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Abstract—Deep Neural Networks (DNN) have gained
tremendous popularity over the last years for several computer
vision tasks, including classification and object detection. Such
techniques have been able to achieve human-level performance
in many tasks and have produced results of unprecedented
accuracy. As DNNs have intense computational requirements in
the majority of applications, they utilize a cluster of computers
or a cutting edge Graphical Processing Unit (GPU), often hav-
ing excessive power consumption and generating a lot of heat.
In many robotics applications the above requirements prove
to be a challenge, as there is limited power on-board and heat
dissipation is always a problem. In particular in underwater
robotics with limited space, the above two requirements have
been proven prohibitive. As first of this kind, this paper aims
at analyzing and comparing the performance of several state-
of-the-art DNNs on different platforms. With a focus on the
underwater domain, the capabilities of the Jetson TX2 from
NVIDIA and the Neural Compute Stick from Intel are of
particular interest. Experiments on standard datasets show how
different platforms are usable on an actual robotic system,
providing insights on the current state-of-the-art embedded
systems. Based on such results, we propose some guidelines in
choosing the appropriate platform and network architecture
for a robotic system.

Keywords-Deep Neural Networks; Embedded Systems; Com-
parison

I. INTRODUCTION

The last few years have seen a tremendous increase in
the popularity of the deep learning paradigm. In all the
major computer vision conferences, Convolutional Neural
Networks (CNNs), and their variants, dominate the scene.
Furthermore, very impressive demonstrations of this technol-
ogy appear with high frequency, from near perfect detection
scores (97% accuracy) [1], to tracking of multiple people
in a crowd [2], and to controlling a flying robot without
providing explicit commands [3]. In the field of robotics
while learning approaches have always been used, for the
first time, at IEEE International Conference on Robotics and
Automation (ICRA) 2018, learning was the most common
keyword, followed by planning as the second.

Deep Neural Networks require high computational power
that recently has become available thanks to GPU-
computing [4]. However, such computational power has not
been typically available on embedded systems mounted on
mobile robots, making the deployment of DNNs a challenge.

Figure 1: Computing platforms used in this paper.

In recent years, major companies, such as NVIDIA and Intel,
produced small factor modules that are able to run DNNs.

Differently from other type of analysis, the goal of this
paper is to analyze the current performance of such embed-
ded systems for DNNs for tasks relevant to the robotics field.
In particular, in this paper, we compare different networks
for detection and classification on the computing platforms
shown in Figure 1:

• the Alienware gaming laptop from Dell.
• Jetson TX2 from NVIDIA.
• Neural Compute Stick from Intel.
In the comparison a high-end gaming laptop is included

for two reasons. First of all, most ground robotic platforms,
ranging from the most accessible Turtlebot 21 to the bigger
outdoor units such as the Warthog 2 can easily accommodate
the addition of an extra laptop; especially as it does carry its
own power. Second, quite often during field deployments, it
is not feasible to carry a desktop equipped with a state-of-
the-art GPU to remote locations, in which case a powerful
laptop presents a working alternative. For the above two
reasons, the gaming laptop is an excellent compromise

1http://www.turtlebot.com/turtlebot2/
2https://www.clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
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enabling training a DNN on-site.
While our interests are with a variety of different robotic

platforms, our focus in this paper is on underwater vehicles,
such as the Aqua2 AUV [5] shown in Figure 2. Such
a platform has several limitations when it comes to the
deployment of a DNN on-line. First of all, the power
available is limited, a restriction that is even more severe
when it comes to aerial vehicles. Secondly, the physical
space inside the vessel is rather confined; prohibiting the
introduction of a standard GPU powered video card. Finally,
even though the vehicle is inside the water, which provides
a natural water cooling system, the heat dissipation inside
the robot does not allow for excessive heat to be generated.
In the analysis presented in this paper we have compared
the different computing platforms using their overall energy
consumption.

For generality sake the comparison is performed on pub-
licly available data sets, in particular ImageNet [6] and PAS-
CAL VOC [7], commonly used as benchmarks for evaluating
DNNs [8]. In addition, the networks have also been tested
in specific datasets pertaining to the marine domain such as
the coral images of MLC dataset [9], and in data collected
over several field trials by the authors; see Figure 3. As part
of the analysis, we provide first a survey and taxonomy of
several DNNs available according to their tasks. The goal
is to provide guidelines based on a comparative evaluation
in order to choose which computing platform suits best for
a specific mobile robot and task. Specifically, the following
insights/guidelines can be derived:

• How different networks perform on different computing
platforms.

• The power required by each network on different com-
puting platforms.

• The effect of different floating point precision.
This paper is structured as follows. The next section

provides a brief overview of the approaches used to evaluate
the different computing platforms and Section III describes
the setting used for our experimental comparison together
with the methods used. Section IV shows the quantitative
results and Section V discusses them. Section VI concludes
the paper and outlines future work.

II. RELATED WORK

While referring to the latest work in Deep Learning, in an
exhaustive manner, is nearly impossible, in this section we
will define two major categories of deep learning approaches
considered highly relevant to perception in robotic tasks. In
each category, the focus will be on representative techniques
which were tested on the different platforms.

Object Classification: The different DNNs focus on
providing a label for a set of objects of interest. Top-
1 error and top-5 error percentage is used to evaluate
the performance of a network. In particular, top-1 error
percentage means how many results with highest confidence

Figure 2: An Aqua underwater robot collecting data over a
shipwreck.

do not match the ground truth with respect to the total size
of the validation set. Top-5 error percentage is calculated
similarly; however, if the ground truth label is within the 5
labels with highest confidence the classification is considered
correct.

Alex Krizhevsky et al. crafted a CNN – AlexNet [10]
– that contains five convolutional and three fully-connected
layers. Such a network was able to achieve at the time top-
1 and top-5 test set error rates of 37.5% and 17.0% on a
subset of ImageNet (lower values are better). Simonyan and
Zisserman proposed VGGNet [11], which has higher depth
than other Convolutional Neural Networks. The architecture
uses small convolutional layers and on ImageNet had 23.7%
and 6.8% as top-1 and top-5 error, respectively. Iandola
et al. presented SqueezeNet [1], a CNN that has 50 times
less parameters than AlexNet. This was achieved by using
smaller filters – i.e, 1 × 1 filters instead of 3 × 3 filters,
decreasing the number of input channels to 3 × 3 filters,
and downsampling deeper in the network. Results showed
accuracy level comparable to that of AlexNet, for less
parameters. GoogLeNet [12] designed by Szegedy et al. is a
deeper network compared to the above mentioned ones that
is able to keep the computational power required bounded.
The main idea is to approximate the local sparse structure by
available dense building blocks and reduce dimensions when
computational requirements are too high. Such a network
was able to achieve a top-5 error of 6.67%. He et al. crafted
a new CNN, called ResNet [13], where stacked layers fit
a residual mapping, instead of an underlying mapping. As
a result, the network can be designed to have more layers,
with a depth reported in the paper up to 152. The top-1
error and top-5 error are 19.38% and 4.49%, respectively,
for a 152-layer ResNet. While all the above mentioned
networks are not considering deployment on embedded
systems, MobileNets [14] is a class of efficient models that



can be run on mobile and embedded systems. The idea is to
use depthwise separable convolution instead of a standard
convolution. The proposed networks achieve similar results
to popular networks, such as AlexNet and SqueezeNet. The
increase in accuracy parallels the time-line of the above
DNNs invention.

Object Detection: The task is to detect a single or
multiple objects in an image and returning bounding boxes
identifying the image area containing the objects of interest.
To evaluate the quality of the detection, the precision is
considered. In particular, first the area overlapping between
a predicted bounding box and the corresponding one in the
ground truth is found, and then, according to a threshold,
that number becomes either a true positive or a false
positive [15]. Again, frame per second is used to evaluate
computational efficiency.

Compared to object classification tasks, there are fewer
networks available. One of the first networks which was
able to achieve relatively good performance is OverFeat [16],
where a multi-scale and sliding window approach is applied
to the image to then pass it to a Convolutional Network.

After the above breakthrough, the mainstream approach
designed networks that take the full image as input. Faster
RCNN [17] introduced the Region Proposal Network,
namely a fully-convolutional network that detects bounds of
objects and associates scores at each position. YOLO [18]
was the first network at the time presented which was able to
achieve real-time performance, by formulating object detec-
tion as a regression problem. SSD [19] improves the results
of YOLO, by using multi-scale convolutional bounding box
outputs, connected to multiple feature maps at the top of
the network. DetectNet [20] from NVIDIA researchers uses
a fixed 3-dimensional label format to capture the class and
the coordinates of the object. Such a data structure allows
DetectNet to get images of any size with a variable number
of objects present. Full experiments are yet to run, but
preliminary results showed good computational efficiency.
The MobileNet framework has been used also for object
detection, modifying some of the networks – e.g., SSD,
Faster-RCNN – achieving good performance [14] in systems
with lower computational power.

While precision for the different networks is comparable,
work pushed the efficiency so that such methods can be
applied to real-time applications.

Typically, in all of the papers presenting a new network,
a comparison is reported to show improvements in accu-
racy/precision and/or computation time measured in frames
per second (FPS). In the literature, there are some bench-
mark analysis, focusing for example on the effect of floating
point precision [21], [22] and testing deep learning soft-
ware tools on different GPU for servers and desktops [23].
Benchmark tools can also be found online [24]–[28] to
automatically test several networks. These studies, however,
did not focus on embedded systems and their performance,

Figure 3: Representative example of the two processes ap-
plied to environmental monitoring: (a) Object Classification:
four classes of corals (Mustard, Starlet, Star, and Brain); (b)
Object Detection: detecting a brain coral.

an aspect that is fundamental for robotics systems. As
such, in this paper, we bridge this gap, by looking at the
performance of several networks for object classification and
detection.

III. EXPERIMENTAL SETTING

Following emerging best practices for experimental eval-
uation [29], we report the details for repeatability and repro-
ducibility. In the experimental evaluation performed in this
paper, we consider the following experimental dimensions,
which define an experiment:

• Platform used.
• Task.
• Deep Neural Network used for each task.
The DNNs used are implemented within the Caffe frame-

work [30], which is implemented in C++.
The metrics considered to evaluate the performance are

the following:
• Quality of prediction (specified for each task).
• Frames per second.
• Energy consumed, measured with a power meter and

recorded every 5 seconds for every frame.
Each experiment is run by considering the standard

datasets that are commonly used for the evaluated task.
Note that any preprocessing is done initially, so that all the
metrics – i.e., FPS, energy consumed – consider only the
GPU processing.

In the following section, details on each experimental
dimension are reported.

A. Platforms

Considering mobile robots, we tested three computing
platforms running Ubuntu 16.04.3 LTS.

A Dell Alienware gaming3 laptop with Intel Core i7-
7820HK as CPU, 32GB DDR4 as RAM, and an NVIDIA

3http://www.dell.com/en-us/shop/dell-laptops/alienware-17/spd/
alienware-17-laptop/dkcwkblg0744?ref=519 tnt prodTitleNoStrip
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Figure 4: Sample of images for classification, where the task
is to recognize whether one of the classes considered is in
the image or not.

GTX1080 as GPU was the most powerful machine tested.
NVIDIA Jetson TX24 is a computation processor board

equipped with an NVIDIA Tegra processor. Both platforms
with NVIDIA GPU have the latest current CUDA version
– i.e., 9.0. As suggested by NVIDIA, we ran the deployed
CNN with FP16.

Intel Movidius Neural Compute Stick5 is a USB stick
with a Myriad 2 processor. The SDK version used is
1.12.00. We used it by plugging into an Intel NUC 5i7RYH6

with a an Intel Core i7-5557U and 16GB of RAM. The
NUC computer is compatible with what is inside an Aqua2
vehicle. Table I shows a summary of the main characteristics
of each of the platforms able to run DNNs, where the details
were taken from the corresponding website.

B. Tasks and Compared Deep Neural Networks

We consider the tasks of object classification and detec-
tion.

As described in Section II, we consider as prediction
quality metric for object classification top-1 error. Experi-
ments are run over a subset of ImageNet, which includes 10
classes. Each class contains 400 images randomly selected
in a uniform way. We chose the 10 classes that have a large
number of instances in the dataset, so that the compared
networks do not suffer from underfitting. Figure 4 shows a
representative sample of images for each class.

For object detection, we calculate the precision. PASCAL
VOC [7] is used as dataset. Specifically, 1000 images were
randomly selected with 20 classes. Each image could contain
multiple objects of the same class, as shown in Figure 5.

Note that, instead of considering the ground truth, we
consider the classification from the laptop as a baseline for
the other two devices. The reason is that we are interested in
comparing the performance of the platforms, and the laptop
has the highest computational power.

4https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit
5https://developer.movidius.com/
6https://www.intel.com/content/www/us/en/products/boards-kits/nuc/

kits/nuc5i7ryh.html

Figure 5: Sample image for object detection, where the task
is to find the boundary of objects of interest.

We chose the networks based on two criteria: first, the
DNN should be able to run on all the platforms compared
in this paper, and second, if a DNN’s performance was below
15 FPS on the laptop it was dropped as they would definitely
not satisfy real-time constraints on the embedded systems.
Note that, however, we kept MobileNet as it is supposed
to run on mobile and embedded systems and shown to run
efficiently. The platform that introduces most constraints is
the Intel Movidius Neural Compute Stick, because its current
SDK does not support many operations.

Table II shows the number of layers and hyper-parameters
for each DNN compared. Note that some of the papers did
not report the number or the architecture explicitly, as such,
it was inferred from the description of the network.

For each of this network, we downloaded the available
trained model from the authors and we tuned the hyper-
parameters for the 10 classes used for object classification.
Figure 6 shows a sample graph plotted during the training
process for one of the networks. Please note that the loss
(in green) decreases, while accuracy increases. As PASCAL
uses only 20 classes and networks were pre-trained on those,
we just downloaded the available model online.

IV. RESULTS

First, results from the object classification task are pre-
sented. Table III shows the top-1 error of the classification
results obtained with the Jetson and Movidius, compared to
the results obtained with the laptop. While both NVIDIA
based platforms perform on par, networks deployed on Mo-
vidius are not able to consistently predict classes, compared
to the Alienware. Indeed, the top-1 error is generally high.

Table IV reports results on FPS for the different networks
over the three different platforms.

The Alienware equipped with the NVIDIA GTX1080 is
generally the fastest one; for example with AlexNet 463 FPS

https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit
https://developer.movidius.com/
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc5i7ryh.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc5i7ryh.html


Platform Model Architecture Memory Mem. bandwidth CUDA Cores T-FLOPS FP Precision Nominal Power
Dell Alienware 17 NVIDIA GTX1080 Pascal 8GB GDDR5 (dedicated) 320GB/s 2560 9 FP16,FP32 240W

NVIDIA Jetson TX2 Pascal 8GB 128-bit LPDDR4 (shared) 58.3GB/s 256 1.5 FP16,FP32 15W
Intel Movidius Neural Compute Stick Myriad 2 4GB LPDDR3 (dedicated) 400GB/s 0 0.1 FP16 1W

Table I: Computing platforms.

Net Layers Hyper-parameters
AlexNet [10] 8 60M
SqueezeNet [1] 10 0.8M
GoogLeNet [12] 22 4M
ResNet [13] 18 0.27M
SSD [19] 11 -
MobileNet-SSD300 [14] 40 6.8M

Table II: Deep Neural Network Characteristics with the
number of trainable layers and number of hyper-parameters
(’-’ indicates that the paper did not report such details).

Figure 6: Accuracy graph over training iterations for
ResNet18.

with the Alienware vs. 70 FPS from the Jetson and 11 FPS
from the Movidius. Note, however, that different networks
have higher or lower impact on the computational efficiency.

In Table V, power used by the different platforms using
different networks are reported in Watt.

Second, we report results from the object detection task.
Table VI shows the precision of the detection results ob-
tained with the Jetson and Movidius, compared to the results
obtained with the Alienware. Interestingly, the Movidius has
comparable results as the Jetson. Note that Alienware and
Jetson obtain slightly different predictions and/or difference

Jetson Movidius
AlexNet 0.0 0.87

SqueezeNet 0.0 0.62
GoogLeNet 0.00025 0.58
ResNet18 0.0 0.89

Table III: Top-1 error for object classification task.

Alienware Jetson Movidius
AlexNet 463 70 11

SqueezeNet 400 131 34
GoogLeNet 122 29 10
ResNet18 160 46 9

Table IV: FPS of the different platforms for object classifi-
cation task.

Alienware Jetson Movidius
AlexNet 23.1 7.0 1.2

SqueezeNet 20.1 2.3 1.0
GoogLeNet 25.0 6.3 3.1
ResNet18 26.9 8.6 3.7

Table V: Power consumption (Watt) of the different plat-
forms for object classification task.

in confidence, probably because of the difference in floating
point precision.

Jetson Movidius
SSD 0.99 0.94

MobileNet-SSD300 0.90 0.90

Table VI: Precision for object detection task.

Table VII reports results on FPS for the different networks
over the three different platforms. While for SSD the Alien-
ware performs better, for MobileNet-SSD300 the Movidius
is able to be comparable with the other platforms. The
reason is that the optimizations introduced by MobileNet
architecture is not yet efficiently implemented by Caffe.

Alienware Jetson Movidius
SSD 59.8 8.0 1.5

MobileNet-SSD300 4.22 8.5 8.2

Table VII: FPS of the different platforms for object detection
task.

In Table VIII, power used by the different platforms using
different networks are reported in Watt.

V. DISCUSSION

From the results above, some interesting insights can be
drawn, providing some directions of work for researchers
working in deep learning:

• NVIDIA platforms appear to be generally consistent
in terms of prediction quality, especially in object
classification.

• Movidius SDK should be enhanced to include many of
the successful CNNs for robust deployment in mobile
robots.



Alienware Jetson Movidius
SSD 15.0 8.0 3.0

MobileNet-SSD300 7.0 3.0 2.2

Table VIII: Power consumption (Watt) of the different plat-
forms for object detection task.

• The choice of the framework might heavily affect the
performance of the network. It is usually advisable to
choose the one that is suggested. A standardization of
the framework might help making the field more united.

• The power consumed is generally higher than the
nominal power reported in the technical sheets. As
such, when analyzing the power requirements for a
robot, the nominal power should be at least doubled.

• The advantage of using a Movidius is that, even if it
is not as efficient as the NVIDIA counterparts, it is
power-bounded by the USB specifications. As such,
bigger networks will not have much effect on the power
consumed, contrarily to the Jetson TX2.

• Among the networks for object classification,
SqueezeNet is the one that is lightweight. Object
detection is a challenging task, where networks are
not very fast.

• At this point, Movidius does not support training. This
limits all applications of on-line learning of the robot.

In general, the new embedded systems are promising,
however, the related SDK should be improved to accom-
modate new operations and networks.

VI. CONCLUSION

In this paper, after presenting a short taxonomy of several
different deep neural network architectures, we evaluated
some of them on three different mobile platforms. The main
focus of our work was the deploy-ability of the different
networks on a variety of robotic platforms, with a special
interest on robots with constrained space, such as underwater
and aerial vehicles.

As part of future work, we are currently running tests
for the scene reconstruction and semantic mapping appli-
cations which have different computational requirements.
Furthermore, in the results presented in this paper the
Caffe framework was used as it was the one more easily
available on all three platforms. We are currently deploying
the same networks on the three platforms utilizing the
TensorFlow framework. Furthermore, we are exploring the
parallelism capability of multiple Intel Movidius Neural
Compute Sticks.
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