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Abstract— Physical sampling of water for off-site analysis is
necessary for many applications like monitoring the quality of
drinking water in reservoirs, understanding marine ecosystems,
and measuring contamination levels in fresh-water systems. In
this paper, the focus is on algorithms for efficient measurement
and sampling using a multi-robot, data-driven, water-sampling
behavior, where autonomous surface vehicles plan and execute
water sampling using the chlorophyll density as a cue for
plankton-rich water samples. We use two Autonomous Surface
Vehicles (ASVs), one equipped with a water quality sensor and
the other equipped with a water-sampling apparatus. The ASV
with the sensor acts as an explorer, measuring and building a
spatial map of chlorophyll density in the given region of interest.
The ASV equipped with the water sampling apparatus makes
decisions in real time on where to sample the water based on
the suggestions made by the explorer robot.

We evaluate the system in the context of measuring chloro-
phyll distributions. We do this both in simulation based on
real geophysical data from MODIS measurements, and on real
robots in a water reservoir. We demonstrate the effectiveness
of the proposed approach in several ways including in terms of
mean error in the interpolated data as a function of distance
traveled.

I. INTRODUCTION

In this paper we propose and evaluate the design of a
multi-robot system composed of two heterogeneous robots
– one equipped with a water quality sensor to measure a
phenomenon, the other one equipped with a water sampling
apparatus for collection of water samples in real time.

Collection of water samples is an essential element of
marine science, marine biology, limnology, public health, and
related disciplines. While some measurements can be made
in situ and in real time, many important measurements can
only be accomplished by collecting physical samples in the
domain of interest and doing the analysis at a suitable remote
facility (i.e., “back in the lab”). In many cases, the selection
of suitable sampling locations can have a large impact on
the quality and accuracy of the estimation process: for
example if pollutant extrema are being estimated. Traditional
methods for sampling depend heavily on manual labor, are
time consuming, and can be fraught with risks of human
error. Robotic sampling systems allow scientists to collect
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Fig. 1. Two Clearpath Heron ASVs (a), one equipped with a water quality
sensor (b), another with a water sampling apparatus (c).

richer and more complete data sets that would normally be
impossible using traditional manual data collection [1].

In this paper, we address the problem of estimating a
spatially-varying phenomenon over a region and collecting
water samples with emphasis on good sampling locations
without any prior knowledge of the spatial field. This task
is completed by a heterogeneous robotic team, composed
of two robotic boats, an explorer that measures variables to
suggest sample utility and a sampler that collects physical
samples (Figure 1). Das et al. [2] proposed a probabilistic
method for a single Autonomous Underwater Vehicle (AUV)
that can monitor and sample. In our case, we divide the
task between two robots. This provides an efficient trade
off between system complexity, payload capacity, and run
time, besides improving the quality of the collected samples
– where quality is expressed as the sum of measured values
of the samples collected.

In particular, such a task leads to two related subprob-
lems: exploration and sampling. We propose an exploration
strategy for the explorer that makes real time observations
to create a preliminary map and suggest potential locations
that are good for sampling. The sampler then uses these
suggestions to decide on the best location and collects water
samples at these locations. Our exploration technique is
based on the concept of frontier-based exploration, similar to
that introduced by Yamauchi [3] for indoor map building and
exploration. In this approach, the robot makes exploratory
decisions based on the latest information gathered. This
frontier-based technique scales well with the size of the
region, differently from common coverage approaches that
employ a boustrophedonic coverage path [4], [5]. Notice that
the absence of prior information on the spatial distribution of
the data prevents us from using alternative powerful selective
coverage methods [6]–[10].

We design a strategy for the sampler to choose among the
locations where measurements were taken by the explorer,



so that the physical sample is also associated with a prior
sensor measurement. Note that in the scenario considered,
it is not ideal to wait until the end of exploration: first, the
physical sample should be collected temporally close to the
measurement; second, in this way the total time spent on
sampling is optimized. There are many variants and solutions
for this problem in the field of spatial sampling. Girdhar et
al. propose a multi-choice hiring algorithm [11] for making
irrevocable hiring decisions from a stream of candidates.
Another approach is to use multiple time windows and treat
sampling within each window as a classic secretary hiring
problem as proposed by Bateni et al. in submodular secretary
algorithm [12]. We will further discuss the submodular
analysis of the secretary algorithm in Section III-B.

There is a body of existing work on using multi-robot
systems to explore and map a spatial phenomenon. In [13],
Valada et al. developed a low-cost multirobot autonomous
platform, and tested the proposed system for monitoring
water quality. The paper proposes a discretization of the area
and a strategy based on maximum uncertainty. Girdhar et al.
demonstrated a heterogeneous multirobot system composed
of Unmanned Aerial Vehicle (UAV), Autonomous Surface
Vehicle (ASV), and an AUV covering an area of interest [14],
where the regions to cover are given by a human expert.
Many systems have been proposed that are capable of
collecting water samples. A catamaran with a water sampling
system was proposed by Caccia et al. [15] and tested near
Antarctica. Ore et al. [16] presented a UAV equipped with
a water sampling apparatus. Robotic physical sampling has
also been approached in domains other than marine robotics,
such as planetary robots or mining robots to collect samples
of rocks, ores, and other terrestrial samples (e.g., [17]). These
papers focus more on the hardware design of the sampling
platform and the autonomy that allows robots to navigate
environments and collect samples, and not on the sampling
location selection strategy as proposed in this paper.

Exploration techniques have a key application in ad-
dressing search and rescue problems [18], and gas leakage
detection [19]. Some methods [6], [20] assume to have a
priori information available so that areas can be selectively
explored to increase the reward over time. However, in our
scenario, prior information is not available and is estimated
in real time by the explorer. Our focus is on building
a representation of the spatial field and making informed
decisions about when and where to collect a water sample.

The paper is organized as follows. An overview of the
problem and the proposed methods for the robotic team
are presented in the next two sections. In Section IV,
we validate the proposed method both in simulations and
field experiments. Finally, Section V concludes the paper
discussing some of the lesson learned and outlining future
work.

II. PROBLEM STATEMENT

Two ASVs are deployed in a continuous two-dimensional
area of interest E ⊂ R2 with user-defined boundaries.
We assume that such an area is obstacle-free as in many

marine science expeditions. Both the vehicles navigate using
differential drive and are equipped with GPS to localize
and WiFi channel for communication. The explorer ASV
is equipped with a water quality sensor and is assigned with
the task of exploring the region by building a representation
of the spatial phenomenon, and thus suggesting interesting
locations where to collect water samples. The sampler ASV
has a water sampling apparatus with k sampling units to
collect water samples to be analyzed a posteriori in the lab.
As the mission evolves, the explorer selects a series of desti-
nation poses to get more measurements and builds a reliable
model of the area by taking measurements at locations with
high uncertainty. At the same time, the sampler receives
measurements from the explorer and uses this information
to decide where to take a sample. The mission progresses
up to the mission duration Tm, which generally depends on
the specific application. All k units of the water sampling
apparatus should be used within the mission duration Tm.
Even if the ultimate objective of the multirobot team is
to maximize the total value of the collected samples, this
process leads to two related problems addressed in this paper:

1) Exploration: explorer selects a sequence of poses Q =
〈q0, q1, . . . , qn〉, with qi ∈ E , so that the model of
the area converges to the true phenomenon. Note that
this process is run on-line, and the explorer makes
decisions as new measurements yi associated with GPS
locations xi are collected. The goal is to improve the
quality of the map and reduce the traveled distance.

2) Sampling: based on all the measurements Y, the sam-
pler selects a number of locations L to collect physical
samples, where |L| = k and l ∈ L ⇐⇒ ∃yi ∈
Y | xi = l. The final objective is to maximize the
sum of the values at sampled locations (

∑
l∈L∗ f(l))

within the maximum duration of the mission Tm.
Intuitively, the performance of the sampler can be improved
by improving the performance of the explorer.

III. INFORMED STRATEGIC SAMPLING

The proposed system is based on using two robots that
coordinate with each other to achieve the ultimate goal of
sampling. Frontier-based exploration is used by the explorer,
while a variant of the secretary hiring problem is used for
the sampler. The following subsections report the details of
both components.

A. Gaussian Process Frontier-based Exploration

The explorer’s objective is to select locations L∗ =
[x1,x2, . . . ,xm] over time such that the phenomenon is
mapped efficiently. Note that, while the robot is traveling
to those locations, measurements Y = [y1, y2, . . . , yt] with
associated GPS locations X = [x1,x2, . . . ,xt] are collected.
The goal is to optimize the time and the traveled distance,
yet create a good model f̂(x) of the spatial phenomenon
f(x).

With finite time and finite battery life of the robot,
it is not feasible to take measurements at every loca-
tion in the region of interest E . Hence, we use Gaus-



Fig. 2. Candidate locations for the explorer generated by two techniques
at a mission time step. The colormap represents the variance in the spatial
representation of the field. Red circles represent the potential candidate
locations l. Black lines show the contours. (a) Contour-based location
selection. (b) Fixed-window location selection.

sian Processes (GP) [21] to model the spatial field. In
particular, a phenomenon over locations W can be esti-
mated as a posterior distribution p(f(W) | W,X,Y) ∼
N (µW,ΣW) fitted over a set of noisy observations Y
made at locations X. The mean vector µW is obtained
as µW = µ(W) + K(X,W)TK(X,X)−1(Y − µ(X))
and represents the estimate of the phenomenon, while
the covariance matrix is given by ΣW = K(W,W) −
K(X,W)TK(X,X)−1K(X,W). Mean and covariance
functions should be formulated to completely define a GP.
As done in mainstream approach, mean is assumed to be
zero, and the covariance function k(x,x′), is a radial basis
kernel (RBF):

k(x,x′) = σ2
f exp

(
− |x− x′|2

2l2

)
, (1)

where signal variance σ2
f and length scale l2 are hyper-

parameters that encode amplitude and smoothness. Note that,
with a GP, it is possible to quantify the uncertainty of the
estimates in W by looking at the main diagonal of ΣW,
also called predictive variance.

Our exploration technique uses a one-step look ahead,
where the robot decides on a set of locations to visit at
epoch m only after reaching the chosen location of epoch
m − 1. We propose two methods to generate a list of
locations (Figure 2). One of the approaches is to consider
locations on the outer-most contour between a region with
high variance and a region with low variance (Figure 2(a)).
An easier method is to consider all the locations on a fixed
planning window centered on the current position of the
robot (Figure 2(b)).

The list of new locations is added to the list of candidate
locations L, thus the algorithm chooses among all the loca-
tions around the current trajectory of the explorer. The ratio-
nale is that every measurement decreases the variance within
a window; as such, the ASV should go to the boundary of
that window to build an efficient representation of the spatial
field with minimum distance traveled. Candidate locations
L are then evaluated based on the predicted variance at
these locations according to the learned GP model and
their distance from the current robot location. The location
with highest predicted variance and least distance is chosen
as the current step target. We use a normalized blending
function (Eq. (2)) to resolve the trade-off between distance

Fig. 3. RMSE of the generated map of Chlorophyll density plotted against
distance traveled by the robot. The comparison is between multiple sized
fixed windows. Error bars indicate standard deviation over five real time
simulation trials. Note that the x-axis starts at 100m.

Fig. 4. RMSE of the generated map of Chlorophyll density plotted
against distance traveled by the robot. The comparison is between fixed
window technique and contour based technique. Error bars indicate standard
deviation over five real time simulation trials. Note that the x-axis starts at
100m.

and variance.

l∗ = argmin
l∈L

((1− w(t)) ∗ d̃(xm, l) + w(t) ∗ ṽ(l)), (2)

where d̃(xm, l) = d(xm, l)/maxl∈L d(xm, l) is a normal-
ized distance between the current robot position and candi-
date location l; and ṽ(l) = 1 − (v(l)/maxl∈L v(l)) is the
normalized variance at location l. With time, it is beneficial
to explore the locations with higher variance even if they
are far from the robot’s current location. We need to weigh
the variance higher as the time proceeds. Hence, we use a
function for weight w over time, giving more importance to
the variance criterion as exploration time proceeds:

w(t) =
t

t+ r
, (3)

where r ≥ 0 is a constant that tunes the steepness of the
curve.

We evaluated both the techniques to generate a set of
candidate locations mentioned in Figure 2 using a simulated
world with chlorophyll measurements. The details about the
simulations will be discussed in Section IV-A. We built
a representation of the world as the robot was traveling
and collecting measurements. Figures 3 and 4 show the
root mean squared error (RMSE) of the phenomenon model



f̂(x) with the ground truth f(x) plotted against the distance
traveled. Figure 3 presents a comparison between differently
sized fixed windows and Figure 4 presents a comparison
between the fixed window and contour-based candidate se-
lection methods. The contour-based method travels longer
distances to improve the quality of the map, thus compro-
mising the minimum distance criterion. Because of its better
performance, we will consider the fixed window candidate
selection technique in the rest of this paper.

B. Look-back Selective Sampling

The explorer robot, while exploring the region to build
the model, communicates potential candidates for collecting
water samples. Then the sampler’s task is to maintain a list
of these candidate locations and strategically decide on k
locations to collect water samples from – recall that k is the
maximum number of samples that can be collected. There are
at least two approaches that one can think of for this scenario:
the first one is to start making decisions as soon as candidate
suggestions come from the explorer; the second is to wait
until the explorer has completely mapped the scalar field
and then use all the candidate locations to pick k locations.
However, in our application of sampling water from the
surface of the water body based on its current properties,
it is very important that the water quality measurement and
the physical water sample are gathered temporally close to
each other. This is because of the dynamic behavior of the
phenomenon that we are trying to capture. Hence, in this
paper we discuss a technique to collect physical samples
in parallel with the explorer and achieve a good sampling
score by collecting samples within the peaks (hotspots) in
the spatial field.

Given M measurements – i.e., candidate sampling posi-
tions – we need to choose k sample locations that optimize
the quality of the final result. Since we are looking at
simultaneous decision making along with the explorer, there
is a need for optimal stopping criteria – in other words,
when the sampler decides to use one of the remaining water
sampling units to collect a physical sample. This problem
has similarities with the classic Secretary Problem that uses
optimal stopping theory. The basic form of the secretary
problem has n applicants who are interviewed in random
order, and a decision is to be made immediately after every
interview. Once rejected, an applicant cannot be recalled.
So, the problem is to choose an optimal stopping rule to
maximize the probability of selecting the best candidate.

Our problem is a variant of this problem as we need to
choose k sample points instead of just one. Moreover, we
have an advantage: the robot can look back and choose an
old candidate if it is the best location to sample water from.
In our case, we want to maximize the sum of the values at
sampled locations (

∑
l∈L∗ f(l)) with a minimum distance

constraint (Td). The threshold Td prevents acquisition of
spatially neighboring samples. The value for Td is application
specific and also depends on the possible error in robot
localization. We still need a stopping rule to make our
decision. Hence, we use a variant of the standard secretary

problem algorithm that suggests we reject the first n/e
candidates and then stop at the first candidate with a higher
ranking than all the ones evaluated until now. In this way,
the probability of success is maximized and is 1/e [22]. In
our case, we need to choose k samples, hence the stopping
threshold becomes n/(ke).

Algorithm 1 Look-back Selective Sampling Algorithm
Input: Number of water sampling units k

Measurements frequency in Hz, f
Mission duration in seconds, Tm
Distance threshold in meters, Td

Output: List of selected candidates L∗ where sampler should
take samples

1: τ = Tm∗f
k . Total maximum number of measurements

for each water sampling unit
2: L = ∅ . List of candidates suggested by the explorer
3: L∗ = ∅ . List of selected candidates
4: Cc = 0 . Current candidate counter
5: found = false . Flag to identify sample chosen within
τ

6: repeat
7: l = receiveMeasurementFromExplorer()
8: Cc = Cc + 1
9: if ( Distance(l, L∗) > Td ) then

10: L = L ∪ l
11: end if
12: if Cc == τ/e then
13: ymax = maxl∈L(yl) . yl: measured value at l
14: else if Cc > τ/e then
15: if yl > ymax then
16: l∗ = l
17: found = true
18: else if Cc == τ then . Time slot expired for k
19: l∗ = argmaxl∈L yl
20: found = true
21: end if
22: if found == true then
23: goToAndSample(l∗)
24: L∗ = L∗ ∪ l∗
25: remove l∗ and its neighbors within Td from
L

26: Cc = 0
27: found = false
28: end if
29: end if
30: until |L∗| ≥ k

Kleinberg [24] suggested an algorithm that works by
splitting the candidates in approximately two half intervals
chosen randomly using a binomial distribution B(n, 0.5).
Then, the algorithm proceeds by recursively applying the
classic secretary algorithm. The submodular secretary algo-
rithm proposed by Bateni et al. [12] provides a mechanism
to select the set of candidates with the highest cumulative
rating. This algorithm could be a good fit for our problem of
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Fig. 5. (a) Gazebo simulation for the ASV [23] used in our experiments. (b) Simulated chlorophyll density map overlaid on top of the water surface.
The colorbar shows the simulated chlorophyll density. (c) Part of the Lake Nighthorse, Durango used for running simulation experiments.

making online decision about the water sampling. However,
the submodular algorithm splits the samples uniformly into
k equal windows and the samples from one window are
not considered while making a decision for another window.
We would like to have an option to look back into all the
windows while making the decision. This is because, in our
application, we are not bound by the trajectory followed
by the explorer. The sampler robot is free to go back and
visit any old measured location if it does not find any
eligible candidate as the time proceeds. Hence, we propose
a look-back selective sampling technique, where the robot
appends new candidates into a list and uses the list to look
back if there are no eligible candidates within the time
threshold. The pseudo-code for our approach is presented
in Algorithm 1.

Line 1 divides the maximum number of measurements
over the mission in k uniform time slots. Line 9 checks if a
new measurement taken at location l is far enough from the
currently selected sampling locations. Line 12 is the secretary
problem threshold to get optimal probability. Line 15 makes
an irrevocable decision, following the secretary problem
algorithm. However, if the time slot (τ ) for a water sampling
unit expires (Line 18), then the sampler samples from the
location with value ymax. The rationale is that given k water
sampling units, full mission time (Tm) should not be spent
on just one unit.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We implemented the proposed algorithms in the Robot
Operating System (ROS) framework [25] and we evaluated
the system both in simulation and in the field on real robots.
The simulation environment allows us to report repeatable
controlled measurements of performance using realistic data
with perfect ground truth. The field deployment lets us
observe the performance and feasibility of our approach in
practice and confirm its utility and usability. Three different
setups are used in this paper to extensively evaluate the
proposed system: 1. Simulated robots exploring and sam-
pling from a synthetically created world, 2. Real world
data (chlorophyll concentration in the flood plains of the
Amazon) is used to create a world for simulated robots, and
3. deployment of two robotic boats in a reservoir to map the

Fig. 6. Chlorophyll concentration dataset used for validating our ex-
periments : (a) Flood plains of Amazon river. Considered region is ap-
proximately 2 km× 2 km (b) Chlorophyll concentration (mg/m3) map
generated from MODIS reflectance values [27] for the area in (a).

chlorophyll density distribution and collect water samples
rich in chlorophyll content.

A. Simulations

Gazebo with an ASV plugin [26] that simulates a physi-
cally realistic Clearpath Heron robotic boat (Figure 5(a)) is
used in our experiments due to its capabilities of simulating
the vehicle dynamics to reasonable precision. We created
a ROS node to simulate a water quality sensor, returning
measurements at given GPS locations, according to some
data source.

The synthetic world, along with the simulator, are shown
in Figure 5. In particular, Figure 5(b) shows synthetic data
simulating a chlorophyll density field overlaid on top of
the water surface. To generate such data, we used multi-
Gaussian models to imitate the chlorophyll dense regions and
its diffusion on the water surface. GPS data from a region
(100m× 90m) in Lake Nighthorse, Durango, CO (shown
in Figure 5(c)) is used as the underlying localization for our
simulations. We performed five repetitions for each of the
experiments in real time simulation.

The real setup in our simulations uses the chlorophyll
concentration (µg/m3) map, at the flood plains of Amazon,
generated from MODIS reflectance values [27]. We chose
a bounded region of size 2 km× 2 km (Figure 6(a)) from
this dataset to build an environment for the simulated ASVs.
The spatial field from this dataset is presented in Figure 6(b).
We evaluate our system by initially comparing and testing
both the components (explorer and sampler) separately and
then we present results from the whole system coordinating
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Fig. 7. Trajectories planned and traversed (Yellow lines) by the ASV
according to: (a) Planning window based GP-frontier explorer. (b) Global
maximum variance search. (c) Lawnmower coverage.

towards the collection of water samples with high utility
measured in terms of sampling score.

1) Evaluating the explorer: To estimate the utility of
our exploration algorithm, we measure its performance in
terms of the root mean squared error (RMSE) between the
generated representation and the ground truth over distance
traveled and compare this to alternative state of the art
approaches. Note that most methods assure good data as time
(or distance traveled) approaches infinity, but one attribute
of interest is to try and acquire a good estimate as early
as possible. Prior approaches to such coverage and sampling
problems can be grouped as deterministic complete coverage
(such as the boustrophedonic coverage, or “lawnmower”
algorithm [4] or stochastic methods).

In this paper, we compare the GP-frontier based explorer
to two other exploration techniques: global maximum vari-
ance search, and lawnmower coverage. Global maximum
variance search involves predicting the variance at every
location in the region and then searching over the entire grid
world. These two operations are computationally expensive
compared to a small set of predictions needed for our
approach. As a reminder, our approach needs predictions
only at the locations that lie on the planning window bound-
ary (Figure 2(b)). Furthermore, global maximum variance
search generates longer trajectories as shown in Figure 7(b)
thus making it power inefficient compared to our approach.
The traditional approach to covering a partially observable,
obstacle-free region is to employ a boustrophedonic or
lawnmower coverage. Such complete surveys (Figure 7(c))
are infeasible as we are limited by battery life on the robots.

We compare these exploration techniques by computing
the RMSE of the generated representation relative to the
ground truth data (Figure 5(b) and Figure 6(b)):

RMSEd =

√∑
c∈E′(f̂

t(c)− f(c))2

|E ′|
, (4)

where RMSEd is the root mean squared error of the gen-
erated map of Chlorophyll density after traveling a given
distance d, c ∈ E ′ is the set of cells from the discretized
world, f̂ t(c) is the predicted value at c with the GP at
time t, and f(c) is the ground truth value at c. The plots
in Figure 8 illustrate that, as the travel distance increases,
more of the world is explored by all techniques and they all

Fig. 8. RMSE of the generated map of Chlorophyll density plotted against
travel distance. Plots from different exploration techniques validated on
simulated data.

Fig. 9. RMSE of the generated map of Chlorophyll density plotted against
travel distance. Plots from different exploration techniques validated on real
Chlorophyll concentration data from Amazon flood plains.

converge to a good representation of the world. Nevertheless,
the GP-frontier explorer generates a good representation of
the spatial field with less traveled distance, by choosing right
locations to visit and map, thus providing better results than
other techniques compared in this paper.

Figure 9 presents the RMSE when operating in a larger
field and operating in an environment created using the
real chlorophyll concentration dataset. The GP-frontier based
explorer performs well in the beginning and later performs on
par with the maximum variance search technique. The larger
field and fast changing weight function (Eq. (2)) affect the
performance of our technique.

2) Evaluating the sampler: A smart sampler can choose
locations with a spectrum of measurements to represent
the diversity in the spatial field, or it can sample from

Fig. 10. Simulated distributions of chlorophyll density with the candidate
locations (red dots) selected for collecting water samples. (a) Look-back
Selective Sampling approach, (b) Submodular Secretary Algorithm.



Fig. 11. (a) Rogers Reservoir, Durango, CO, where field experiments were conducted. (b) The explorer trajectory (yellow) and the chosen sampling
candidates (red circles). (c) The spatial mapping of chlorophyll density (µg/l) generated using explorer measurements. Red-dots are the chosen candidate
locations for water samples.

Fig. 12. Results from simulations with synthetic data (a) and real data (b).
The bar plots indicate the sampling score between two sampling methods.
The error bars show the standard deviation over five real time trials.

locations that give high rewards. For our application, we
want the samples from hotspot regions that are high in
chlorophyll concentration. However, we also do not want
all the samples to be from the same spot. Hence, to evaluate
such a system we propose a sample scoring metric which
evaluates the sampling techniques according to their ability
to choose non-neighboring samples from hotspot regions.
The maximum value (Mvalue) that can be achieved by any
sampling technique is computed by summing the k largest
values among all data measurements (f(x)) provided by the
explorer. The scoring function is the ratio of value achieved
by the sampling algorithm to the maximum achievable value:

Score =

∑
l∈L∗ f(l)

Mvalue
. (5)

We compare our look-back selective sampling with the
submodular secretary algorithm [12] and Figure 10 presents
the sample locations chosen (red dots) by both the algo-
rithms. Looking at the score of the two algorithms (Fig-
ure 12), the look-back selective sampling technique appears
to be more suitable for our application. This is because the
submodular secretary algorithm divides the whole segment
into windows and considers the candidates only within a
window. However, in our application of sampling from a
bounded region, we are not constrained by not being able to
go back spatially to take a sample.

Figure 13 illustrates the performance of the whole system,
explorer and the sampler working together to achieve good
sample quality. We conducted a series of experiments with
three explorer-sampler pairs. The results show that the mul-

Fig. 13. Sampling scores achieved by the complete system, using different
combinations of explorers and the look-back selective sampler on synthetic
data.

Fig. 14. Results from field experiments. Comparison of sampling scores
between the two sampling methods.

tirobot system with the proposed components performs well
by achieving samples with high sampling scores.

B. Field experiments

Our goal is to sample water from a closed water body for
ex-situ analysis. We are interested in getting samples that are
rich in chlorophyll. Rogers Reservoir, located in Durango,
Colorado (Figure 11(a)), is a drinking-water reservoir and
monitoring this water body is very essential for the city.
For our field experiments, we used two Clearpath Heron
vehicles (see Figure 1): one equipped with a water quality
sensor that collects measurements at 1Hz – the explorer
– and another equipped with a water sampling apparatus
– the sampler. Figures 11(b) and (c) show the trajectory
followed by the explorer and a reconstruction of chlorophyll
distribution in the region of survey. The candidate locations
chosen by the sampler are shown with red circles. The
field experiments also confirmed that the proposed look-
back sampling technique achieves higher sampling scores
(Figure 14).

It is worth to mention some of the additional issues that



need to be considered during field experiments: GPS errors;
the fact that a dense coverage should be run every time before
the actual experiment to ensure that we have the most recent
data as ground truth to evaluate our method. Especially in
the marine domain, weather can affect the schedule and also
the properties of the environment.

V. CONCLUSIONS

In this paper, we proposed a heterogeneous multirobot
system for physical sampling of a water body providing
methods for two related subproblems: one exploration al-
gorithm to build the phenomenon map, which concurrently
drives the sampling algorithm to actually collect physical
samples. The core of the approach is to combine efficient real
time estimation of a variable upon which our phenomenon
of interest is conditionally dependent with the subsequent
collection of data. Our approach allows us to efficiently
collect a set of informative samples lowering the uncertainty
over it and sample from significant hotspots, as compared to
other methods. This is validated through simulations and the
feasibility and practicality of the system is demonstrated via
field experiments.

With respect to future and ongoing work, we are scaling
up the approach for application over larger regions in more
challenging outdoor environments. This entails the use of
faster and more capable marine vehicles. Explicitly modeling
and accounting for communication interruption in the deci-
sion making process is also an important next step to ensure
reliability and robustness over large regions of space and
time [28], [29]. The consideration of time-varying models
will also be an interesting step towards more large-scale
deployment in marine environments.
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