
Deep Underwater Monocular Depth Estimation with Single-Beam Echosounder

Haowen Liu, Monika Roznere, and Alberto Quattrini Li

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICRA48891.2023.10160459

Abstract— Underwater depth estimation is essential for safe
Autonomous Underwater Vehicles (AUV) navigation. While
there has been recent advances in out-of-water monocular
depth estimation, it is difficult to apply these methods to
the underwater domain due to the lack of well-established
datasets with labelled ground truths. In this paper, we propose a
novel method for self-supervised underwater monocular depth
estimation by leveraging a low-cost single-beam echosounder
(SBES). We also present a synthetic dataset for underwater
depth estimation to facilitate visual learning research in the
underwater domain, available at https://github.com/hdacnw/

sbes-depth. We evaluated our method on the proposed dataset
with results outperforming previous methods and tested our
method in a dataset we collected with an inexpensive AUV. We
further investigated the use of SBES as an additional component
in our self-supervised method for up-to-scale depth estimation
providing insights on next research directions.

I. INTRODUCTION

This paper presents an underwater depth estimation frame-

work that is suited for Autonomous Underwater Vehi-

cles (AUVs) with inexpensive sensor configurations, i.e., a

monocular camera and a single-beam echosounder (SBES)

– see Fig. 1.

Underwater depth estimation is an important task for

AUVs in navigation, localization, and survey [1]. Typically

AUVs use sensors, such as multi-beam sonar [2], photon

beam [3], or LiDAR [4], but they are generally expensive,

difficult to setup, and do not provide dense depth estimates,

limiting their adoption. Cameras are an inexpensive solution

that are available on many AUVs [1], [5]. However, camera-

based depth estimation is challenging underwater compared

to out-of-water; the underwater image formation is affected

by light attenuation and backscattering due to suspended

particulates and other environmental factors [5], [6].

Recent advances in deep learning has the potential to

address such challenges [7]. Many of these deep monocular

depth estimation methods have emerged for out-of-water

domains [8]. They are generally trained on large well-

established datasets such as KITTI [9] and NYU-depth [10].

However, there are no comparable datasets in the underwater

domain to facilitate large-scale training for deep underwater

depth estimation. While there are a few Generative Adver-

sarial Network (GAN) based underwater depth estimation

methods available (e.g., [11], [12]), they are still trained with

out-of-water dataset augmented with synthetic underwater
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Fig. 1: Overview of the proposed deep underwater depth estimation frame-
work using a monocular camera and a single-beam echosounder.

effects or style transfer. As such, there is a need for a

dataset focused on underwater depth estimation task. Also,

monocular depth estimation suffers from the problem of scale

ambiguity [8], which hinders its usage in many robotics

applications that require metric depth estimation. A potential

direction is to integrate absolute measurements from other

sensors as additional cues to monocular depth estimation.

In this paper, we propose a novel self-supervised network

for monocular depth estimation that takes in as input both

monocular imagery and a single range measurement from a

low-cost SBES. The main contributions of this paper are:

• The first deep learning method for underwater monoc-

ular depth estimation with SBES.

• Mask representation of echosounder measurement to

transform single distance reading to a denser representa-

tion for more effective fusion with monocular imagery.

• A large-scale synthetic dataset for underwater depth

estimation with SBES data generated via simulation.

• A Pytorch implementation with tests in the proposed

dataset and real-world data that highlight the feasibility

of our approach for depth estimation.

This work pushes forward advancements in autonomy of

low-cost underwater robots so that they become accessible

to the broader community and support important tasks, such

as environmental monitoring and ocean exploration.

II. RELATED WORK

Situational awareness is important for any robot to achieve

robust control, navigation, and planning. However, with a

basic sensor configuration (e.g., monocular camera, SBES)

on an inexpensive underwater robot, any perception based

method will suffer from scale ambiguity and error induced

by water medium complexities. In the following, we will

discuss past works on how deep learning can help estimate

image depth while handling image distortions, and how

sensor fusion can improve the quality of depth estimation
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frameworks. We will also discuss datasets required to train

a deep learning framework well.

A. Underwater Depth Estimation

There has been an increasing number of studies on un-

derwater depth estimation in recent years. Early works [13]–

[15] used the underwater image formation model and the

dark channel prior assumption to estimate the transmission

map and backscattering constant for depth estimation. Li et

al. [16] jointly estimated scene depth and restored the image

from an underwater video sequence using stereo matching

and fog information. Peng et al. [17] used both image blur-

riness and light absorption for estimating depth. For learning

based methods, Gupta and Mitra [12] proposed a GAN based

method for depth estimation of a single underwater image.

Their method learns mapping functions between unpaired

in-air RGB-D images and arbitrary underwater images to

indirectly estimate depth images based on cycle-consistent

learning. Similarly, Hambarde et al. [11] used GANs for

coarse and fine-level depth map estimation, with synthetic

underwater images constructed from in-air RGB-D images

as input. Accurate up-to-scale depth estimation underwater

is still an open problem.

B. Sensor-Camera Fusion

Monocular depth estimation using deep learning has pri-

marily focused on in-land scenarios [18]–[21] than on under-

water cases. Self-supervised monocular depth methods for-

mulate depth estimation as an image reconstruction problem,

where depth maps are used as an intermediate product that

integrates into the image reconstruction loss [22].

It is well known that fusing data from other sensors

can help increase the quality of depth estimates. Sensor

configurations can be as simple as multiple cameras [23],

[24], IMU [25]–[31], and sonar [32]. They can also be more

complex and of higher cost, such as the setup by Richmond

et al. [33] with multibeam sonar, fiber-optic gyroscope IMU,

and doppler velocity log, or the SVIn2 [34] setup with profil-

ing scanning sonar, IMU, stereo camera, and pressure sensor.

Within the learning-based literature, to improve and recover

dense depth maps from monocular images, prior work have

proposed to merge sparse depth measurements from other

sensors, e.g., LiDAR. For example, Zhao et al. [35] used

a multi-scale co-attention-guided graph propagation network

adaptive to the sparsity patterns of sparse LiDAR depth input

to better associate the spatial context with observed depth

values. Park et al. [36] employed a novel architecture that

additionally re-injects the LiDAR signal at the refinement

stage to mitigate signal degradation due to normalization

layers after concatenating image and LiDAR features at

the start. Feng et al. [37] proposed a novel pseudo dense

LiDAR representation to overcome the sparsity issue of a

4-beam LiDAR for more effective fusion with monocular

image features. There has also been work on fusion of RGB

images with single-row scanning automotive radars [38]

or binaural echoes [39] for improving depth estimation.

Our method on fusing echosounder with monocular images

for depth prediction takes inspiration from these LiDAR

based methods; however, one of the main differences is

that, while the LiDAR provides multiple signals, the SBES

provides a single value, thus requiring strategies to handle

this challenge.

C. Underwater Dataset

There are very few existing datasets in the underwater do-

main, mainly targeted for SLAM or for image enhancement,

compared to general out-of-water computer vision tasks.

Examples include AQUALOC [40] which contains seabed

recordings at different water depths from Remotely Oper-

ated Vehicles equipped with a monocular monochromatic

camera, IMU, and a pressure sensor; the Underwater Caves

Sonar [41] dataset consisting of data from a mechanically

scanned imaging sonar, depth sensor, and camera imagery;

and SQUID [42] containing images taken under varying

water properties and respective 3D structures of the scenes.

However, due to the challenges of underwater data collection,

most underwater datasets only include a small number of

samples obtained under specific settings and lack correspond-

ing ground truth measurements, rendering them less suitable

for deep learning based methods. While methods such as

WaterGAN [7] proposed synthesizing underwater images via

introducing artificial underwater effects to in-air images, they

often introduce unwanted artifacts and fail to represent real

underwater landscapes.

III. DATASET

Given the scarcity of underwater datasets and the lack

of datasets comprising of echosounder measurements and

monocular images, we created a dataset for underwater

depth estimation models. Our dataset contains monocular

and stereo images, semantic segmentations, and echosounder

readings of realistic simulated underwater scenes to facilitate

vision-based learning in the underwater domain. Note that

stereo images were collected for future analysis, as here we

focus on a monocular configuration. We describe the data

creation and collection pipeline in the following.

To construct underwater scenes in simulation, we first se-

lected models of various underwater structures, such as ship-

wrecks, reefs, and caves built using professional photogram-

metry software from 3D model collection site SketchFab1. As

these models were constructed from real-world images, they

provide accurate representation of structures found in real-

world underwater environments. Then, each model is placed

in a simulated underwater environment created using Unity2

game engine. The simulated environments are modified from

an existing underwater simulator framework which contains

custom shaders that incorporates a light transmission model,

simulating underwater optical effects, thus providing a good

amount of realism. As individual texture colors of the

collected models vary greatly according to the color of

their surrounding waters during the photogrammetry data

collection process, color of the simulated water in each scene

1https://sketchfab.com/
2https://unity.com/

https://sketchfab.com/
https://unity.com/


TABLE I: Summary reporting the number of images of the proposed dataset
and split in our experiments.

Shipwreck(large) Shipwreck(small) Reef Rock Misc. Structure Misc. wreck

Total 11450 6669 2758 1553 2971 2694
Train 10426 6019 2464 1366 2647 2377
Val 586 390 180 129 210 232
Test 438 260 114 58 114 85

is sampled to match the texture color of the assigned model

to look realistic. Table I summarizes the images collected

from different categories of structures, and a sample of the

different underwater scenes simulated can be found in Fig. 2.

Fig. 2: Examples of underwater scenes constructed in simulation

A. Data Collection

We simulated an AUV, performing data collection in the

underwater environments in Unity. The simulated AUV is

equipped with an SBES and two RGB-D cameras in a stereo

configuration with a baseline of 0.5m. The echosounder has

a range of 0.5 to 10 meters, and camera parameters such

as resolution and focal length are kept the same as the

actual camera used on a relatively inexpensive underwater

robot, BlueRobotics BlueROV23. Both the echosounder and

cameras are placed at a pitch of 30-degree towards the

sea floor to reduce the area of background water captured.

For each scene, the AUV traveled to waypoints randomly

generated within a bounding box around each scene. The

path is calculated via three-dimensional A*. Each path was

constrained to have length greater than a pre-defined distance

and the process stopped only when a target number of

waypoints had been reached. Vertical motion of the AUV

was limited within a range of 20 degrees to avoid large

and sudden changes in pitch which rarely occurs in the real-

world. During navigation, the cameras and the echosounder

measurements were recorded at a fixed rate of 10 frames

per second, together with the AUV’s pose. To represent

different possible real-world underwater environments bet-

ter, underwater visibility – the gradient and conditions in

visibility over distance – was randomized [43]. Effects such

as camera grain and vignette were also included randomly.

Fig. 3 shows an instance of the data gathered. Note that

semantic segmentation of the model and background region

was also provided to facilitate potential segmentation tasks.

IV. APPROACH

In this section, the proposed methodology is described in

detail and the main components are outlined – an overview

3https://bluerobotics.com/store/rov/bluerov2/

Fig. 3: Dataset instance with RBG image, depth map, and semantic label.

is shown in Fig. 5.

A. Echosounder Fusion

While our method uses both monocular imagery and

SBES measurements as input for dense depth estimation,

it is difficult to fuse an echosounder measurement naively

with image features as it is extremely sparse compared to

the number of image pixels (1 vs >100k). Hence, we first

attempt to address the sparsity issue via transforming the

sparse measurement into a denser representation so that

echosounder information can be more effectively fused with

monocular image features.

To measure the distance to an object, an SBES emits

an acoustic pulse - approximately in the shape of a cone

and listens to the reflected pulses, using the time of flight

for distance calculation. According to the echosounder and

camera model described in our previous work [44], as shown

in Fig. 4a, the base of the sound cone can be approximated

as a circle with the center Cci in the camera reference frame

as:

Cci = CtE +mi · ṽ (1)

where mi is the echosounder distance reading, CtE is the

echosounder’s location, and ṽ is the direction unit vector

with respect to the camera reference frame. Given cone angle

a, the radius of the circular region is calculated as:

ri = mi · tan(a) (2)

and with camera intrinsics K, assuming the pinhole camera

model, we can identify the pixel coordinate (u, v) that cor-

responds to the center of the same circular region, projected

onto the image plane, as:




u′

v′

w′



 = K · Cci (3) where
u =

u′

w′

v =
v′

w′

(4)

Although we now know that the echosounder measurement

must correspond to the nearest point within the projected

circle, it still covers a relatively large area on the image in

our particular setting. Hence, we further reduced the can-

didate region by performing image segmentation to exclude

background regions where the echosounder measurement is

unlikely to pick up from. After preliminary experiments,

we found a clustering algorithm based on Gaussian mixture

model (GMM) [45] to perform well with underwater im-

agery. Finally, the remaining area was assigned the distance

measurement returned by the echosounder while the rest are

assigned 0, indicating an unknown value. This generated

a mask of size H × W , where H and W represent the

height and width of the monocular image, respectively. The

https://bluerobotics.com/store/rov/bluerov2/


(a) Echosounder-camera

model modified from our

previous work [44].

(b) Original image (c) Image segmentation

(d) Projected sound cone (e) Echosounder mask

Fig. 4: Conversion of a single echosounder measurement into a mask
representation. From the raw echosounder reading, we projected the sound
cone onto the image plane, took its intersection with foreground regions
identified using image segmentation, and assigned the measurement to pixels
within the area.
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Fig. 5: Overview of our framework. a) - Photometric loss only. b) Ablation
with direct supervision from echosounder measurements.

conversion process is shown in Fig. 4 (b)-(d). Compared to

naive concatenation of image and echosounder measurement,

this mask provides a denser representation that can be better

encoded and fused with the input image features for learning.

B. Networks

Our depth estimation network takes in the target monocu-

lar image It and the corresponding echosounder mask Mt

as input to estimate dense depth Dt. To work with the

echosounder mask input, we extended Monodepth2 [18], a

state-of-the-art self-supervised monocular depth estimation

network to include an additional encoder for encoding the

echosounder mask input, as shown in Fig. 5 a). Separate en-

coders, based on ResNet-18 [46], were used for the monocu-

lar image and echosounder mask to encode features from the

two different modalities independently. Intermediate fusion

was used to integrate the multi-modal features progressively,

as the decoder network takes in multi-scale deep features of

both modalities and concatenates them together to estimate

depth at multiple scales.

A separate pose network was used to estimate camera

ego-motion between successive image pairs. The pose net-

work takes in a target-source monocular image pair and

the echosounder mask Mt as input and outputs the camera

rotation and translation between the image pair. Both the

depth and pose networks were trained simultaneously.

C. Loss Functions

Self-supervised depth estimation can be expressed as a

view-synthesis problem, where we try to predict a target

image It given the viewpoint of adjacent images It′ . For

successful synthesis of the target image from source images,

we need to accurately estimate both depth Dt and the relative

pose between the target-source images. Hence, similar to

[18], [19], photometric reprojection loss Lp was used to

estimate the pixel-level similarity between the target image

It and the synthesized target image It′→t:

Lp =
∑

t′

pe(It, It′→t) (5)

and

It′→t = It

〈

proj(Dt, Tt→t′ ,K)
〉

(6)

where relative pose of source view It′ with respect to

the target image It is expressed as Tt→t′ , and proj() is

the projected coordinates of depth Dt in It′ using camera

intrinsics K.
〈〉

is the sampling operator. pe, the photometric

reconstruction error consisting of the L1 distance in pixel

space and the SSIM loss [47], is calculated by:

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib) + (1− a)∥Ia − Ib∥1) (7)

where α is a hyper-parameter to weigh contributions of the

two terms.

We also include the edge-aware smoothness Ls [48] to

encourage smooth depth estimations locally while preserving

sharp boundaries:

Ls = |∂xd
∗
t |e

−|∂xIt| + |∂yd
∗
t |e

−|∂yIt| (8)

where d∗t = dt/d̄ is the mean-normalized inverse depth.

Similarly to [18], we further applied a binary per-pixel

mask µ to the photometric reprojection loss Lp to filter out

static frames and texture-less regions, which can be dominant

in underwater scenes:

µ = [min
t′

pe(It, It′→t) < min
t′

pe(It, It′)] (9)

Finally, the overall loss L is the linear combination of the

photometric reprojection loss and smoothness loss:

L = µLp + Ls (10)

V. EXPERIMENTS

We evaluated our method quantitatively and qualitatively

on our proposed dataset as well as on real-world images.

Results are presented in the following section.

A. Evaluation on Proposed Dataset

There are 25299 images and 1069 images used for training

and validation, respectively. Our method was implemented in

Pytorch and experiments were done on a workstation with a

Nvidia GeForce RTX 3090 GPU. Images were scaled down

to a size of 160× 224, using batch size of 24 and an initial

learning rate of 1e− 4 for training.

Table II shows the quantitative results on the proposed

test set in comparison to existing methods, all trained on our



TABLE II: Quantitative evaluation of our method against other monocular depth estimation methods. ‘Superv’ column describes training supervision of
each method. ‘S’ - supervised, ‘M’ - self-supervised, ‘GA’ - GAN. All ‘M’ and ‘GA’ methods are scaled using echosounder measurement for evaluation
for fair comparison. Pixels with ground truth depth > 20m are masked out.

Method Superv. Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

BTS [49] S 0.2348 0.658 2.188 0.226 0.642 0.941 0.986

SfMLearner [19] M 0.471 3.321 3.651 0.429 0.452 0.727 0.860
SC-Depth [50] M 0.394 2.272 2.896 0.335 0.492 0.842 0.926

PackNet-Sfm [51] M 0.319 1.302 2.437 0.291 0.574 0.871 0.945
Monodepth2 [18] M 0.309 1.257 2.391 0.280 0.587 0.887 0.952

UW-Net [12] GA 0.939 8.459 5.980 0.625 0.246 0.484 0.683

Ours M 0.309 1.230 2.356 0.277 0.582 0.897 0.957
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Fig. 6: A sample of qualitative comparison of Monodepth2 [18] and ours.

dataset from scratch. The existing methods include recent

self-surpervised and GAN-based methods. We included also

a supervised method as a lower bound of performance,

even if it would be difficult to obtain accurate ground

truth dataset in the underwater domain. For all unsupervised

methods that only predict depth up to an unknown scale

factor, the resulting depths were scaled according to the

ratio of echosounder distance measurement to the nearest

depth within the projected echosounder sound cone to have

a fair comparison. This strategy was used as it follows the

measurement returned by a real echosounder used on our

underwater robot, where the strongest signal return would

determine the corresponding distance measurement, while

dense ground truth depth used for median scaling cannot

be obtained in this setting. From Table II, as expected,

we can see that BTS [49], with ground truth supervision,

performed better, than other self-supervised method with

ours being relatively close. Our method achieved positive

results, outperforming (or ties) all other self-supervised and

GAN-based methods, in almost all evaluation metrics. These

results demonstrate that our self-supervised approach can still

work reasonably well and is preferable than a supervised

one, when a large dataset with accurate ground truth is not

available.

Fig. 6 also shows some examples of depths maps produced

for qualitative evaluation. Consistent with our quantitative

results, our method produced the best depth maps over-

all. Compared to depth maps generated using Monodepth2

[18], our method had less incorrectly predicted background

regions, see, e.g., top left corner of image in the fourth

column. The echosounder mask encoding provided additional

information that helped distinguish foreground and back-

ground regions, which were prone to error due to the lack

of texture for photometric self-supervision. Also, compared

to our method, Monodepth2 [18] tended to predict objects to

be nearer than in reality, as seen in image 1 (second pillar

from top left) and 5 (depression at near end of the boat).

However, we notice that depth maps produced by our method

were sometimes less sharp compared to [18], e.g., image 6,

which may lead to loss of details. This may be due to the

fact that the echosounder mask un-conservatively assigns the

echosounder measurement to all regions within the mask,

overlooking slight variances in depth.

B. Supervision with Echosounder Measurement

In addition to indirectly providing information on ground

truth measurements through echosounder mask encoding,

we also explored the use of direct supervision using the

echosounder measurement itself (Fig. 5 b). Using the self-

supervised losses described in the previous section, we

were only able to estimate depth up to an unknown scale

factor. Hence, to estimate metric depth, we included an

additional L1 loss Lb using the single echosounder distance

measurement ht as the supervisory signal:
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Fig. 7: Comparison of depth maps and absolute error maps from our method
with and w/o echosounder loss. Depth maps: lighter color represents nearer;
error maps: lighter color represents bigger error. Pixels with ground truth
depth > 20 are masked out for error maps.

Lb = |
1

k

∑

p∈Pk

Dt(p)− ht| (11)

where Pk consists of the smallest k depths of regions within

the echosounder mask. Average of the smallest k depths

instead of the smallest depths was used to protect against

outliers.

The total loss now becomes:

L = Lp + Ls + Lb (12)

where each component is weighed using hyper-parameters

accordingly.

Qualitative results of depth and absolute error maps pro-

duced using models trained with the new loss, compared to

only using the echosounder mask are shown in Fig. 7. We can

see that, in general, the quality of the depth maps produced

by our method with echosounder loss is a little less sharp in

comparison. However, in terms of absolute error maps, our

method with echosounder loss performed better (2.258 vs

2.356). This suggests that by using the echosounder value as

a supervisory signal does indeed allow our method to learn

about the overall world scale to some extent, hence allowing

it to outperform its counterpart without echosounder loss.

Nevertheless, with only a single echosounder measurement

with uncertain position, it proved to be difficult for our

model to learn jointly the absolute scale and relative depth

relationships between objects in the scene.

Fig. 8: Qualitative evaluation on a dataset we collected from a BlueROV2.

C. Evaluation on Real-World Images

Next, we carried out some qualitative evaluation on real-

world data to demonstrate the transferability of our method

trained using the proposed dataset. Real-world data collection

were performed in the Caribbean Sea with a BlueROV2 in-

stalled with the Sony IMX273 camera and Ping echosounder.

The camera has a resolution of 1.6 MP, a horizontal and

vertical FOV of 96° and 72°. The echosounder has a beam

width a of 30° and a maximum range set to 4m. Actual

images and their predicted depth maps are shown in Fig. 8.

From the figure, we can see that despite the images being

different from our dataset used for training, our model was

still able to generalize relatively well to real-world images

without fine-tuning. We also measured the inference time

of a single image on a .8 GHz Intel i7 laptop with Nvidia

Geforce 1660Ti, which is about 0.07 seconds per inference,

suggesting feasibility for real-time application.

VI. CONCLUSION AND FUTURE STEPS

We presented the first deep underwater monocular depth

estimation approach with single-beam echosounder input, as

well as a new large-scale dataset for underwater vision tasks.

We also validated our approach with evaluations in both the

proposed dataset and real-world underwater images.

Our proposed method provides potential in correcting

the depth estimates with an inexpensive sensor configu-

ration. The experiments provided some insights on next

steps. We will investigate replacing the GMM algorithm for

echosounder mask generation with a learnable network to

capture closer objects in finer detail. We will also explore a

denser integration of echosounder-camera data via including

all the signal strengths and via a temporal network to improve

the depth estimation which currently is limited due to the

single supervisory signal from the echosounder. We also plan

to expand our current dataset with more path variations,

e.g., circular paths and dynamic objects such as fish, to

enhance the realism of our dataset and cover scenarios that

are encountered in the real world.
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