

Fig. 4: Controlled test (Lake Sunapee, NH) and performance plot. Left: Test 1 to 3 environment setup. Mid: Test 1 result

for ǫ1, ǫ2, Right: Test 2, 3 result for ǫ2, ǫ3 with fixed ǫ1. ASV and obstacles are scaled up for visibility.

a large object cluster, than the others aimed at urban scenes

like [6].

Two neighboring connected components can be merged

by the following compatibility conditions meeting (a) AND

{(b) OR (c)}: (a) assuming objects distributed in a 3D

world, the components must lie sufficiently parallel and

close to each other: more formally |φi · φj | ≥ ǫ1 where

φi, φj is a normalized vector of the line joining the sensor

to a component’s centroid ci, cj , and ǫ1 is a dot product

threshold. ǫ1 can be represented as a cosine threshold, given

φi ·φj = ‖φi‖∗‖φj‖∗cos θij = cos θij where θij is the acute

angle between φi, φj . In Fig. 3, both (c1, c2) and (c3, c4)

pairs satisfy this condition. (b) The line joining the centroids

should have a sufficiently large angle with respect to the

line from the sensor to the centroid with longer distance:

arctan
(

dshort∗sin(θij)
dlong−dshort∗cos(θij)

)

≥ ǫ2 where dshort, dlong is a vector

length from the sensor to each component’s centroid, and ǫ2
is an angle threshold. As an intuitive example, components

of point clouds, such as fore hull and aft hull belonging

to a boat, form an almost perpendicular line with respect

to the sensor. In Fig. 3, (c1, c2) meets this compatibility,

merging the pair, whereas (c3, c4) fails, being almost in

line. (c) the distance between the centroids should be close

enough: ‖ci − cj‖ ≤ ǫ3, where ǫ3 is a distance threshold.

Note the OR between conditions (b) and (c), necessary to

be robust when (b) is not met by geometric shapes, e.g.,

boat side hull. ǫ3 could be set considering the Catabot’s

size, so that, although there might be two separate objects,

they are merged together to prevent the robot considering it

as a passage. In Fig. 3, both (c1, c2) and (c3, c4) meet this

compatibility. Any component of the fisherman boat that does

not meet the compatibility with a component of the sailboat

(or vice versa) is a failure of (a) and (c) compatibility.

The algorithm uses matrix data structures for efficient

calculations, avoiding pairwise comparisons. The algorithm’s

time complexity is in the worst case O(n2) and best case

Ω(n). Both the worst case – each point is a separate object

– and the best case – entire points are in one object – are

rare, as some points are likely to be part of a certain object.

Similar to other literature on segmentation, there are

heuristic thresholds ǫ1, ǫ2, ǫ3. We experimentally optimized

those parameters with a sensitivity analysis during controlled

experiments and tested in other scenarios.

Each connected component is associated to a label. The

segmented clusters can be transformed into a 3D point cloud

format for visualization as [13], [16] shown in Fig. 1. Bound-

ing boxes are typically used for segmentation. However,

given the curvature and sparsity of the point clouds in the

aquatic domain, points belonging to different objects could

end in the same box. Thus, we select point-wise labeling.

IV. RESULTS AND EVALUATION

No public dataset including LiDAR point clouds in aquatic

domain is available. Hence, first, we deployed Catabot to

collect point cloud data in diverse aquatic domains and

situations. From the controlled dataset, we optimized the

parameters. Validation of in-water obstacle segmentation

is done in both simulation and real-world experiments,

including ASV on-board real-time processing. Finally, we

demonstrated the performance of the proposed algorithm

compared to state-of-the-art methods.

A. Dataset Characteristic

Under two geographic categories – saltwater (Jan. 2020,

in Carribean Sea) and freshwater (weekly, Apr. 2020 - Oct.

2020, in Lake Sunapee, NH and {Lake China, Sabattus,

Auburn}, ME) – we have collected data of different encoun-

ters with diverse objects. The dataset is about 493GB of

LiDAR, RGB images, IMU, GPS, and sonar. Objects include

swimmers, buoys (ball, pillar), power boats, water skiers,

kayaks, floating docks, and sail boats. For encounters, we

have head-on, crossing, overtaking, and overtaken situations,

as defined by the navigation rules [28]. In addition to

different ego-motions of the ASV (stop, move, turn, heavy

roll, and pitch), the dataset includes diverse scenarios under

non-controlled environments (e.g., a power boat approaches

the ASV from a dock) and controlled environments (e.g., an

obstacle intentionally maneuvers in a specified direction and

speed). The dataset will be opensource2.

B. Calibration Test

We evaluated the sensitivity of our method by changing

parameters in Section III under controlled scenarios: (1)

losing detection when an obstacle (3m kayak) approaches

the shore (Obstacle-move, ASV-not move) – when the ASV

can start to detect an in-water object departing from the

2https://github.com/dartmouthrobotics/asv_

detection_dataset.git

TABLE III: Running time analysis for the proposed method

on offline and online platform as per 360° full scanning.

Platform Location
Average

Running Time [ms]
Standard

Deviation [ms]

Laptop
Barbados 35.26 7.98

Lake Sunapee 35.28 14.88

Mobile Lake Sunapee 36.84 16.60

In our experiments, we also checked the impact of down-

sampling the spherical projection image. The extracted and

converted points from spherical images are known to have a

small discrepancy with the original data [31]. The low mIoU

performance in our method when considering a downsam-

pled spherical image results from the “gaps”, compared to the

total ground truth points. Therefore, we considered another

metric, the True Positive Ratio (TPR), and compared it with

another downsampling factor and original size. Table II and

Fig. 7 show the results. Our algorithm showed that TPR

maintains about 90% for all the tested pixel values. To check

applicability of the converted point clouds against the raw

ground truth point clouds, we measured the nearest neighbor

distance between the two point cloud groups. The result

shows that for all cases, the nearest distances are within the

reasonable range from the ground truth point clouds, which

gives a different insight on performance metrics (mIoU, TPR)

for our algorithm. In other words, by using a reasonable pixel

downsampling to cover the detected objects, the performance

of clustering is not significantly affected.

2) Running Time Analysis: We evaluated how fast our

proposed algorithm can support real-time object detection,

considering that the laser scanner used returns measurements

at 10Hz. First, we performed an ablation study. In the exam-

ple sequence of Fig. 6, we ran the algorithm with or without

BFS as a prior step. Among 5744 point clouds in total, the

running time by using BFS as a prior step was 72ms with

460 components fed to the hierarchical clustering process,

whereas the running time by not using BFS was 297ms with

1604 components fed to the hierarchical clustering.

Then, we analyzed the experimental run time on the

collected datasets and the ASV on-board computer during

navigation. The running time of the proposed algorithm is

summarized in Table III. For recorded data processing, the

testing computer had an Intel Core i7-7700HQ 2.80GHz
and 16GB memory. We measured the running time to

process each 360° scan. For ASV on-board processing, the

computer is an Intel NUC with an Intel Core i7-8559U

Processor 4.50GHz and 16GB memory. Note, a state-of-

the-art method [16] in Table I only applied the monitoring

field of view as 90° forward direction, whereas our proposed

method uses the entire 360° scan. We also tested by applying

the same monitoring field of view as [16], i.e., 90° thus

reducing the running time into 21.19ms on average with

standard deviation as 13.39ms. Also, the method by [6]

using only BFS step in Table I is approximately two times

faster than ours. That method does not correctly segment

in-water obstacles, as discussed in the previous subsection.

V. DISCUSSION AND FUTURE STEPS

Our proposed model-free method for in-water obstacle

detection and segmentation qualitatively and quantitatively

outperforms other state-of-the-art methods in the aquatic

domain in segmenting obstacles. While the other methods

targeted for AGV first removes a planar ground and focuses

on objects only above it, our proposed algorithm, tailored to

marine specific applications, considers all objects scanned by

the sensor. This procedure could give the algorithm relatively

more input data for segmentation than AGV’s algorithms, but

we optimized the algorithm with some approximation and

heuristics while achieving a good accuracy performance.

We will extend the proposed LiDAR based method by

fusing other on-board available sensors: GPS, IMU, RGB

camera, etc. to supplement information for an ASV. We

plan to increase its capability, in false positive cases of

a few reflected point clouds on the water surface noted

in [25] and Fig. 6, by comparing with registered data. In

relation to the proposed algorithm, we will collect more

operation data under adversarial conditions – wave, rain, and

other inclement weather. The dataset collected by our ASV

equipped with multiple sensors under diverse conditions will

contribute to the robust autonomy of robotic boat’s operation.

In the end, we will develop multi-object tracking, connect-

ing it with our previous work [32] on collision avoidance

planning, towards autonomous surface vehicles.

APPENDIX

POINT CLOUDS OF IN-WATER OBSTACLES

To see the sparsity and instability of point clouds in marine

domain, we extracted examples of in-water obstacles from

our dataset and compared in two ways in Fig. 8: (1) ground

domain vs. marine domain; and (2) variation of point clouds

within 1 s time lapse under the same distance from the sensor.

ACKNOWLEDGEMENT

We thank Monika Roznere for her help with the ex-

periments and the Eliassen family for our access to the

experimental sites. This work is supported in part by the

Burke Research Initiation Award and NSF CNS-1919647,

OIA1923004.

REFERENCES

[1] B. Bovcon, J. Muhovič, J. Perš, and M. Kristan, “The mastr1325
dataset for training deep usv obstacle detection models,” in Proc.

IROS, 2019.
[2] E. Gundogdu, B. Solmaz, V. Yücesoy, and A. Koç, “MARVEL:

A Large-Scale Image Dataset for Maritime Vessels,” in Computer

Vision – ACCV, 2016.
[3] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek,

“Video processing from electro-optical sensors for object detection
and tracking in a maritime environment: A survey,” IEEE Trans.

Intell. Transp. Syst., vol. 18, 2017.
[4] J. Han, Y. Cho, J. Kim, J. Kim, N.-s. Son, and S. Y. Kim,

“Autonomous collision detection and avoidance for ARAGON USV:
Development and field tests,” J. Field Robot., 2020.

[5] B. Bovcon, J. Muhovič, J. Perš, and M. Kristan, “Stereo obstacle
detection for unmanned surface vehicles by IMU-assisted semantic
segmentation,” Robot. Auton. Syst., vol. 104, 2018.

[6] I. Bogoslavskyi and C. Stachniss, “Fast range image-based segmen-
tation of sparse 3d laser scans for online operation,” in Proc. IROS,
2016.

	Introduction
	Related Work
	Obstacle Segmentation Approach
	Spherical Projection Transformation
	Connected Component Searching
	Component Clustering and Labeling

	Results and Evaluation
	Dataset Characteristic
	Calibration Test
	Simulation
	Field Experiment
	Segmentation Evaluation
	Running Time Analysis

	Discussion and Future Steps
	Appendix: Point clouds of in-water obstacles

