connected component F' containing forest component f;

after BFS step in Section III-B
spherical image matrix R with x,y,z data of point clouds
threshold for dot product (e1)
threshold for angle (e2)
threshold for distance (e3)
Output: hash table for labeled clusters L

1: L <« empty

2: for every f; in F do

3: if L is not empty then
4: normalized sensor to centroid vector norm(c;) by R and f;
5: Matrix Dot; < dot_product(norm(c[1: ¢ — 1]), norm(c;))
6: diong <— max(dist(c[1: ¢ — 1]), dist(c;))
7. dyhore <— min(dist(c[1: i — 1]), dist(c;))
8: Matrix Theta; < arctan dSh"’”*sln‘]garcio;(rl_)[)ri))>
long short P01
9: Matrix Dist; < dist(c[1: ¢ — 1] — ¢;)
10: Set Mask; < find element for (Dot; > €1) AND
{(Theta; > €2) OR (Dist; < €3)}
11: merged cluster set M; <— empty
12: for every I, in L.items() do
13: if 3(Mask; N 1) .value()) then
14: M; .add(l -key())
15: L <+ update(L, M;, f;)
16: else
17: L < update(L, f;)
18: return L
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Fig. 3: Clustering and labeling example of point clouds from
actual data in marine domain (Lake Sunapee, NH). fop: BFS
only method [6] returns many discrete components despite
being one single object, due to marine specific point cloud
characteristics. We marked a few parts of entire components
for visibility. bottom: the connected components are merged
by our proposed method to return accurate segmentation.

Despite over-segmenting, BFS is useful to reduce the
overall number of components to be considered by the next
step — clustering — thus improving the overall efficiency. Its
impact will be evaluated in the experimental section.

C. Component Clustering and Labeling

The connected components found by BFS become a large-
scale node in the graph space. We propose Algorithm 1 to
reduce the number of components, based on a variant of
hierarchical agglomerative clustering. This step on top of
BFS makes our proposed algorithm better segment in-water
object by considering the entire scene, e.g., even ground as
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Fig. 4: Controlled test (Lake Sunapee, NH) and performance plot. Left: Test 1 to 3 environment setup. Mid: Test 1 result
for €1, €2, Right: Test 2, 3 result for €5, €3 with fixed €;. ASV and obstacles are scaled up for visibility.

a large object cluster, than the others aimed at urban scenes
like [6].

Two neighboring connected components can be merged
by the following compatibility conditions meeting (a) AND
{(b) OR (c)}: (a) assuming objects distributed in a 3D
world, the components must lie sufficiently parallel and
close to each other: more formally |¢; - ¢;| > €1 where
¢4, ¢; is a normalized vector of the line joining the sensor
to a component’s centroid c;,c;, and €; is a dot product
threshold. €¢; can be represented as a cosine threshold, given
@i 05 = ||@i|*||@; || *cos b;; = cosb;; where 6;; is the acute
angle between ¢;, ¢;. In Fig. 3, both (¢, c2) and (c3,c4)
pairs satisfy this condition. (b) The line joining the centroids
should have a sufficiently large angle with respect to the

line from the sensor to the centroid with longer distance:
dshor*sin(0;;)

diong — dshorcos(0;5)

length from the sensor to each component’s centroid, and €2

is an angle threshold. As an intuitive example, components
of point clouds, such as fore hull and aft hull belonging
to a boat, form an almost perpendicular line with respect
to the sensor. In Fig. 3, (c1,c2) meets this compatibility,
merging the pair, whereas (cs,c4) fails, being almost in
line. (¢) the distance between the centroids should be close
enough: |¢; — ¢j|| < e3, where €3 is a distance threshold.
Note the OR between conditions (b) and (c), necessary to
be robust when (b) is not met by geometric shapes, e.g.,
boat side hull. €3 could be set considering the Catabot’s
size, so that, although there might be two separate objects,
they are merged together to prevent the robot considering it
as a passage. In Fig. 3, both (c1,c2) and (cs3,cq) meet this
compatibility. Any component of the fisherman boat that does
not meet the compatibility with a component of the sailboat
(or vice versa) is a failure of (a) and (c) compatibility.

The algorithm uses matrix data structures for efficient
calculations, avoiding pairwise comparisons. The algorithm’s
time complexity is in the worst case O(n?) and best case
Q(n). Both the worst case — each point is a separate object
— and the best case — entire points are in one object — are
rare, as some points are likely to be part of a certain object.

Similar to other literature on segmentation, there are
heuristic thresholds €1, €5, €3. We experimentally optimized
those parameters with a sensitivity analysis during controlled
experiments and tested in other scenarios.

Each connected component is associated to a label. The

arctan( ) > €2 where dgporr, djong 15 a vector

segmented clusters can be transformed into a 3D point cloud
format for visualization as [13], [16] shown in Fig. 1. Bound-
ing boxes are typically used for segmentation. However,
given the curvature and sparsity of the point clouds in the
aquatic domain, points belonging to different objects could
end in the same box. Thus, we select point-wise labeling.

IV. RESULTS AND EVALUATION

No public dataset including LiDAR point clouds in aquatic
domain is available. Hence, first, we deployed Catabot to
collect point cloud data in diverse aquatic domains and
situations. From the controlled dataset, we optimized the
parameters. Validation of in-water obstacle segmentation
is done in both simulation and real-world experiments,
including ASV on-board real-time processing. Finally, we
demonstrated the performance of the proposed algorithm
compared to state-of-the-art methods.

A. Dataset Characteristic

Under two geographic categories — saltwater (Jan. 2020,
in Carribean Sea) and freshwater (weekly, Apr. 2020 - Oct.
2020, in Lake Sunapee, NH and {Lake China, Sabattus,
Auburn}, ME) — we have collected data of different encoun-
ters with diverse objects. The dataset is about 493 GB of
LiDAR, RGB images, IMU, GPS, and sonar. Objects include
swimmers, buoys (ball, pillar), power boats, water skiers,
kayaks, floating docks, and sail boats. For encounters, we
have head-on, crossing, overtaking, and overtaken situations,
as defined by the navigation rules [28]. In addition to
different ego-motions of the ASV (stop, move, turn, heavy
roll, and pitch), the dataset includes diverse scenarios under
non-controlled environments (e.g., a power boat approaches
the ASV from a dock) and controlled environments (e.g., an
obstacle intentionally maneuvers in a specified direction and

speed). The dataset will be opensource?.

B. Calibration Test

We evaluated the sensitivity of our method by changing
parameters in Section III under controlled scenarios: (1)
losing detection when an obstacle (3 m kayak) approaches
the shore (Obstacle-move, ASV-not move) — when the ASV
can start to detect an in-water object departing from the

’https://github.com/dartmouthrobotics/asv_
detection_dataset.git



Fig. 5: Simulated environment in Gazebo for Catabot with
buoys, shorelines, other boats (left) and segmentation result
by our proposed method (right).

shore; (2) segmenting a ground into one object when the
ASV is close to the shore, i.e., approximately 20 m — how
well the ASV can segment a large scale ground; and (3)
segmenting an obstacle (6 m boat) into one object when the
point clouds show sparsity due to the hull shape — how
well the ASV can cluster in-water object(s) without over-
segmentation.

For Test (1), the kayak followed a straight line between
the ASV and the shore. We used a portable laser device
for measuring distance during the experiment and used the
recorded data to calculate the distance when the kayak was
lost as a segmented obstacle by the proposed algorithm. Test
(1) is vital for finding the principal parameter €;, noted in
Section III-C. As shown in Fig. 4, this test demonstrates
that as €; decreases, the method tends to better identify the
obstacles closer to the ground. For example, from 8.58 m the
kayak was “lost” at ¢; = 0.95, and from 24.67 m it was lost
at e; = 0.6, both under fixed €5 50°. In addition, with fixed
€1, as €y increases, the method tends to perform better.

For Test (2), we monitored how the proposed algorithm
segments a horizontally expanded ground into one object. We
extracted point cloud frames when the ASV is about 20 m
from the shore line. Here, the performance was quantified
by how many separate clusters were identified given that the
ideal number of clusters is 1. With good €; = 0.95 identified
by Test (1), large €5 drastically decreased the segmentation
performance. Even if €5 ensures the capability to distinguish
one object — see Fig. 4 (mid) from the background scene
(ground) — it should be tuned to prevent over-segmenting
the ground, as shown in Fig. 4 (right).

Finally, Test (3) found a reasonable distance threshold to
segment in-water obstacles with diverse shapes. This test
is aligned with the observation and approach motivated in
Section III. As shown in Fig. 4 (right), with fixed ¢; = 0.95,
our method was able to segment the detected obstacle — 6 m
motor boat — into one object over €3 as 3 m.

Based on these tests, we selected e; as 0.95, e as 50°,
and €3 as 3.5 m.

C. Simulation

For repeatable tests, we used a realistic 3D simulator,
Gazebo [29]. The simulated environment has relative ideal
condition, i.e., less water dynamics, less sensor noise, and
less point clouds constrained by the sensor in the simulator,

TABLE I: Evaluation of the proposed method’s accuracy
with state-of-the art methods. Note that all methods are
used with default parameters for consistency. The run time
is on average for tested sequences in the dataset. *denotes
the width of spherical image projection. The approaches are
— Euclidean Clustering (EC), Fast 3D method (F3D), and
Depth Clustering (DC).

Approach EC F3D DC Ours Ours Ours
[24] [71 [6] 512* 1024* 1800*

mloU [%] | 26.25 | 23.13 18.93 | 33.56 55.18 84.47

Time [ms] 140 21 16 30 57 86

compared to the real-world. We used realistic in-water ob-
stacle models (Fig. 5): Catabot model (length: 2.4 m, beam:
1.4 m) with Velodyne VLP-16 scanner, boat (length: 4.9 m,
beam: 2.4 m) and buoy3 (radius: 0.25m, height: 1 m), and
terrestrial shape*. The total number of object clusters were
8. Due to some limitations of the Gazebo Velodyne library,
measurements per vertical channel were set as 1024 points,
about 4° horizontal resolution. Despite this discrepancy with
the actual sensor model, to evaluate our method’s robustness,
we conducted the tests with the parameters identified from
the calibration test. Fig. 5 (right) confirms that the proposed
algorithm can robustly segment simulated waterborne obsta-
cles into individual labels. Average running time was around
80ms and Catabot was able to segment two obstacles at
approximately 4m apart based on the parameters in Sec-
tion IV-B. As shown in the next section, our method is able to
perform on-board with significantly lower computation time,
indicating an effect of the simulator on the computation time.

D. Field Experiment

1) Segmentation Evaluation: Segmentation performance
is summarized in Table I. Given the lack of LiDAR-based
segmentation in water, we evaluated with other state-of-the-
art algorithms originally aimed for ground vehicles:

o algorithms that primarily use spherical projection [6],
[16]. [6] is completely model-free denoted as DC in Ta-
ble I. [16] uses deep learning and was only qualitatively
analyzed due to no annotated dataset;

o algorithms that don’t need any prior information and
directly use 3D point clouds [7], [24], represented as
EC, F3D in Table I.

Our method performs a point-wise segmentation and does
not use a bounding box. Thus, we evaluated the performance
with a metric variant at point level based on mean intersec-
tion over-union (mloU) metric for accuracy [30]:

k
1 Pii
mloU = — % E (D)
k k
ko > j=1Pij + 251 Pji — P
where k is the number of objects, p;; is correct segmentation
for object 7, and p;;, p;; is incorrect segmentation as object
i or j is predicting each other. When a method finds several

3https://robotx.org/
4https://github.com/Intelligent-Quads/iqg_sim
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(a) Ground truth

(d) SqueezeSeg [16]

(b) Euclidean clustering [24]

(e) Depth clustering [6]

(c) Fast 3D [7]

(f) Our proposed method

Fig. 6: Qualitative comparison of each method for segmentation in the aquatic environment by bird’s eye view — Lake
Sunapee, NH. The ASV location is marked with a circle in Cyan. The color represents each labeled obstacle except Depth
clustering method. The depth clustering marks each obstacle within a boundary of orange box as the default visualization
output. Ground truth has in total 4 obstacle clusters: a boat, two docks, and ground. Our method only missed the floating
dock on the right side (False Negative) and segmented points far away from ground as discrete ones (False Positive). Note
that False Negative case from our algorithm is considered to be a component belonging to ground as a conservative way

for the navigational safety by e3 described in Section III-C. See the supplementary video for details.

segmentation for one object, we assume the largest loU one
as the predicted one. Note that our proposed method is just
segmenting in-water objects, not differentiating each label,
i.e., semantics. The main goal of segmentation is to avoid
anything in the water. This is similar to other related work
[6], [7], [24], which do not classify the type of objects.

Therefore, we monitor overlapping points on a segmented
object with ground truth segmentation. Among the entire
dataset, we extracted 10 representative sequences for eval-
uation. The sequences include different types of obstacles —
buoy, boat, swimmer, kayak, etc. — and diverse coast lines
from the ocean or lake. We manually annotated the point
clouds at every frame for ground truth. The low performance
values by the state-of-the-art methods can be explained
by (1) the ground plane removal algorithm for a ground
vehicle is not suitable for the marine domain, and (2) the
clustering algorithm is not enough to encompass the sparse
point clouds in water as a group. See Fig. 6 for qualitative
method comparison. The total number of object clusters in
the example scene are 4. The maximum dimension of the
objects were on a large scale (ground: ~ 177m, boat: ~
10m, and floating dock: ~ 5m). They are detected by the
maximum coverage of the sensor.

One of the methods closest in spirit to ours [6] showed
over-segmentation on the objects after the ground plane
removal — see in Fig. 6(e). This effect did not improve
despite tuning the main parameters (angle threshold). Only

219m

Column Pixel 512 1024 | 1800
TPR [%] 9022 | 8984 | 9173
Ground Points [ea] 1563 | 2726 | 4204
Actual Ground Points [ea] 5580
Nearest Distance Mean [m] | 0079 | 0023 | 0025
Standard Deviation [m]__| 0.757 | 0.693 | 0595

TABLE II: True Positive
Ratio (TPR) and number
of point clouds belonging
to the ground at one time
stamp as per different width
for spherical projection im-
ages in our algorithm.

Fig. 7: Comparison of
point clouds distribution
between actual ground
(Blue) and downsampled
by using 512 pixels (red)
in one time stamp.

a few partially segmented parts changed, while the overall
segmentation performance did not change. Furthermore, it
had difficulty in segmenting the curved boat, as described
in Section III. The simplest algorithm [24] based on the
Euclidean distance in 3D space also poorly segmented the
sparse marine point clouds (Fig. 6(b)) due to its range pa-
rameter not covering the sparsity, and had an extremely slow
performance due to its radius search procedure (Table I).
The incorrect ground removal or detection cases were more
noticeable in Fig. 6(c),(d). In Fig. 6(c), the ground fitting
algorithm resulted in too many remaining points segmented
as false separate objects by its scan-line run algorithm [7].
Note that we only qualitatively compared the learning-based
method [16] with the original trained models (Fig. 6(d)). We
plan to make own annotated dataset for the aquatic domain.



TABLE III: Running time analysis for the proposed method
on offline and online platform as per 360° full scanning.

. Average Standard
Platform Location Running Time [ms] | Deviation [ms]
Laptop Barbados 35.26 7.98
Lake Sunapee 35.28 14.88
Mobile Lake Sunapee 36.84 16.60

In our experiments, we also checked the impact of down-
sampling the spherical projection image. The extracted and
converted points from spherical images are known to have a
small discrepancy with the original data [31]. The low mloU
performance in our method when considering a downsam-
pled spherical image results from the “gaps”, compared to the
total ground truth points. Therefore, we considered another
metric, the True Positive Ratio (TPR), and compared it with
another downsampling factor and original size. Table II and
Fig. 7 show the results. Our algorithm showed that TPR
maintains about 90 % for all the tested pixel values. To check
applicability of the converted point clouds against the raw
ground truth point clouds, we measured the nearest neighbor
distance between the two point cloud groups. The result
shows that for all cases, the nearest distances are within the
reasonable range from the ground truth point clouds, which
gives a different insight on performance metrics (mloU, TPR)
for our algorithm. In other words, by using a reasonable pixel
downsampling to cover the detected objects, the performance
of clustering is not significantly affected.

2) Running Time Analysis: We evaluated how fast our
proposed algorithm can support real-time object detection,
considering that the laser scanner used returns measurements
at 10 Hz. First, we performed an ablation study. In the exam-
ple sequence of Fig. 6, we ran the algorithm with or without
BFS as a prior step. Among 5744 point clouds in total, the
running time by using BFS as a prior step was 72ms with
460 components fed to the hierarchical clustering process,
whereas the running time by not using BFS was 297 ms with
1604 components fed to the hierarchical clustering.

Then, we analyzed the experimental run time on the
collected datasets and the ASV on-board computer during
navigation. The running time of the proposed algorithm is
summarized in Table III. For recorded data processing, the
testing computer had an Intel Core i7-7700HQ 2.80 GHz
and 16 GB memory. We measured the running time to
process each 360° scan. For ASV on-board processing, the
computer is an Intel NUC with an Intel Core i7-8559U
Processor 4.50 GHz and 16 GB memory. Note, a state-of-
the-art method [16] in Table I only applied the monitoring
field of view as 90° forward direction, whereas our proposed
method uses the entire 360° scan. We also tested by applying
the same monitoring field of view as [16], i.e., 90° thus
reducing the running time into 21.19ms on average with
standard deviation as 13.39 ms. Also, the method by [6]
using only BFS step in Table I is approximately two times
faster than ours. That method does not correctly segment
in-water obstacles, as discussed in the previous subsection.

V. DISCUSSION AND FUTURE STEPS

Our proposed model-free method for in-water obstacle
detection and segmentation qualitatively and quantitatively
outperforms other state-of-the-art methods in the aquatic
domain in segmenting obstacles. While the other methods
targeted for AGV first removes a planar ground and focuses
on objects only above it, our proposed algorithm, tailored to
marine specific applications, considers all objects scanned by
the sensor. This procedure could give the algorithm relatively
more input data for segmentation than AGV’s algorithms, but
we optimized the algorithm with some approximation and
heuristics while achieving a good accuracy performance.

We will extend the proposed LiDAR based method by
fusing other on-board available sensors: GPS, IMU, RGB
camera, etc. to supplement information for an ASV. We
plan to increase its capability, in false positive cases of
a few reflected point clouds on the water surface noted
in [25] and Fig. 6, by comparing with registered data. In
relation to the proposed algorithm, we will collect more
operation data under adversarial conditions — wave, rain, and
other inclement weather. The dataset collected by our ASV
equipped with multiple sensors under diverse conditions will
contribute to the robust autonomy of robotic boat’s operation.

In the end, we will develop multi-object tracking, connect-
ing it with our previous work [32] on collision avoidance
planning, towards autonomous surface vehicles.

APPENDIX
POINT CLOUDS OF IN-WATER OBSTACLES

To see the sparsity and instability of point clouds in marine
domain, we extracted examples of in-water obstacles from
our dataset and compared in two ways in Fig. 8: (1) ground
domain vs. marine domain; and (2) variation of point clouds
within 1 s time lapse under the same distance from the sensor.
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