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Abstract— Navigation and obstacle avoidance in aquatic en-
vironments for autonomous surface vehicles (ASVs) in high-
traffic maritime scenarios is still an open challenge, as the
Convention on the International Regulations for Preventing
Collisions at Sea (COLREGs) is not defined for multi-encounter
situations. Current state-of-the-art methods resolve single-to-
single encounters with sequential actions and assume that other
obstacles follow COLREGs. Our work proposes a novel real-
time non-myopic obstacle avoidance method, allowing an ASV
that has only partial knowledge of the surroundings within the
sensor radius to navigate in high-traffic maritime scenarios.
Specifically, we achieve a holistic view of the feasible ASV
action space able to avoid deadlock scenarios, by proposing (1) a
clustering method based on motion attributes of other obstacles,
(2) a geometric framework for identifying the feasible action
space, and (3) a multi-objective optimization to determine the
best action. Theoretical analysis and extensive realistic exper-
iments in simulation considering real-world traffic scenarios
demonstrate that our proposed real-time obstacle avoidance
method is able to achieve safer trajectories than other state-
of-the-art methods and that is robust to uncertainty present in
the current information available to the ASV.

I. INTRODUCTION

This paper addresses the problem of obstacle avoidance
and navigation of Autonomous Surface Vehicles (ASVs) in
highly-congested waters – see Fig. 1. Augmenting the auton-
omy of ASVs can enable and automate many high-impact
societal applications, including shipping and monitoring [1].
One of the current main challenges limiting the widespread
use of ASVs is navigation safety [2]. Differently from car
driving, waterways are not clearly marked. In addition, while
there are some traffic rules – Convention on the International
Regulations for Preventing Collisions at Sea (COLREGs)
[3] – governing how to handle single obstacle encounters,
COLREGs do not explicitly cover scenarios of multiple
obstacle encounters [4]. The unstructured environment and
lack of regulatory framework in aquatic scenarios create
a challenge especially in high-traffic waters, such as the
Ningbo and Shanghai waterways, Singapore and Malacca
Straits, and the Dover Straits where hundreds of vessels
navigate on a daily basis [5].

Current state-of-the-art methods for ASVs operate follow-
ing COLREGs on several single-to-single encounters with
sequential actions (e.g., [6], [7]) and reciprocal cooperative
actions by the obstacles (e.g., [8], [9]). These sequential and
myopic methods may produce conflicting actions in real-
world scenarios. For example, when the own controlled ASV
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Fig. 1. Collision avoidance behavior for controlled ASV, R, using state-of-
the art vs. proposed method under congested traffic with multiple obstacles
O: (a) a desired action (θ1, v1) complies with a left-to-left maneuver for the
head-on Ob, Oc, Od, while the bow-crossing maneuver conflicts with the
crossing Of , Og ; (θ2, v2) complies with a stern-crossing maneuver for the
crossing Of , Og , while the change of action conflicts with stand-on status
for overtaking Oe; (θ3, v3) partially complies with a left-to-left maneuver
for the head-on Ob, Oc except Od, while it leads to entering between the
obstacles. (b) (θ∗, v∗) achieves a safe and adaptive maneuver with only
one bow-crossing for Oa, while clusters (Ob, Oc, Od) and (Of , Og) are
identified based on similar motion attributes with respect to R such that R
will not pass areas (dotted lines) between obstacles in a cluster.

is obliged to turn to the right as a ‘give-way’ vehicle with
respect to head-on obstacle(s), but simultaneously keeping
the speed and heading as a ‘stand-on’ vehicle with respect
to overtaking obstacle(s). Moreover, other vessels might not
follow the rules and the same reciprocal collision avoidance
algorithm as the own controlled ASV.

To address the above mentioned limitations, this paper
proposes a novel motion attribute-based clustering and non-
myopic collision avoidance based on multi-objective opti-
mization for complex in-water obstacle scenario(s). The pro-
posed method identifies three near future motion attributes
of encountered obstacles with respect to the controlled
ASV – temporal (Time to the Closest Point of Approach
(TCPA)), spatial (Closest Point of Approach (CPA)), and
angular (relative bearing) similarity – and clusters group(s)
of obstacles based on the similarity. The clustering allows
an increased safety: the ASV can holistically consider the
obstacles, by prohibiting the entrance within the cluster.
From the predicted cluster(s), our method calculates an
evasive action by geometric analysis, which finds feasible
action space boundaries, and multi-objective optimization.
The objective function considers change(s) of velocity, head-
ing, and expected safety level. Note clusters are updated or
added, if a motion attribute of obstacle(s) with respect to
the controlled ASV changes or new obstacles are sensed
within the range. After calibrating parameters of a simulated
ASV from field experiments with a real ASV, we validate
the proposed approach with extensive simulations under
realistic diverse traffic scenarios. We vary the number of
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obstacles and their dynamic properties and compare other
state-of-the art methods. The proposed method shows 1.2–
1.7 times higher success rate performance (0.927 on average)
than other methods, while achieving real-time computation
(61± 13 ms) in congested traffic with 30 obstacles.

II. RELATED WORK

The robotics literature is rich on collision avoidance meth-
ods for mobile robots. One classification of such methods is
according to whether they consider global vs. local domain
[10] – i.e., full vs. partial knowledge. Here, we discuss
methods that have been proposed specifically for maritime
autonomous navigation, which are based on those available
for other types of robots.

As the majority of the encountered obstacles in aquatic
environments are unknown or dynamic – detected by the
ASV on-board sensors – many studies (e.g., [7], [11]) have
addressed the collision avoidance problem based on the local
domain. Local-based methods include Artificial Potential
Field (APF) [6], [12], Velocity Obstacle (VO) [7], [13]
and its variant [8], Dynamic Window [14], model-predictive
[15], evolutionary algorithm [16], learning-based model [17].
Other examples include fuzzy adaptive control model [18]
and Differential Evolution algorithm [19].

These methods take decisions by considering one obstacle
at the time or aggregating the information of all obstacles
together. As a result, deadlocks or collisions in heavy traffic
scenarios can happen as the number of obstacles increase
[20], as shown also in the experimental section.

Furthermore, most of the existing methods are in com-
pliance with COLREGs [21], which, as mentioned above,
do not specify multi-obstacle encounters. This compliance
introduces a critical problem for these methods based on mul-
tiple single-to-single encounter relationships: ‘role conflicts’,
e.g., ‘give-way’ obligation while ‘stand-on’ privilege. To
address this role conflict problem, Cho et al. [9] proposed a
symmetric role-classification criterion and probabilistic VO.
Kim et al. [22] presented a Distributed Stochastic Search
Algorithm for complex ship encounters. Zhao and Roh
[17] proposed a deep reinforcement learning for multi-ship
collision avoidance. These methods assume that obstacles
behave (1) in a distributed, reciprocal, and cooperative
manner as their proposed algorithms, and (2) fully rule-
compliant achieved by constraining the action space. For
example, Cho et al. [9] assumed a starboard maneuver only
for every evasive action. This fully compliant behaviors are
not always present in real-world marine traffic, e.g., departure
from the rule under a special case like multiple encounters
with impending dangers ([23], [24], and Rule 2 in [3]).

Some work focused on maritime traffic management in-
stead of real-time collision avoidance. Zhen et al. [25] and
Chen et al. [26] proposed a density-based clustering of mul-
tiple ships, which allows for identification of a geographical
collision hot spot. Their proposed approaches are applied
to shore traffic monitoring operators, since the clustering
is not based on the first person perspective (i.e., the local

observation from a controlled vehicle) that requires an on-
board evasive action.

This paper’s main insight, differing from previous work,
is that it is fundamental to holistically consider multiple
obstacles, by identifying clusters that should not be crossed.
In addition, we assume neither a reciprocal algorithm nor dis-
tributed, cooperative action(s) by obstacle(s) under multiple
encounter scenarios. Instead, we consider that our controlled
ASV is a Give-way vehicle – a vehicle that takes an evasive
action – according to definition [3] whereas obstacle(s) are
Stand-on vehicle(s) – a vehicle that maintains its action. This
assumption on challenging cases for the controlled vehicle
is aligned with defensive, proactive actions in many real-
world cases where human-driven vehicles do not take a
proper action despite a Give-way vehicle status [27], [28].
Finally, we prioritize on safety rather than COLREGs rule
following, as no explicit regulation is available for multi-
obstacle encounters. This prioritization complies with the
main principle of COLREGs, i.e., safety.

III. APPROACH

The proposed method evaluates complex marine traffic
situations and determines optimized action(s) – speed and
heading – to avoid obstacles that are located within an ASV’s
sensible range defined as S ⊂ R2 and get to the goal. We
assume that any obstacle within S can be detected via a
broadcast message format – which is a realistic assumption
in the maritime domain thanks to the presence of Automatic
Identification System (AIS). In the experimental section, we
relax the assumption by considering potential noise present in
the type-A AIS with 1Hz – e.g., delay time when obstacle(s)
enter S due to processing of obstacle information collected
from received messages [29] as in real-world scenarios.

Fig. 2 shows the overview of the pipeline, with each
module described in the following subsections.

A. Relative Perspective Framework

For computational efficiency, instead of using the global
reference frame, we utilize a relative perspective considering
two local reference frames: the ASV’s reference frame {R}
and an obstacle’s reference frame {O}, similarly to our
previous work [27]; here, we include additional metrics that
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assess collision risks important in maritime navigation [21]
and will be used for clustering.

From the relative perspective of {O}, CPA is defined as the
closest point of approach until ASV fully passes the obstacle.
DCPA is defined as distance between two vehicles when an
ASV passes CPA and is calculated by

DCPA(O) = ||xR − xO|| sin(ϕ) (1)

where xR, xO ∈ R2 is the current pose of R,O in {W},
respectively, ||xR − xO|| is the Euclidean distance, and ϕ
the angle between the line of sight vector and the relative
motion vector of R with respect to O. TCPA is defined as
time to reach CPA and is calculated by

TCPA(O) =
||xcpa − xR||
||ẋR − ẋO||

(2)

where xcpa ∈ R2 is the CPA position on {W}, and ẋR− ẋO

is the relative motion vector of R with respect to O.
On the other hand, the relative bearing of O with respect

to R is defined as ψO|R on {R}. As per maritime convention,
ψO|R represents a compass bearing of O in clockwise
direction measured from R’s heading.

B. Motion Attributes-based Clustering

The goal of the clustering of static and dynamic obstacles
with similar near future motion attributes with respect to a
controlled ASV is to holistically find an action that can avoid
the whole cluster of obstacles in a safer way than avoiding
one obstacle at the time.

We define a cluster as a group of static and dynamic
obstacles with temporal (st), spatial (sd), and angular simi-
larity (sa), such that a controlled ASV should not enter an
obstacle’s domain as well as narrow areas between obstacles
until they are clear. More formally:

Definition 1: (Cluster of obstacles) If |TCPA(Oi) −
TCPA(Oj)| ≤ st ∧ |DCPA(Oi) − DCPA(Oj)| ≤ sd ∧
|ψOi|R − ψOj |R| ≤ sb, a pair {Oi, Oj} becomes a cluster
Ck. For Om ̸= Oi, Oj , if Om satisfies the clustering
condition with Oi or Oj , the cluster Ck is enlarged to
Ck = {Oi, Oj , Om}.

Definition 2: (Evasive action for cluster) For a cluster Ck,
expected track T of R should satisfy ∄ T ∩ C(Oi) ∧ ∄ T ∩

TABLE I
NUMERICAL DETAIL OF EACH

VEHICLE MOTION UNDER

CONGESTED TRAFFIC IN

FIG. 1 SCENARIO.

ID Start [m, m] Heading [°] Speed [m/s]
R (0, -100) 0 2.5
Oa (-20, 20) 175 1.0
Ob (-5, 40) 180 1.0
Oc (-40, 90) 170 3.0
Od (90, -10) 250 2.0
Oe (80, -20) 250 2.0
Of (-120, -20) 100 1.0
Og (50, -150) 0 3.5

 

  

   

   

   

   

   

   

                 

 

  

  

  

  

  

  

 

  

   

   

   

   

   

   

                 

 

  

  

  

  

  

  

       

       

       

       

       

       

       

 

  

   

   

   

   

   

   

                 

 

  

  

  

  

  

  

       

       

       

       

       

       

       

 

  

   

   

   

   

   

   

                 

 

  

  

  

  

  

  

       

       

       

       

       

       

       

 

  

   

   

   

   

   

   

                 

 

  

  

  

  

  

  

       

       

       

       

       

       

       

 

  

   

   

   

   

   

   

                 

 

  

  

  

  

  

  

       

       

       

       

       

       

       

Fig. 3. Motion attributes – TCPA, DCPA,
relative bearing – by multiple obstacles
under congested traffic in Fig. 1 scenario.
The three attributes are monitored with
respect to the controlled ASV (R) while
it is assumed that obstacles do not take an
evasive action.

L(Oi, Oj) ∀ Oi, Oj ∈ Ck where C(Oi) is a collision
boundary of Oi defined in Section III-C, and L(Oi, Oj) ∈ R2

is a line segment as a linkage between xOi and xOj until R
clears Ck.

The threshold parameters (st, sd, sa) are determined by
maneuvering characteristics aligned with an operational goal
[27], e.g., tactical diameter, abort distance, advance/transfer
– see Section IV-A for the values.

1) temporal similarity st: determined by TCPA, repre-
sents ‘How much temporal room does an ASV have prior to
CPA by obstacle(s) in a cluster?’. For example, as shown in
Fig. 3 and Table I, obstacle Ob and Oc are grouped because
of similar TCPAs with respect to the controlled vehicle R.
Intuitively, two obstacles – one moving at fast speed (Oc),
the other one at slow speed (Ob) – can be grouped based
on similar passing time with respect to R, despite being far
located to each other at the current time. On the other hand,
two obstacles (e.g., Od, Of ) would not necessarily belong to
a cluster with respect to R, because they have large TCPA
difference albeit located in proximity at the current time.

2) spatial similarity sd: determined by DCPA, represents
‘How much safety room does an ASV have as a distance
to the closest point of approach?’. If the ASV expects to
pass obstacles located in close proximity with similar DCPA,
the obstacles are to be clustered at the current time. More
specifically, as shown in Fig. 3, while obstacle Oa, Ob, Oc

meet st criteria, Ob and Oc are grouped whereas obstacle
Oa and Ob are not, due to the big difference of DCPAs.

3) angular similarity sb: determined by relative bearing,
represents ‘How closely are the obstacles distributed as
relative view angles from the ASV?’. The relative bearing
is an important factor to identify any risk of collision ([21]
and Rule 6 in [3]) with an obstacle that is is on a collision
course to the controlled ASV without a noticeable change of
relative bearing. For example, as shown in Fig. 3, if obstacle
Ob and Od (meeting both st, sd criteria) are monitored with
similar relative bearings (|ψOb|R − ψOd|R| ≤ sa), the ASV
can consider the directional distribution of the cluster as a
collision indicator. On the other hand, while obstacles Of

and Og are not on a collision course due to the shift of
ψOf |R, ψOg|R across time, a cluster generated by Of , Og

still remains valid by meeting sa criteria.
Our proposed method keeps track of the obstacles and

updates cluster(s) from ti to ti+1, if there is a change in
the marine traffic. Such a change includes encounter situa-
tions (e.g., head-on to crossing), motions of obstacles and
ASV, and obstacle appearance or disappearance in S. The
updates are performed using a moving average window to
obtain motion-attribute information – TCPA, DCPA, relative
bearing – of each detected obstacle. If the ASV detects
an obstacle at a certain time (td) within S and receives
minimum required number of data (e.g., ntcpa for TCPA)
from AIS broadcast messages, the ASV continues to process
and update data by just shifting the average window at td+1.
That minimum required number is set according to a delay
during obstacle detection and tracking in real-world maritime
navigation. The moving window also has a smoothing effect



on noises caused by disturbing factor(s), e.g., environmental
disturbances, robot motion oscillation, while focusing on the
recent streamed data.

Our ASV will keep track of any obstacle Oi whose
TCPA satisfies ASV’s lookahead monitoring time, i.e., 0 ≤
TCPA(Oi) ≤ Tmonitor+ where Tmonitor+ is a forward
looking threshold, a positive TCPA of an obstacle decreases
as it approaches. This pruning process contributes to not
only computational efficiency by reducing obstacles in in-
terest [30], but also maneuver robustness by preventing a
potential dead-lock scenario similar to Guard Zone on a
marine RADAR [31]. After obstacle pruning, we perform a
hierarchical clustering to find group(s) of obstacle(s) meeting
all st, sd, sa thresholds in accordance with Definition 1.
Note that the proposed algorithm performs a new clustering
process in case of the following events: (1) when a new
obstacle Oj appears with 0 ≤ TCPA(Oj) ≤ Tmonitor+

inside S; (2) when a monitored obstacle Oj either goes
out of S or gets cleared, i.e., TCPA(Oj) ≤ Tmonitor−

inside S where Tmonitor− is backward looking threshold
to check clearance, as an already passed obstacle has a
negative TCPA; and (3) when periodic monitoring catches
a significant motion change of an obstacle, i.e., θ or v.
Such process can adaptively update cluster(s) formed by
obstacle(s) in dynamic marine traffic scenarios.

C. Geometric Analysis of Action Boundary

To find evasive action(s) for cluster(s), we use a virtual
domain concept – so called ship domain – of an obstacle
[27] as shown in Fig. 4 (a). The boundary is divided into
two areas: collision boundary C where a controlled ASV
shall not enter as otherwise it would be considered collision
even if ASV might pass without a physical contact; and
risky boundary R where the ASV can enter, but need to
navigate with caution while maintaining a safety level. We
include uncertainty coefficient to determine the size of the
domains – see the details in [27] where we introduced this
geometric boundary for a single obstacle; here we report
the main elements to understand the extension to clusters of
multiple obstacles.

(a) (b) (c)

Fig. 4. Geometric representation of action boundary for obstacle(s) and
cluster. (a) conceptual diagram of an action boundary in a single obstacle.
(b) boundary analysis for multiple obstacles with varying ship domain sizes
in the cluster Ck in Fig. 1 example. (c) top: boundary analysis result
for each cluster; bottom: holistic analysis proposed by this study identifies
determinant obstacles as Ob, Od such that [θl(Ob), θr(Od)] encompasses
the action boundaries of the obstacles in the cluster.

Based on this geometric boundary, our algorithm derives
margins of evasive action(s), i.e., action(s) leading to tangent
lines with respect to the ship domain {O}. As shown in
Fig. 4 (a), R must have two tangent lines towards C with
respect to {O}, except for a case that the ASV is on the
edge of or inside C, i.e., collision. A tangent line is a linear
span of a relative motion of R with respect to O. Finding a
motion vector at a specific speed towards a tangent line can
be solved by a system of linear equations as shown in our
previous study [27]:{

(ẋθ
R − ẋO)× (xθ

P − xO) = 0∥∥ẋθ
R

∥∥ =
∥∥∥ẋθ0

R

∥∥∥ (3)

where xθ
P is a tangent point of C when the ASV’s heading is

θ, θ0 is the current heading, and ẋθ
R, ẋθ0

R is velocity of ASV
for θ, θ0, respectively. Note that Equation (3) for two tangent
lines can return vectors based on two compass heading values
θl, θr on {W} such that ẋθl

R , ẋθr
R can lead to the left, right

boundary of the obstacle domain. We define this [θl, θr] as
an action boundary for O. Therefore, if the controlled ASV
takes an action outside of [θl, θr], the ASV can avoid a
collision. While in maritime navigation a heading change is
preferred over a speed change, the proposed approach can
still find motion vector(s) and relevant action boundary by
prediction based on different speeds.

By extending the concept of the action boundary into a
cluster level (multiple obstacles in a group), the proposed
algorithm finds a motion vector to avoid collision(s) based on
a holistic view – see Fig. 4 (b), (c). To determine a holistic
action boundary for a cluster, the proposed algorithm first
identifies determinant obstacle(s) in a cluster Ck as follows:

argmax
Oi,Oj∈Ck

Θ(θl(Oi), θr(Oj)) (4)

where Oi, Oj are determinant member obstacles in a clus-
ter Ck, and Θ(·, ·) is clockwise angle difference on {W}
between the left and right action boundary of obstacles.
Then, the action boundary of a cluster Ck is represented
as [θl(Ck), θr(Ck)] = [θl(Oi), θr(Oj)] such that any action
outside this action boundary makes the ASV avoid the cluster
Ck. Formally:

Proposition 1: For a cluster Ck and its action boundary
at a specific speed v as [θl(Oi), θr(Oj)] where Oi, Oj ∈
Ck, any action a /∈ [θl(Oi), θr(Oj)] can make ASV avoid a
collision with Ck, i.e., Om ∀Om ∈ Ck.

Proof: Suppose there is an action a /∈ [θl(Oi), θr(Oj)]
that makes the controlled ASV collide with at least one
Om ∈ Ck. In other words, there exists at least one action
boundary such that a ∈ [θl(Om), θr(Om)]. According to
the definition of an action boundary with Equation (4),⋃

m[θl(Om), θr(Om)] ⊆ [θl(Oi), θr(Oj)] ∀Om ∈ Ck.
Therefore, if a /∈ [θl(Oi), θr(Oj)], it must satisfy a /∈
[θl(Om), θr(Om)] ∀Om ∈ Ck. This contradicts the initial
supposition.
The constrained action space reduces collision risk in high-
traffic scenarios – see Fig. 4 (c) top for an action example



towards a confined space between obstacles. Note that there
exists a case where Equation (4) returns Oi = Oj : (a) only
one obstacle exists in a cluster, i.e., ||Ck|| = 1; or (b)
an action boundary formed by Oi encompasses any other
combinations of action boundaries in Ck where ||Ck|| ≥ 2.

As a result, the proposed algorithm can derive the aggre-
gated action boundary from individual clusters in interest at
that time

⋃
k[θl(Ck), θr(Ck)]. Given a possible action space

A, the aggregated boundary becomes no-go-zone A′ where
A′ ⊆ A. An action a ∈ A − A′ prevents a controlled ASV
from colliding with any Oi ∈ Ck as well as entering a con-
fined space between obstacles. Formally, this can be derived
by extending Proposition 1: if a /∈

⋃
k[θl(Ck), θr(Ck)] leads

to a collision with an obstacle in a certain Cp, this contradicts
that a can avoid a collision with any obstacles in Cp, because
a /∈

⋃
k[θl(Ck), θr(Ck)] means a /∈ [θl(Cp), θr(Cp)] =

[θl(Oq), θr(Or)] where Oq, Or is determinant obstacle in Cp.

D. Multi-Objective Optimization for Obstacle Avoidance

We define a multi-objective optimization to find the best
action in the action space A of a controlled ASV. The action
space A is a discrete grid space determined by a combination
of heading and speed θ, v. We use [0, 360) with 1° increment
for θ and ratio [0, 1] of the max target speed with 0.25
increment for v. Possible actions are evaluated from the
feasible action space A−A′. Such actions are evaluated as
a weighted sum of four objectives (a) heading change from
a waypoint; (b) heading change from a local target heading;
(c) speed change; and (d) safety level:

J(θ, v) = wff(θ) + wf2f2(θ) + wgg(v) + whh(θ, v) (5)

where (θ, v) is an action a ∈ A −A′ to be evaluated; f(·),
f2(·) are a heading change cost for required heading towards
a destination or local target heading while avoiding obstacles,
respectively; g(·) is a speed change cost; h(·, ·), is a safety
level cost; and wf , wf2 , wg , wh are related weights.

More specifically, f cost function represents ‘how much
an evaluated heading will be offset from a direction towards
a waypoint and can be calculated as follows:

f(θ) =
|θwp − θ|
∆max(θ)

(6)

where θwp is a true bearing towards the current waypoint, and
∆max(θ) is the possible maximum heading change in A for
prediction. f cost can determine the extent of how strictly the
ASV follows a path towards the current waypoint. f2 cost
function represents ‘how much an evaluated heading will
be offset from a local target heading’ and calculated in the
same way as f except θtgt instead of θwp where θtgt is the
current target heading while avoiding obstacles. To overcome
limitations of the trivial hysteresis method [7] as noted in
[15] and prevent an ASV from chattering, we introduced
f2 cost. Intuitively, f2 has a conflicting role against f , but
stabilize the motion such that the robot maintains a passage
direction (e.g., left to left) unless an imminent risk arises
(e.g., newly detected obstacle(s) blocks the passage). g cost

function represents ‘how much an evaluated speed is offset
from a target speed’ and can be calculated as follows:

g(v) =
|vtarget − v|
∆max(v)

(7)

where vtarget is a target speed to the waypoint, and ∆max(v)
is the possible maximum speed change in A from the current
speed. g cost can determine the extent of how strictly the
ASV keeps its speed compared to the target speed. Last, h
cost function represents ‘how much safety level is expected
when the ASV passes an obstacle’ and can be calculated as:

h(θ, v) =


1 if (τθ,v ≤ τ̌),

0 else if (τθ,v ≥ τ̂),
|τ̂−τθ,v|

τ̂−τ̌ else
(8)

where τ is a safety level metric (DCPA in this study), τ̂ , τ̌
are the upper, lower bound of the safety level, τθ,v is a DCPA
value when a specific action (θ, v) is taken. h cost determines
the safety extent of collision avoidance by ensuring a safe
distance from the obstacle. Note that the h cost is normalized
based on the upper and lower bound of the safety level as
done in other work [11].

Finally, after combining individual costs and weights de-
fined in a feasible action space, the optimized action θ∗, v∗

within the feasible action space A−A′ is :

(θ∗, v∗) = argmin
θ,v∈A−A′

J(θ, v) (9)

In general, the weight parameters can be set to account for
different traffic situation and end-user goal. How to set all
the parameters is discussed in Section IV-A. Note that an
optimal action may differ depending on a combination of
the weights, although, fixing the weights, the best action is
found on Pareto optimal front [32] while ensuring collision
avoidance as discussed in Section III-C.

IV. RESULTS AND EVALUATION

We conducted extensive simulation tests for validation: (1)
Monte Carlo simulations on a 2D simulator including noises
– Stage [33] – to optimize the parameters and quantitatively
demonstrate the performance of the proposed algorithm com-
pared to state-of-the-art methods; (2) realistic 3D simulations
on Gazebo [34] which included plugins for disturbances in
addition to 2D simulations on actual historical data of a
collision accident in congested traffic by testing generality
on different robotic platforms with varying size and speed.

A. Calibration Test

We performed the Monte Carlo simulations considering
our custom-made ASV, Catabot with length 2.5m, beam
1.4m, sensible range 100m, the max linear, angular speed
2.5m/s, 45 °/s found by performing a real experiment
shown in [27]. By finding the motion characteristics such as
tactical diameter and advance, we chose st = 10 sec, sd =
15m, sa = 15°. For example, ASV is not allowed to enter
between two obstacles forming a cluster whose bearing offset
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Fig. 5. Comparison of each method for collision avoidance of multiple obstacles under congested traffic. (a) Success rate of navigation. Solid: success
rate without consideration of near miss area entrance, Dotted: success rate with near miss area entrance regarded as collision; (b) Computational time; (c)
Travelled distance of ASV when the navigation task was successful; and (d) Trajectories in an example scenario with 30 obstacles (gray).

is less than sa. We then optimized the weight parameters
proposed in Section III-D by evaluating the behaviors of
the controlled ASV. We used different combinations of
weights (wf , wf2 , wg, wh) in 50 scenarios in 200m×200m
area. For each scenario, we built a randomized environment
that has 30 obstacles with varying size, speed, start and
goal position, and encounter situations: head-on, overtaking,
and crossing. The ranges of the weight values were set to
wf = [0.25, 0.4], wf2 = [0.05, 0.1], wg = [0.3, 0.55], wh =
[0.1, 0.3], respectively, with total sum as 1. Note that each
combination of the weights was set to the following inequal-
ities for typical behaviors of vehicles in maritime navigation:
wf ≤ wg , wh ≤ wf , and wf2 < wf . Intuitively, wf ≤ wg

denotes that a vehicle prefers a change of its heading to
its speed for collision avoidance. wh ≤ wf denotes that
a vehicle can adjust its heading to enter a space between
obstacles belonging to different clusters, if the safety level
determined by wh permits. Note that according to Definitions
1 and 2, a desired action output ensures the ASV does not
enter an obstacle’s collision boundary C in a same cluster
regardless of the safety level. Last, wf2 < wf denotes that
a vehicle heads to its goal, while two weights act in a
compensatory manner to prevent chattering behavior. Based
on these tests, we chose wf = 0.34, wf2 = 0.05, wg =
0.49, wh = 0.12 for the best performance observed across
the total scenarios. Note that the performance was not heavily
affected by varying wf , wg, wh within ±0.15 while keeping
the aforementioned inequality principles.

B. Comparative Analysis of Performance

We compared behaviors by our proposed method (MOA)
and by the state-of-the-art methods. We chose as state-of-
the art methods those that have shown success in mobile
robotics: Velocity Obstacle (VO) [7], APF (Artificial Po-
tential Field) [12], and DWA (Dynamic Window Approach)
[35]. Note that we did not include rule cost parameters which
can be applied to only a single encounter (e.g., COLREG cost
in [7]), since our research focuses on multiple encounters,
and role conflicts. During calibration of the proposed method,
we also calibrated the state-of-the art methods’ principal pa-
rameters (e.g., attractive, repulsive force coefficient in APF).
We then tested each method by incrementing the number of
obstacles – 10, 15, 20, 25, 30 obstacle cases with random 100
scenarios per method, i.e., total 2, 000 simulations with start,
goal position as [0,−100], [0, 100]. We adopted the same

randomized scheme used in Section IV-A for Monte Carlo
simulations. We compared the performances based on the
following quantitative metrics: success rate, computational
time, and travelled distance.

First, the proposed MOA method shows significantly bet-
ter navigation success rate than the other methods as shown
in Fig. 5 (a). We also considered cases where the ASV
entered C of any obstacles as ‘collision’ despite non-physical
contact, according to the definition of the ship domain.
MOA’s performance is not heavily affected as 0.927 on
average, while outperforming other methods (1.2–1.7 times
higher). On the other hand, VO’s performance drastically de-
creases, as we observed (1) VO’s non-holistic action decision
on single-to-single encounters makes the ASV enter a small
space between obstacles (see Fig. 4) as shown in Fig. 5 (d);
and (2) a chattering behavior of the ASV, confused by many
detected obstacles, leads to late, inefficient evasive actions.
DWA showed the lowest success rate due to the algorithm
originally designed for static environments. We analyzed
the small number of collisions/near misses by the proposed
method. We found the cause of entering C under congested
traffic as: (1) there is latency in the sensing capability via the
AIS broadcast message. While we modelled fast type-A AIS
with 1Hz, a relative robot motion by the controlled ASV
and the obstacle makes meters of blind period ; (2) there are
dynamic constraints in turning or reducing speed. Despite
motion characteristics adopted in the proposed approach, the
prediction of the motion at a current time stamp may not
necessarily correspond exactly to real motion. In other words,
an optimized action might not be always reached at the next
time stamp, e.g., opposite direction of the heading to the
current heading in the action space.

The experimental computation time by MOA shows real-
time capability of collision avoidance (61ms on average in
30 obstacles), negligibly affected by the increasing number
of obstacles – see Fig. 5 (b). Here, we measured com-
putational time taken by the planner to return a desired
action output, considering that the fast action update is a
key to successful collision avoidance. APF shows the fastest
performance based on simple force calculations, while we
observed problems such as a local minima and oscillation
of actions caused by multiple obstacles’ forces acting on
the ASV. VO showed the largest linear increases with the
largest varying ranges. This observation is aligned with the
complexity O(|θ||v||n|) where |θ|, |v| are the size of an
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Fig. 6. Comparison of trajectories and action spaces by the-state-of-the-art VO (top) vs the proposed MOA (bottom) method for collision avoidance of
multiple obstacles in Porto Alegre, Brazil with locally varying water/wind currents. The controlled ASV (Blue) with length 4m, max speed 1m/s departed
from the river mouth (250, 100) to the open waters (100, 100), while the obstacles merged with arrival traffic. In the action space, red star and red line
represents the best action and current action, respectively. (a) VO attempted to go between obstacle a, d. MOA proactively took a right-side action while
obstacle a, b, d were clustered. Note that obstacle d was under tracking process as it just entered the sensible range 100m; (b) VO passed the obstacles,
particularly in very close proximity to obstacle a, b. MOA safely passed obstacles. Note that clusters were adaptively identified, e.g., obstacle (a, b, d) to
obstacle (a, d) and (b, c) based on changes of motion attributes; (c) VO arrived at the destination. MOA cleared obstacles while still proceeding to the
destination; and (d) Distance comparison shows MOA avoid obstacles under congested traffic in a safer manner.

action space in terms of heading, speed change, respectively,
and |n| is the number of obstacles [9]. We noted that
we were able to achieve real-time performance for our
method because of the following algorithmic optimizations:
(1) TCPA-based pruning of obstacles in priority; (2) parallel
processing of detection, monitoring, and clustering module
despite the clustering as O(|n|2) (see Fig. 2); and (3) instead
of O(|θ||v||n|), the clustering process makes at most two
obstacles (determinant obstacles) in a cluster considered for
cost analysis such that the complexity is O(|θ||v||k|) where
|k| is the number of clusters. Note that |k| ≤ |n| theoretically,
but |k| < |n| in real-world traffic scenarios.

Last, Fig. 5 (c), (d) shows MOA has reasonable travelled
distances, while avoiding multiple obstacles in congested
traffic. In the most challenging situations with 30 obstacles,
MOA still showed stable performance, while VO without
TCPA-priority process experienced cases with high varia-
tions of distance due to deadlock situations. DWA showed the
longest distance travelled while avoiding obstacles, because
the method is originally designed for static environments.

C. Real-world like Environment and Real Accident Case

To further test the robustness of our proposed method
under real-world conditions, we validated the proposed
method on a different robotic platform and in a 3D simulator
with environmental disturbances [36]. As shown in Fig. 6,
the experimental area covers Dilúvio river mouth (30°03′

S, 51°14′ E) in Porto Alegre, Brazil. The environmental
disturbances include buoyancy, time- and spatial- varying
3D waves and water/wind currents modelled by HEC RAS1

and openFoam2, affecting the 6-DOF of the ASV and the
obstacles. Note that we could test up to total 5 vehicles
(own+obstacles) due to the computationally-demanding sim-
ulation which dropped significantly the real-time factor of the

1https://www.hec.usace.army.mil/software/hec-ras/
2https://www.openfoam.com/

TABLE II
NUMERICAL DETAIL OF EACH

SHIP INVOLVED IN ACCIDENT.

ID Heading [°] Speed [m/s]
R 220 10.0

ship a 85 8.8
ship b 40 6.2
ship c 95 8.4
ship d 60 10.0
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Fig. 7. Trajectories of ships during
1.5 hours prior to a collision off coast
Japan. Southwest-bound ship (solid blue)
collided with East-bound ship a while
the proposed method successfully avoided
all the ships (dotted blue) in the same
scenario. Note that the involved vehicles
were made anonymous.

3D simulator. The traffic scenario was included according to
the in and out traffic flow3.

Fig. 6 shows that MOA avoids more safely than other
methods multiple obstacles. The VO-based ASV passed a
small space between obstacles and thus experienced action
chattering within a small portion of the feasible action space.
Selecting an action within that small portion of the action
space could raise potential risk particularly under locally
varying real-world disturbances which caused the oscilla-
tory motions of obstacles. Note that the proposed approach
handled the noisy environment and uncertain motions of
obstacles by a holistic evaluation of the action space and its
cost, leaving a safety level margin to prevent a close-quarter
situation as shown in Fig. 6 (d). Interestingly, despite the
non-explicit implementation of rule-compliance, the MOA’s
best action in the given scenario turns out to be all rule-
compliant (single-to-single perspective).

We additionally tested applicability of the proposed
method to a large-scale vessel with high speed in a real-
world accident as shown in Fig. 7. More specifically, we

3https://www.marinetraffic.com/

https://www.hec.usace.army.mil/software/hec-ras/
https://www.openfoam.com/
https://www.marinetraffic.com/


tested the proposed method based on historical AIS records
of the collision at high-traffic Sagami Nada Bay (34°31′ N,
139°05′ E), Japan on 2017 [37]. Note that the controlled ship
with length 153.9m, linear, angular speed 10m/s, 20 °/s
according to the accident report was assumed to have a
sensible range of 12 nautical miles (NM). While a principal
cause of the accident was late, improper action with respect
to ship a, our approach proactively adjusted the course with
respect to ship b first such that own ship could pass multiple
obstacles (ship a, c as a cluster) with safe distance off.

V. CONCLUSION AND FUTURE STEPS

Our proposed collision avoidance method in high ma-
rine traffic scenarios can achieve safer trajectories than
other state-of-the-art methods by using motion attribute-
based clustering, geometric framework for the feasible action
space, and multi-objective optimization based on a holistic
view of obstacles detected by range sensors. While the
update frequency from obstacle’s broadcasting message can
affect the behaviors leading to near miss, we optimized the
proposed algorithm by considering uncertainty of motions
monitored by sensors in real-world scenarios.

We will integrate our proposed method with real multi-
sensor fusion modules and on a real ASV. We plan to
explicitly consider kinematic and dynamic properties of the
controlled ASV to better cope with uncertainty of external
disturbances. As a long-term goal, we will explore a high-
level global planning such that the proposed collision avoid-
ance from local perspective can be integrated towards full
marine autonomy.
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