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Abstract This paper tackles the problem of construct-

ing a communication map of a known environment us-

ing multiple robots. A communication map encodes in-

formation on whether two robots can communicate when

they are at two arbitrary locations and plays a funda-

mental role for a multi-robot system deployment to re-

liably and effectively achieve a variety of tasks, such

as environmental monitoring and exploration. Previous

work on communication map building typically consid-

ered only scenarios with a fixed base station and de-

signed offline methods, which did not exploit data col-

lected online by the robots. This paper proposes Gaus-

sian Process-based online methods to efficiently build a

communication map with multiple robots. Such robots

form a mesh network, where there is no fixed base sta-

tion. Specifically, we provide two leader-follower online

sensing strategies to coordinate and guide the robots

while collecting data. Furthermore, we improve the per-

formance and computational efficiency by exploiting

prior communication models that can be built from the

physical map of the environment. Extensive experimen-
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tal results in simulation and with a team of TurtleBot

2 platforms validate the approach.

Keywords Multi-robot systems · Sensing strategies ·
Communication maps

1 Introduction

Communication capabilities are fundamental for effec-

tive deployment and operation of multi-robot systems

in several tasks – such as exploration (Banfi et al, 2016;

Quattrini Li et al, 2016; Yamauchi, 1998), environmen-

tal monitoring (Dunbabin and Marques, 2012), and search

and rescue (Murphy et al, 2016). In several multi-robot

systems, some level of communication between robots is

assumed, so that situational awareness and a high level

of cooperation can be achieved (Amigoni et al, 2013).

Recent work is explicitly considering communication in

the multi-robot system design (Banfi et al, 2016; Gre-

gory et al, 2015; Hollinger and Singh, 2012), so that the

robots are not hindered too much by communication

constraints (Tuna et al, 2013). To guarantee effective

coordination throughout a task, robots need to know

whether communication between two robots is possi-

ble from two arbitrary locations, before even moving

there. Such information can be encoded in a commu-

nication map. Most of the papers designing communi-

cation-aware multi-robot systems share in common the

assumption that robots have already a communication

map. This, however, is not always a safe assumption, as

a communication map is usually not available in prac-

tice (Liu and Cerpa, 2011). Other approaches assume

a conservative communication model – such as limited

range line-of-sight – which, as drawback, limits the ca-

pabilities of a multi-robot system. Having a reliable

communication map is beneficial both as a standalone

https://doi.org/10.1007/s10514-019-09862-3
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Fig. 1: TurtleBot 2 robots equipped with a WiFi dongle,

deployed in the Engineering building at the University

of South Carolina, building a communication map.

task – for example to decide where to optimally place

routers in an indoor environment – and to efficiently

accomplish other robotic tasks so that, when choosing

where to go, robots can account for communication con-

straints (Amigoni et al, 2017).

In this paper, we propose a system for the efficient

online construction of communication maps by using a

multi-robot system that collects communication quality

measurements in the environment (see Figure 1 for the

experimental setup used in this paper).

In the literature, typically, most of the work con-

siders the problem of building a communication map

with respect to a fixed router in the environment (Fer-

ris et al, 2007; Mirowski et al, 2014). Other work designs

some offline methods to collect signal strength measure-

ments from a set of predefined locations (Hsieh et al,

2008; Riva et al, 2018). In many practical scenarios, a
dense coverage is not feasible; for instance, when the

time for the task is limited or when the environment is

unknown.

Differently from the literature, in this paper, we

consider a mesh network – a network where the nodes

(robots) are not stationary and can communicate with

each other in a range. Measurements are collected be-

tween pairs of robots as the mission progresses, allowing

for online decisions on where to go. In particular, the

main original contributions of this paper are:

– introducing a formal representation of communica-

tion maps based on Gaussian Processes (GPs);

– designing of two online strategies based on a leader-

follower paradigm to decide where the robots should

go to collect measurements;

– exploiting prior knowledge from wireless communi-

cation models to reduce the number of locations to

be visited by the robots, so that the total traveled

distance decreases;

Fig. 2: Communication graph, in an environment where

Turtlebot 2 robots have been deployed, built using a

conservative communication model (edges in red) – i.e.,

limited range line-of-sight – and using the communica-

tion map built by our proposed method (edges in cyan).

– implementation of the proposed system in the Robot

Operating System (ROS) framework;

– extensive experimental activities in simulation and

with real robots.

The main motivation of this work is to improve coor-

dination of multi-robot systems that can use such com-

munication maps to reduce the hindrance of commu-

nication constraints. Figure 2 shows a communication

graph, where edges encode whether robots can commu-

nicate between locations in an environment. Edges us-

ing a conservative communication model and utilizing

the communication map built by our proposed method

are shown in red and cyan, respectively. With our ap-

proach, the number of edges is more than 300% of those

using a conservative communication model. This allows

robots to accomplish tasks more efficiently as they have

more freedom to plan to reach locations from where

they can still maintain communication.

The construction and use of communication maps is

particularly important in situations where communica-

tion infrastructures are not available or security issues

prevent their use, leaving the adoption of ad hoc net-

works the only viable solution. Examples can be found

in disaster or military scenarios (Ochoa and Santos,

2015).

This paper extends our preliminary results in (Banfi

et al, 2017) and (Penumarthi et al, 2017). In particu-

lar, it includes more detailed descriptions of the meth-

ods in Section 4 and a more general formulation of

the GP with an arbitrary mean function. In addition,

an in-depth experimental analysis is presented in Sec-

tion 5, adding experiments in simulation with the fil-

tering technique, as well as experiments where we use

different GP mean functions.

The structure of the paper is as follows. Section 2

presents the related work in communication map build-

ing. Section 3 formally describes the multi-robot com-

munication map construction problem we address. Sec-
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tion 4 presents the modeling, the sensing strategies, and

the use of communication models to improve the pro-

cess of building communication maps. Section 5 reports

experimental results from several experiments in sim-

ulation and with real robots. Section 6 concludes the

paper and discusses future research directions.

2 Related Work

The communication mapping problem has been typi-

cally studied assuming that a router is placed in a fixed

position in the environment. Furthermore, many papers

focus on the use of WiFi signal strength measurements

for localization. Mirowski et al (2014) investigate differ-

ent clustering-based methods to gather WiFi samples.

Such WiFi samples can then be processed for finding

WiFi signal fingerprints used for localization in an en-

vironment. Ferris et al (2007) use Gaussian Process La-

tent Variable Models for localizing a robot as well as re-

constructing a topological connectivity graph from sig-

nal strength measurements. Similarly, Ladd et al (2005)

use a Hidden Markov Model to track the position of

a moving operator through signal strength measure-

ments. Scholl et al (2012) build a hand-held system for

mapping the radio signals by following a pre-specified

pattern. The map is then used again for localization

purposes. Kemppainen et al (2010) propose a method

for a single robot to explore and build a model of a

magnetic field in an environment. Such a model is then

used by the robot to localize in the environment.

Some works provide methods for robust communica-

tion between robots. Im et al (2014) propose a robotic

exploration system that exploits a prior communica-

tion model to predict disconnections and react accord-

ingly. Fink et al (2013) design a system for determining

robot trajectories to guarantee a communication net-

work topology.

Other approaches exploit a single robot exploring an

environment and localizing a radio source (Twigg et al,

2012) and multiple robots to map a stationary source

without any coordination (Fink and Kumar, 2010). Hsieh

et al (2008) propose some offline methods to compute

efficient joint paths for small teams of robots, whose

task is to collect signal strength measurements from a

set of predefined locations. For the same problem, Riva

et al (2018) derive some theoretical guarantees and pro-

pose greedy methods for an arbitrary number of robots.

A related body of work designs algorithms to ex-

plore different types of phenomena, such as position of

obstacles (Yamauchi, 1998), water quality (Das et al,

2015; Manjanna et al, 2018), and gas leakage detec-

tion (Lilienthal et al, 2001). These works, while desir-

able, do not require a strict multi-robot coordination to

build a map of a phenomenon. A more abstract account

of these problems is provided by methods for informa-

tive path planning, like for example Best et al (2018);

Marchant et al (2014); Singh et al (2009); Zlot et al

(2002). However, these methods cannot be directly ap-

plied to our problem since they usually assume that

the measurements are performed by the single robots

independently, while in our problem measurements are

pairwise and require the coordinated activity of two

robots.

In this paper, motivated by applications for build-

ing communication maps, we aim at tackling a realistic

scenario with the following assumptions:

– There is not a fixed router, but all robots can com-

municate with each other, forming a mesh network.

This makes the problem more challenging, as the

robots need to coordinate with each other to collect

measurements, at least, pairwise.

– The robots can perform online decisions on where

to go to collect WiFi signal strength measurements.

Because of the size of the state space, as shown in

the next sections, it is not feasible for the robots to

densely collect measurements over the environment.

As such, strategies are necessary to perform online

decision making.

In the following section, we formally state the prob-

lem addressed in this paper.

3 Problem Statement

We consider a known bounded planar environment with

obstacles, where free space is denoted as A ⊂ R2 and
p ∈ A denotes a location that can be occupied by a

robot. There are m mobile robots deployed in A, start-

ing from arbitrary initial locations p1, . . . ,pm ∈ A.

They can localize themselves within a global coordi-

nate system, for example using a laser range finder or

an RGB-d camera. In addition, they have an omni-

directional WiFi transceiver (equal for all robots), to

communicate with peers over the radio channel within

the maximum communication range allowed by the de-

vice. The environment is represented by the robots as a

two-dimensional occupancy grid, in which square cells

with fixed size are marked either as free or occupied.

The robots use such a representation to compute high-

level paths between centers of arbitrary cells (that com-

pose the set of discrete locations where the robots can

be). The low-level controller of the each robot then ac-

counts for kinematic constraints and smooths the tra-

jectory as the robot executes the computed path.

The goal is to incrementally find a sequence of lo-

cation pairs in A for the robots and to collect sig-
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nal strength measurements between each pair of lo-

cations in order to build a communication map. Two

metrics are considered to evaluate the performance of

the system: traveled distance and quality of the com-

munication map. Note that, as the robots move to-

wards their next selected locations, measurements are

collected along the paths and a partial communication

map can be updated continuously.

Notice also that, in this paper, heading is not con-

sidered, as robots are equipped with omni-directional

WiFi transceivers. An interesting future work is to equip

the robot with directional WiFi transceivers to increase

the communication range. In such a case, the goal is to

find a sequence of pose pairs — i.e., heading needs to

be considered.

More formally, a communication map, representing

the information about communication links quality be-

tween ordered pairs of locations in A, can be formalized

as follows: a function f̂ : A×A = A2 → R≤0 estimating

the received radio signal strength, RSSI f : A2 → R≤0,

in dBm, between any two locations pi and pj . Such a

function has a 4D input space, making the state space

to explore large. The closer the values of f and f̂ (which

are negative, see above) get to zero, the higher the ac-

tual and estimated, respectively, communication link

reliability between pi and pj . The range is typically

between −93 dBm and −10 dBm when the transmitter

and receiver are very far and very close, respectively.

Our formulation can be easily adapted to other met-

rics used for estimating the quality of a communication

channel. For sufficiently large environments, the avail-

ability of a communication link between two far loca-

tions can be excluded a priori, knowing the indicative

range of the transceiver. Therefore, locations lying out-

side a maximum range Rc can be excluded from the

communication map. Let us call xij = (pi,pj) a pair

of locations in the free space of A and f̂(xij) the esti-

mate of the actual signal strength f(xij) from pi to pj .

Communication links are not necessarily symmetric as

shown experimentally by Heurtefeux and Valois (2012);

thus, in general, f(xij) 6= f(xji). We build static com-

munication maps in which the estimate of the signal

strength between pi and pj is independent of time. In

other words, we assume to work in environments that

are static and where, as a consequence, signal strengths

between locations do not change with time. The meth-

ods we propose can be generalized for dynamic envi-

ronments with the introduction of detrimental effects

(having uncertainty at xij increasing with time as long

as no measurement is taken there) and penalizing the

utility of taking measurements at those xij that expose

a high variability among repeated measurements. The

study of this extension is left for future works.

Fig. 3: Example of communication map, fixing the loca-

tion of one of the two robots (where the peak is). Note

that the signal strength is not plotted at locations in

the environment inaccessible to the robots.

An example of a communication map instance is

presented in Figure 3, by fixing the location p of one

of the two robots (the transmitting robot in this case).

Clearly, the closer to the transmitting robot, the higher

the RSSI value. Note that there are infinite instances

of such a representation of a communication map, one

for every possible location p of the transmitting robot

in the free space of the environment.

In general, we assume not to have any prior infor-

mation on the communication map. However, as we will

show in the next section, a communication map can be

calculated as a prior from the physical map of the en-

vironment.

The aim of this paper is to design efficient online
sensing strategies that produce a sequence of location

pairs from which WiFi signal strength measurements

can be collected in order to build a “good” communica-

tion map f̂ ' f while limiting the number of acquired

samples and, as a consequence, travelling the short-

est possible distance. The similarity between f̂ and f ,

namely the quality of the communication map, is cal-

culated as the rooted mean square error between signal

strength predicted by f̂ and the actual measurement of

f over sampled pairs of locations.

4 A Gaussian Process-based Sensing System

In this section we present, first, how the communication

map is represented in our approach; second, the strate-

gies used to decide where the robots should go to collect

measurements; third, the use of communication models

as priors to improve the performance of the system in

terms of computation time and traveled distance. Fig-
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ure 4 shows a depiction of the pipeline of the proposed

system.

Current robots'
locations with

associated RSSI

Measurements
and candidate
locations filter

GP

Sensing  
strategy

Assigned goals
to robots 

Navigation

Fig. 4: Block diagram representing the proposed sys-

tem for communication map building. Once the pro-

posed system selects and assigns goals (locations) to the

robots, the robots navigate towards them and, from the

new locations, a new planning process restarts.

4.1 Gaussian Process-based Communication Map

Given the spatial correlation that radio signal strength

displays, we use a GP (Rasmussen and Williams, 2006)

to represent the communication map. Such a model can

also be used to predict signal strengths in areas where

measurements have not been collected yet, with an asso-

ciated uncertainty. Specifically, f̂ (defined in Section 3)

can be calculated as a posterior distribution fitted over

a set of noisy observations made by robots which navi-

gate and coordinate in the environment to collect signal

strength measurements. Assume that the robot team as

a whole collected q measurements over the environment.

Let Y = [y1, y2, . . . , yq]T and X = [x1,x2, . . . ,xq]T be

the set of those measurements and the set of the corre-

sponding pairs of locations from where they have been

collected, respectively; recall that xi ∈ A2. The signal

strength observation yi = f(xi) + ε is affected by ad-

ditive sensing error, which is assumed to be i.i.d. with

ε ∼ N (0, σ2
n). As covariance function k(x,x′), which

expresses the spatial correlation between any two val-

ues of f , a radial basis kernel (RBF) is used, as done in

the mainstream approach of GPs:

k(x,x′) = σ2
f exp

(
− |x− x′|2

2l2

)
, (1)

where the signal variance σ2
f and length scale l2 are pa-

rameters that indicate the amplitude and the smooth-

ness.

Let us call K(X1,X2) the q× q matrix where X1 =

[x1
1, . . . ,x

q
1]T and X2 = [x1

2, . . . ,x
q
2]T are the locations

of two robots, Kij = k(xi1,x
j
2), and Iq a q × q identity

matrix. The correlation between the observed function

values is represented by the following equation:

cov(Y) = K(X,X) + σ2
nIq. (2)

Here, we assume the GP to have a constant mean

function, as typically done in literature (Rasmussen and

Williams, 2006); therefore it is fully specified by the

parameter vector θ = [σ2
n, σ

2
f , l

2]T . In Section 5, we will

show different mean functions. Such a parameter vector

can be computed by finding the one that maximizes the

observations log-likelihood, that is,

θ∗ = arg max
θ

logP (Y | X, θ), (3)

where

log p(Y | X, θ) =

− 1

2

(
YTcov(Y)−1Y − log |cov(Y)| − q log 2π

)
. (4)

To calculate an estimate of the signal strength, the

optimal parameter vector θ∗ is used in unobserved re-

gions by evaluating the posterior. Specifically, called

W = [w1,w2, . . . ,wl]T a set of arbitrary location pairs

for which a query to get the corresponding signal strength

estimate is performed, P (f(W) | X,Y) ∼ N (µW,ΣW),

where the mean vector is obtained as µW = µ(W)

+K(X,W)TK(X,X)−1(Y−µ(X)) and represents the

estimate f̂(W), while the covariance matrix is given by

ΣW = K(W,W) − K(X,W)TK(X,X)−1K(X,W).

Note that the main diagonal of ΣW is called predictive

variance and quantifies the uncertainty of estimates in

W.

The GP provides a mechanism to integrate noisy

readings collected in the environment into a posterior

distribution of the signal strength. Such a posterior can

be used to obtain link estimates with quantified uncer-

tainty. To deploy such a mechanism in real multi-robot

settings, two issues need to be tackled. The first one

is to design a mission execution scheme according to

which robots repeatedly coordinate, gather sensor data,

share information, and update the communication map,

maximizing Equation (4). The second problem is to de-

sign utility functions to optimize the online selection of

joint data-gathering locations. Both problems are cen-

tral in the definition of sensing strategies, presented in

the next section.

4.2 Sensing Strategies

A signal strength measurement at the joint location

xij = (pi,pj) is obtained by a robot at location pi
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polling another robot at location pj . Given the 4D state

space that needs to be explored (A×A), it is not fea-

sible to densely cover it. The key idea of the designed

sensing strategies is to privilege data acquisition loca-

tions that are informative, namely that are expected to

induce high reductions in the current communication

map’s uncertainty, thus limiting the distance traveled

by robots and providing high-quality communication

maps.

Furthermore, robots might differ in terms of com-

putational capabilities (as often happening in heteroge-

neous multi-robot systems). This characteristic of the

robotic system would add some constraints for the GP

parameter estimation process. As such, we design strate-

gies for the following two settings. In the homogeneous

setting, we assume that any robot has an onboard com-

puter with sufficient computational power to run the

GP model. In the heterogeneous setting, only few robots

can compute online a GP model, while others (cheap/basic

platforms) just navigate and collect measurements.

To construct the communication map, robots need

to collect pairwise measurements. This requires the pres-

ence of explicit coordination between at least two robots,

otherwise we cannot guarantee that measurements are

performed between informative locations of the envi-

ronments. We present two strategies that employ a role-

based leader-follower paradigm. In particular, the robots

have the following roles: leaders are robots that main-

tain a communication map by iteratively updating the

GP model according to the measurements acquired so

far. They are also in charge of choosing the best lo-

cations to visit in coordination with the corresponding

followers. In general, multiple leaders can be present in

the robotic team. They can share information during

the mission, as well as meet at the end of the mission

to merge their measurements to build a final commu-

nication map. In our system, the leaders compute the

computationally expensive GP models (complexity is

cubic in the number of collected measurements, as il-

lustrated in what follows), but distributed computation

of GPs could be considered (Deisenroth and Ng, 2015).

Coordination between different groups of leader-fol-

lowers is achieved by broadcasting or selectively relay-

ing relevant information to be shared in a multi-hop

fashion. In practice, the two strategies give rise to a

“grouply distributed” multi-robot system. Each group

of robots acts as an autonomous entity and benefits

from episodic encounters with robots belonging to other

groups, while, at the same time, each follower is subject

to the directives of the corresponding leader. The com-

putation is distributed over groups of robots that are

in intermittent communication with the other robots

of the same group (as detailed later). Both strategies

favor selection of locations in regions of A2 currently

displaying high predictive variance and try to spread

the robots. The strategy we propose for the homoge-

neous setting is called Pairwise Mapping (PM), while

the one tailored for the heterogeneous setting is called

Region Mapping (RM).

4.2.1 Pairwise Mapping in Homogeneous Settings

With the PM strategy, the team is divided in pairs of

robots, where one robot acts as leader and the other

one as follower. The leader iteratively drives itself and

the follower to take measurements in the pairs of loca-

tions p∗l ,p
∗
f ∈ A2, |p∗l −p∗f | ≤ Rc currently displaying a

high predictive variance in the current communication

map. While moving to such locations, the two robots

poll other robots in the environment for additional mea-

surements. The polling frequency is adapted from the

estimated mission length, to limit the number of ac-

quired samples. Coordination between different leader-

follower pairs is achieved in two ways. First, each robot

broadcasts the waypoints of its current path, along with

those of its corresponding teammate. In this way, the

other leaders know which regions of A2 can be excluded

from their planning because already visited and sensed

by other robots. Second, each robot maintains an up-

dated collection of all the data gathered by the team

by periodically asking its teammates to selectively re-

lay the portion of the collected dataset not yet received

by any other team member. This is done to make the

most updated dataset available to each leader for train-

ing a new GP at replanning time.

In case two robots are not able to communicate from

two target locations p∗l ,p
∗
f , a recovery mechanism is

adopted. Specifically, a pair of backup locations are se-

lected and assigned to robots. The selection criterion

— see below — guarantees the presence of a communi-

cation link. Denoted rl and rf the leader and follower

robots, respectively, the PM strategy is formally defined

by these steps:

(1) rl and rf are connected;

(2) rl selects the target locations, p∗l ,p
∗
f , and backup

locations pbl ,p
b
f (see Algorithm 1), informing rf ;

(3) rl and rf agree on a deadline td to reach p∗l and

p∗f , calculated according to the length of the path

between the current positions of the robots and their

target locations and the robots’ speed (see below);

(4) rl and rf move to p∗l and p∗f , opportunistically ex-

changing the collected signal data and the under-

taken path with other teammates, and possibly polling

them to get additional measurements;

(5) if rl and rf are connected before td, go to Step (1);

otherwise, go to the next step;
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Algorithm 1 PM planning algorithm for a pair rl, rf

Input: D (dataset), pl,pf (current locations), P (teammate paths),

M (environment map), nPM
s (# samples), dmin (minimum dis-

tance)

Output: p∗l ,p
∗
f (target locations), pb

l ,p
b
f (backup locations)

1: J ← extrapolateJointLocations(P)
2: X ← sampleLocations(M, nPM

s ,J , dmin)
3: θ ← learnHyperParams(D)
4: ΣX ← predictUncertaintyGP(X , D, θ)
5: p∗1 ,p

∗
2 ← argmax(p1,p2)∈X {Σxx + Σx′x′}(x = (p1,p2),x

′ =

(p2,p1))
6: p∗l ,p

∗
f ← assignMinMaxDist(p∗1 ,p

∗
2 ,pl,pf )

7: pb
l ,p

b
f ← backupDest(p∗l ,p

∗
f ,M)

(6) rl and rf set pbl and pbf as target locations; as soon

as they regain connection, go to Step (1).

In particular, in Step (3), the value of the deadline td
can simply be chosen as the maximum estimated arrival

time of the two robots, calculated knowing the length

of the path and the speed of the robots, augmented

by some tolerance value. In general, such a tolerance

value depends on the complexity of the environment

and on the robots’ localization uncertainty. From some

preliminary experiments, we selected to augment the

maximum arrival time of rl and rf by 4% for both sim-

ulated and real robots.

Algorithm 1 describes how each leader chooses the

next pairs of target and backup locations. The algo-

rithm takes as input the collected signal data D =

{X,Y}, the current leader-follower locations pl,pf , the

paths currently undertaken by the other leader-follower

pairs P, and a map of the physical environmentM. As

additional parameters, the algorithm requires the num-

ber of samples nPM
s to generate, and a value dmin used

to exclude some location pairs from planning as they

will be probably close to pairs already visited by other

subteams. Initially (Lines 1-2), the algorithm samples

candidate pairs of locations X where to send rl and rf .

Specifically, it first computes the set J of joint way-

points that the other leader-follower teams will traverse

while moving to their target locations, assuming a con-

stant speed along their path; then, it selects nPM
s sam-

ples from A2 at distance not greater than Rc, pruning

those that are not at least dmin far apart (in travel dis-

tance) from each location pair in J . In Line 3, a new

GP is trained with the gathered data, and in Lines 4-

5 the most uncertain pair p∗1,p
∗
2 ∈ X is selected. The

two locations are then assigned to the robots rl and

rf to minimize the maximum traveled distance. This

implicitly optimizes the energy consumption and pro-

duces p∗l ,p
∗
f (Line 6). Finally, in Line 7, backup loca-

tions pbl ,p
b
f are chosen as the pair of points closest to

the target locations, and for which a safe communica-

tion link is guaranteed. We assume that two robots can

always communicate if within a given distance (see Sec-

tion 5 for distance values we use in experiments).

4.2.2 Region Mapping in Heterogeneous Settings

Also the Region Mapping (RM) strategy is based on

a leader-follower paradigm. Differently from the PM

strategy, leader robots (the more expensive platforms

with powerful computers) have an arbitrary but fixed

number of followers Rf = {rf1 , . . . , rfk}. As in the pre-

vious strategy, leaders are in charge of maintaining the

GP model. However, with this strategy, they iteratively

drive the followers in regions R∗ with high predictive

variance. Once a region has been selected, the leader

moves to its center pc. At the same time, the follow-

ers move towards safe positions Sf = {ps1, . . . ,psk},
where they can acknowledge that the leader has reached

its goal. Then, the followers move along pre-computed

paths Pf = {p1, . . . , pk} that can significantly reduce

the prediction uncertainty in the region of A2 centered

in pc. If a follower rfi cannot communicate with the

leader when it gets to the end of its path, it will move

to its backup location chosen from a pre-computed set

Bf = {pb1, . . . ,pbk}. The coordination among teams is

achieved by letting the leaders choose regions to visit

whose centers are sufficiently far apart. As with the PM

strategy, robots can also acquire additional measure-

ments, while selectively relaying the gathered dataset.

The rationale behind this strategy is to possibly avoid

re-visiting the same region, by lowering down the un-

certainty around a fixed leader position, rather than

taking only sparse measurements. Formally, leader rl
and followers Rf act as follows:

(1) rl is initially connected to each follower in Rf ;

(2) rl decides the region R∗ to explore next, computing

pc, Pf , Sf , Bf (see Algorithm 2);

(3) rl moves to pc, while the followers move to Sf ;

(4) followers follow their paths in Pf , rl remains still;

(5) followers regain connection with rl either at end of

their paths, or by going to their backup locations in

Bf ; go to Step (1).

Before executing Step (4), once the leader reaches

pc, it waits until all followers communicate with the

leader. In this way, excessive delays of some of them can

be handled by reorganizing the paths of the remaining

ones.

Algorithm 2 describes the RM strategy. The algo-

rithm takes as input the collected signal data D, the

current leader and followers locations pl, Pf , the cen-

ters of the regions being visited by other groups Pc

as known by rl, a map of the physical environment

M, the number of regions to sample nRM
s , a parameter
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dmin used for coordinating the spreading of the differ-

ent groups, and the number of waypoints to visit in the

new region nw. As with the previous strategy, a suit-

able choice of dmin avoids that two different subteams

of robots with a close replanning time decide to start

mapping the same region of the environment.

In Line 1, nRM
s candidate circular regions R with di-

ameter 2Rc are selected. In Line 2, a new GP is trained

with the gathered data, and in Lines 3-4 the region

R∗ ∈ R with the highest mean predictive variance is

selected. In Line 5, a set W of nw waypoints to visit is

selected from a fine-grained discretization of A∩R∗ ac-

cording to the following method: iteratively choose the

point pw displaying the highest sum of predictive vari-

ance when paired with pc and sufficiently far apart from

the already chosen waypoints (this distance threshold

could also be the same dmin). Notice that this spacing

is required because it would be inefficient to choose a

waypoint very close to another one, since the uncer-

tainty of the former will be already reduced by visiting

the latter. In Line 6, the initial safe destinations for

the followers Sf are selected as follows: first, followers

are iteratively assigned to the closest locations in W
guaranteeing a safe communication link to pc.W is up-

dated accordingly, so that, at the end of this first phase,

W ∩ Sf = ∅. Then, if any follower remains unassigned,

its corresponding safe location is chosen as the clos-

est location from its current location in A guaranteeing

a safe communication link. In Line 7, the remaining

waypoints are assigned to the robots with the aim of

minimizing the maximum followers’ traveled distance.

Finally, in Line 8, the backup locations are computed

as in the PM strategy.

Note that, in Line 7, the objective of minimizing

the bottleneck traveled distance gives rise to the Mul-

tiple Traveling Salesman Path Problem, which is NP-

hard (Rekleitis et al, 2008). This problem can be for-

malized in terms of a simple Mixed Integer Linear Pro-

gram (MILP) as follows. With a slight notation over-

Algorithm 2 RM planning algorithm for a group

rl, Rf

Input: D (dataset), pl, Pf (current followers locations), Pc (other

region centers),M (environment map), nRM
s (# region samples),

dmin (minimum distance), nw (# waypoints)
Output: pc (new region center), Pf (followers’ paths), Sf (initial

locations), Bf (backup locations)

1: R ← sampleRegions(M, nRM
s ,Pc, dmin)

2: θ ← learnHyperParams(D)

3: Σ[R]← meanVarianceRegionsGP(R,D, θ)
4: R∗ ← argmax

R∈R
Σ[R]

5: W ← getWaypoints(R∗, nw,D, θ)
6: Sf ← initialDests(Pf ,W,M)
7: Pf ← assignMinMaxDistPaths(Sf ,W,M)
8: Bf ← backupDest(Pf ,M)

load, let f be a generic follower robot, and V (f) be the

set W ∪ {psf}. We define three sets of variables: xfij ,

with i, j ∈ V (f), is a binary variable taking value 1 iff

in the path of f a visit to i is followed by a visit to

j; yfi , with i ∈ W, is a binary variable taking value

1 iff waypoint i is visited by f ; ufi , with i ∈ W, is a

continuous variable representing the possible position

of waypoint i in the path of f . A continuous variable b

is also defined to represent the objective function value.

The MILP model reads as follows:

min b s.t. (5)∑
j∈V (f)

x
f
ps
f
j
=

∑
i∈V (f)

x
f
ips

f
∀f ∈ Rf (6)

∑
j∈V (f)

x
f
ps
f
j
= 1 ∀f ∈ Rf (7)

∑
i∈V (f)

x
f
iw =

∑
j∈V (f)

x
f
wj ∀f ∈ Rf , ∀w ∈ W (8)

∑
j∈V (f)

x
f
wj = y

f
w ∀f ∈ Rf , ∀w ∈ W (9)

∑
f∈Rf

y
f
w = 1 ∀w ∈ W (10)

b ≥
∑

i∈V (f)

∑
j∈W

dijx
f
ij ∀f ∈ Rf (11)

2 ≤ uf
w ≤ |W|+ 1 ∀f ∈ Rf , ∀w ∈ W (12)

u
f
i − u

f
j + 1 ≤ |W|(1− xf

ij) ∀f ∈ Rf , ∀i, j ∈ W. (13)

Constraints (6) and (7) enforce, for each follower, a

path that starts and ends at the corresponding psf . Con-

straints (8) and (9) guarantee path consistency. Con-

straints (10) impose that each waypoint must be visited

by exactly one follower. Constraints (11) bind the ob-

jective function to the maximum traveled distance (no-

tice that starting points are excluded from the inner
summation, as the problem does not require building

a tour). Finally, Constraints (12) and (13) avoid the

presence of subtours. The time required to solve this

model to optimality rapidly grows with the size of the

input. However, preliminary experiments showed that

it is usually better to keep the size ofW relatively small

(i.e., only a few points), as robots also periodically ob-

tain measurements while moving along their planned

paths, as in the PM strategy (Section 4.2.1).

Both proposed methods consider all possible loca-

tions uniformly sampled from the free space of the envi-

ronment, as no prior knowledge about the communica-

tion map is assumed. This could result in an overhead

in terms of traveled distance, as well as computing time

for updating the GP. However, in the networking litera-

ture, researchers proposed some communication models

for indoor environments that could give a prior to guide

the modeling and the incremental sensing process. In

the following, we present some of such communication

models and their use in our proposed system.
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4.3 Communication Model-Based Filtering

In this section, first, we present communication models

from the networking literature, with an evaluation of

their fidelity; second, we show how such models can be

used in our approach to filter signal strength measure-

ments polled by the robots when updating the com-

munication map and to select locations where robots

should go.

4.3.1 Prior from Communication Models

In general, it is hard to directly estimate the RSSI value

knowing the map of an environment, because, for ex-

ample, the compositions of the obstacles are not known.

However, in the communication literature, some models

— such as Free Space, Two-ray, Ten-ray, Wall Attenu-

ation Factor, and Multi Wall Attenuation (Goldsmith,

2005) — have been shown to have relatively good accu-

racy in estimating the signal’s power loss during propa-

gation (also known as path-loss)1. These models vary in

terms of computational complexity and accuracy. Fur-

thermore, each model usually has several parameters

and quantifying them accurately is hard, as they de-

pend on the specific physical environment. The chal-

lenge in using such models is to optimize the related

parameters to adapt the models to the signal strength

measurements taken from the actual environment (Bahl

and Padmanabhan, 2000).

We select and evaluate four communication path-

loss models with varying complexity that have been

tested in indoor environments. In the following, we re-

port the equations for the different models2, referring

to transmitter pi and receiver pj .

Distance Model (DIST) A (free space) distance-based

path-loss model assumes that the signal is passing through

vacuum; the path-loss observed by the signal depends

only on the Euclidean distance between locations of

transmitter and receiver (Goldsmith, 2005; Rappaport,

1996):

Ldist(pi,pj) = −10 log10

[ √
GLλ

4πd(pi,pj)

]2
, (14)

where GL is the product of transmitter and receiver

antenna gains3; λ is the wavelength of the transmitted

1 It should be noted that all these path-loss models are
independent of the used communication frequency, i.e., they
do not restrict the analysis to WiFi/LTE, etc.
2 We slightly change the notation of the original papers to

make notation uniform and consistent with that used in this
paper and to highlight variables and parameters.
3 Gain is defined in terms of the antenna’s capability to

send/receive signals in a direction.

signal (m); and d() is the Euclidean distance between

two locations (m).

Wall Attenuation Factor Model (WAF) An empirical

model (Bahl and Padmanabhan, 2000), which assumes

the physical map of the environment to be available

beforehand, as path-loss is influenced by the number of

walls between transmitter and receiver, in addition to

the Euclidean distance:

Lwaf(pi,pj) = 10n log10

d(pi,pj)

d0
+{

w(pi,pj)×WAF if w(pi,pj) < C

C ×WAF otherwise,

(15)

where n indicates the rate of change in path-loss (dBm);

d0 is a reference distance (m), w(pi,pj) is the number

of walls on a straight line between transmitter and re-

ceiver, C is an empirical constant – i.e., the maximum

number of walls that can make a difference in path-

loss; and WAF is a constant factor specific to the type

of each wall (dBm).

Multi-Wall Model (MWM) Another empirical model

(Zvanovec et al, 2003) based on the following equation:

Lmwm(pi,pj) = LFSL(pi,pj) +
∑N
l=1 klwl(pi,pj) + kf f(pi,pj) ,

(16)

where LFSL(pi,pj) = L0 + 10n log(d(pi,pj)), models

a free space path-loss model (dBm), with L0 being the

path loss at a reference distance (dBm); wl() is the

number of walls of lth type between transmitter and

receiver, kl is a parameter for the attenuation affecting

the signal for a wall of type l (dBm); f(pi,pj) is the

number of floors between transmitter and receiver, and

kf is the attenuation parameter observed by signal due

to the type of that floor (dBm).

ITU Radio Communication Model (ITU) An empiri-

cal model, used by the IEEE 802.15 Working Group

for Wireless Personal Area Networks (Hernandez et al,

2012), for testing the proposed channel model of a sig-

nal propagating in an arbitrary environment:

Litu(pi,pj) = 20 log10 f + n log10 d(pi,pj) + kf f((pi,pj))− 28 ,

(17)

where n is the distance power loss coefficient (dBm); f

is the communication frequency (MHz); d() is the dis-

tance between two locations (in m); kf is the floor pen-

etration loss factor (dBm); f() is the number of floors

between two locations.
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Each parameter of the above models should be fine-

tuned according to the specific environment. Values for

parameters are heuristically suggested in the related

papers, usually for a communication signal at 2.4 GHz

(WiFi) for different scenarios, including indoor office

environments. In this paper, we start from those and

fine tune them according to the characteristics of the

hardware on the Turtlebot 2 robots used for experi-

ments.

Considering the transmitting power Tpower (dBm),

the RSSI between transmitter and receiver can be then

calculated as:

RSSI(pi,pj) = Tpower − L()(pi,pj). (18)

As a physical map of the environment is available

in our setting as a grid map, a communication map can

be computed as a prior for every location reachable by

a receiver robot, given a fixed location for a transmitter

robot. Note that, as some locations are inaccessible to

the robots — e.g., because of doors — and grid maps

are pre-built by the robots, the number of walls is an es-

timate of the actual number of walls. Specifically, every

change from free space cell to occupied cell along the

line segment connecting pi and pj in the grid is counted

as one wall. Grid maps are preprocessed in such a way

that small objects are removed from them and thus not

counted as walls. Generating a communication map as

prior using the above models shows that locations closer

to the fixed robot observe higher RSSI values, while dis-

tant locations have lower values. While this trend seems

to be common, the RSSI values from these priors are

different; for instance, WAF model seems to return val-

ues that are smaller than those of other models.

The accuracy of the communication models is em-

pirically evaluated. In particular, the error is calcu-

lated as the difference between the measurements ac-

tually collected by two Turtlebot 2 robots, described

in Section 5.3, and the corresponding RSSI values es-

timated by the communication models. We conducted

6 different preliminary experiments in the Engineering

building of the University of South Carolina4. Each ex-

periment involved one robot fixed at an arbitrary lo-

cation, and the other robot following a precomputed

path. Each robot measures the WiFi signal strength at

10 Hz along with its position in the map. The physical

environment used for these experiments is depicted in

Figure 12(a).

Table 1 shows mean (and standard deviation) er-

ror calculated for the 6 different experiments. An accu-

racy error of <20 dBm is comparable to what is shown,

4 All experiments were conducted at night time, so the in-
terference due to moving objects/humans is minimal, except
for the people performing the experiment.

for example in (Bahl and Padmanabhan, 2000). It is

worth mentioning that we observed a change of 8 dBm

to 10 dBm in the RSSI value while changing the height

of the antenna (by a few centimeters) on the robot.

As such models display a relatively low error, the use

of such communication models as prior, shown in the

next section, is justified.

Also note that we included (in the last row of Ta-

ble 1) our GP model built on the measurements taken

and validated its modeling power for the signal strength

finding that its error is the lowest among the different

models.

4.3.2 Use of Communication Models as Prior

First of all, the communication models described in

the previous section can be directly integrated in the

GP as mean function to possibly improve the qual-

ity of the predictions, making the prediction process

slightly more computationally expensive than using a

zero-mean function. In the experimental section, we dis-

cuss the impact of varying the mean function on the

overall performance.

Second, such priors can be used to guide the robots

on where to take measurements. In particular, for a

given location of a leader (either for the PM or for the

RM algorithm), we design an algorithm to generate a

set of locations that can be provided as goals to the

followers and to filter measurements in the GP training

dataset. The main idea is to choose locations that are

highly informative, namely those which present some

change in the field, as constant values can be easily ap-

proximated by the underlying assumption of the GPs,

namely smoothness of the modeled phenomenon.

Mathematically speaking, the RSSI slope is esti-

mated at each location by the first order derivative of

the communication map built as prior from the commu-

nication models. The change of slope between neighbor

locations in the map can be calculated by the second

order derivative. If the slope change between two loca-

tions crosses a threshold (τ), that location is selected as

one of the possible goals of the moving robot (follower).

This idea is explained in detail in Algorithm 3. Specif-

ically, the inputs are the chosen communication model

comm model (see Section 4.3.1), the physical map A of

the environment to be used for creating a communica-

tion map as prior, and a specific location (x1, y1) in the

environment for the leader. Lines 1-3 create a commu-

nication map as prior according to one of the commu-

nication models and the environment A for all possible

locations where the robots can go. According to such

a communication map, specific goals are calculated in

Line 4. In particular, the first and second derivatives
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Table 1: Errors (dBm) between the calculated RSSI values with the different models and the actual robot mea-

surements, for 6 experiments performed varying locations of a robot acting as a transmitter; while another moving

robot follows a fixed path and collects data. The values are comparable to what is shown, for example, in (Bahl

and Padmanabhan, 2000).

Path-loss Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6
Model mean stdev mean stdev mean stdev mean stdev mean stdev mean stdev
Distance 8.09 4.98 9.40 7.27 9.40 7.28 17.56 9.27 10.89 8.54 6.14 5.62
WAF 12.02 10.24 15.33 12.08 15.34 12.09 27.29 10.87 20.06 11.85 17.47 7.04
MWM 7.98 5.01 9.37 7.26 9.38 7.27 17.66 9.29 11.15 8.58 4.03 3.66
ITU 11.33 7.84 15.49 10.28 17.79 7.09 29.02 11.74 20.51 9.66 15.40 6.43
GP 2.92 2.43 3.14 2.48 3.26 2.38 2.90 2.30 3.18 2.30 2.91 2.09

of such a communication map are computed in Lines

8-10 and Lines 11-13, respectively. The locations that

display a second derivative high value are selected as

candidate locations where to go (Lines 14-17).

Algorithm 3 Goals for Moving Robot to Pick Obser-

vations
Input: A (physical map of the environment), pi (possible locations

that robots can occupy), comm model, (x1, y1) ∈ A (considered
location of leader), τ (threshold)

Output: List of candidate goals for the moving robot
{(xd

i , y
d
i )}, ∀i ∈ goals

1: for (x2, y2) ∈ pi − (x1, y1) do

2: rssi
(x2,y2)

(x1,y1)
← calculate rssi(A, x1, y1, x2, y2, comm model); .

Using appropriate Equation from Equations (14), (15), (16), (17)
3: end for
4: goals← get goals(rssi, x1, y1,pi);
5: return goals
6: procedure get goals(rssi, x1, y1,pi)
7: goals←{} . Return variable
8: for (x2, y2) ∈ pi do . Calculate the slope of RSSI

9: rssi slope
(xi,yi)

(x1,y1)
← calculate slope(x1, y1, x2, y2, rssi)

10: end for
11: for (x2, y2) ∈ pi do . Calculate the slope of rate of change

of RSSI
12: rssi change slope

(xi,yi)

(x1,y1)
← calculate slope(x1, y1, x2, y2, rssi slope)

13: end for
14: for (x2, y2) ∈ pi do

15: if rssi change slope
(xi,yi)

(x1,y1)
> τ then

16: goals.add((xi, yi))
17: end if
18: end for
19: return goals
20: end procedure

Additionally, locations generated from the algorithm

can be used to filter signal strength measurements polled

by the robots. Remind that the polling frequency be-

tween two moving robots can be set arbitrarily. In prac-

tice, high frequencies allow robots to collect large datasets;

at the same time, it would require large computational

efforts for the GP parameter estimation. Note that max-

imizing Equation (4) takes O(n3), where n denotes the

number of samples: as a consequence, their number

should be limited to a set of few but significant ones.

If measurements are taken close to the locations found

by Algorithm 3 within a given range, they are used

(a) Candidate locations
uniformly spaced

(b) Candidate locations fil-
tered

Fig. 5: Candidate locations uniformly spaced in the

environment (a) without the use of a communication

model and candidate locations (black) considered for

followers for a given location of the leader in red (b).

for the GP update. It is also important to note that τ

needs to be generated heuristically. When τ is high, the

algorithm might not find a sufficient number of candi-

date locations. As such, the communication map cannot

be built accurately. Lower τ could result in too many

goals for the robots, making the GP computation pro-

cess too expensive. From our preliminary experiments,

τ = 11 (±10%; measure unit dBm/m2) is a reasonable

value for all the four models. This provided, for exam-

ple, in the environment of the Engineering building at

the University of South Carolina between 30-120 goals

for various communication models, among 212 possi-

ble locations that were uniformly sampled in the tested

environments (see Figure 5). Note that, to account for

inaccuracies of the prior model, locations within a given

radius of those generated by Algorithm 3 are added to

the list of candidate locations.

The proposed method to select locations is inte-

grated in the PM and RM strategies by filtering the
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locations considered for the follower. Then, PM and

RM algorithms choose the set of goals according to the

strategies described in Section 4.2.

Using the data collected during our experiments de-

scribed in the previous section — i.e., one robot is fixed

at a location, while the other one moves along a fixed,

known path — we evaluate the GP built with all mea-

surements and the GP built only with filtered measure-

ments by the proposed method. In general, the GP with

filtered data maintains low variance in GP predictions

and low Root Mean Square Error (RMSE). At the same

time, the GP training time reduces by 50%, compared

to the GP with all data. For example, the RMSE be-

tween the observed data and the predicted values by

the GPs, in one of the experiments, is 11.01 for the

GP with all data and 11.03 for the GP with filtered

data. These results validate the use of such a filtering

approach. Further results are presented in the next sec-

tion.

5 Experimental Evaluations

In this section, we evaluate our online sensing strategies

discussing their performance obtained both in simula-

tion and with real robots.

5.1 Experimental Setup

To ensure repeatability under controlled conditions, the

system has been first evaluated with a realistic 2D sim-

ulator, Stage (Vaughan, 2008). We also deployed our

strategies on a team of real Turtlebot 2 robots (Fig-

ure 1) to assess their validity under real-world condi-

tions. Robots’ control stacks have been implemented in

ROS (Quigley et al, 2009), while tasks based on Gaus-

sian Processes exploit the GPy framework (GPy, since

2012).

In our experiments we considered teams of 2, 4, and

(limited to simulations) 6 robots for which we perform

comparisons among the PM and RM strategies intro-

duced in Section 4.2 and a baseline strategy RAND.

The latter is an uninformed strategy where each robot

moves randomly while polling teammates when they oc-

casionally fall within its range. As a consequence, robots

following the RAND strategy do not require to main-

tain a GP for selecting goal locations. The consequent

time savings results in potentially collecting amounts

of data samples much larger than with the PM or RM

strategies. Thus, to ensure a fair comparison and focus

on the quality of the collected data, we set polling peri-

ods seeking a computational effort that is balanced (en-

suring that all the strategies roughly collect the same

amount of data samples) and affordable in real-time

(preventing situations where the time needed for train-

ing GPs dominates the time devoted to all the other op-

erations). From a preliminary empirical evaluation we

draw the following values as suitable ones: for 2 robots,

3 s for PM and RM, 3.5 s for RAND; for 4 robots, 5 s

for PM and RM, 10 s for RAND; for 6 robots, 10 s for

PM and RM, 18 s for RAND. (Notice how the polling

period of RAND is set to a higher value compared to

PM and RM due to the extra temporal costs these last

ones incur for training the GPs.) In addition, for the

PM and RM strategies, in determining backup loca-

tions (see Section 4.2) we assume that two robots can

always communicate if within a distance of Rc/3, or

Rc/2 if in line-of-sight.

In summary, an experimental configuration is de-

fined along the following dimensions:

– the environment where robots are deployed;

– the number of robots: in simulations {2, 4, 6} while

with real robots {2, 4};
– the sensing strategy: RAND, PM, or RM (with 1 or

2 leaders);

– whether the method for filtering measurements based

on the communication models is enabled (Section 4.3.2);

– the GP mean function: zero-mean, DIST (Equa-

tion (14)), or WAF (Equation (15)).

The metrics used to evaluate the strategies con-

sider the quality of the GPs that would be obtained

by merging all the collected data in a rendez-vous of

the whole team every 5 min. In particular, one measure

of the quality is given by the Rooted Mean Squared Er-

ror (RMSE) at time t on a given test set (10,000 mea-

surements collected randomly for simulations; measure-

ments collected following some predefined trajectories

as described in Section 4.3.1 for real robots):

RMSEt =

√∑
xi∈A2(f̂ t(xi)− f(xi))2

|A2|
. (19)

In addition, the average predictive standard deviation

— namely, the squared root of the predictive variance

— of the predictions is considered. The latter metric is

fundamental for an online scenario, as ground truth is

typically not available. The cost of constructing a com-

munication map is assessed in terms of traveled distance

and computing time to train the GP.

5.2 Simulations

In the simulation experiments, the communication chan-

nel is simulated using the signal propagation model

proposed by Bahl and Padmanabhan (2000) — i.e.,
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(a) (b)

Fig. 6: Simulation environments (Office, left, and Clut-

tered, right), approximate size 80 m × 30 m.

Equation (15) and Equation (18). Such a communi-

cation model has been used in other simulators, such

as MRESim (Spirin et al, 2014) and USARSim (Carpin

et al, 2006), to test robot exploration strategies. In addi-

tion, USARSim has been used in the RoboCup Rescue

Simulation Virtual Robot Competition in search and

rescue scenarios. Note that in our real robot experi-

ments, considering environments where only robots are

present, the communication models were able to cap-

ture the general trend of the signal strength. The pa-

rameters are empirically chosen to achieve distance and

signal strength comparable to those observable with a

Turtlebot 2 robot. In particular, Tpower = −38 dBm,

d0 =1 m, n = 2.3, WAF = 3.37, C = 5. A bidirec-

tional communication link is available between any two

simulated robots if RSSI(pi,pj) ≥ −93 dBm in both

directions. The indicative communication range Rc is

set to 50 m. A white noise ε ∼ N (0, 1) has been added

to the signal to obtain more realistic measurements.

Given that WAF communication model is used, we

adopt it also as the prior of our filtering method. The

number of pairs of locations obtained is around 150 over

around 2000 pairs for both environments. Furthermore,

we show results by using a GP with zero mean, a mean

function that uses DIST (Equation (14)), and one that

uses WAF (Equation (15)).

We select two representative environments of real-

istic size depicted in Figure 6. “Office” is a portion of

the “sdr site b” environment from the Radish reposi-

tory (Howard and Roy, 2003), representing an indoor

environment with corridors and rooms. “Cluttered” is

inspired from the “grass” environment of the MRESim

repository (Spirin et al, 2014). It is unstructured with

many obstacles around.

We denote with RM-N the RM strategy where each

group is composed of N robots and we consider the

presence of at most 2 leaders. The following parameters

are chosen from preliminary experiments: nPM
s =10000,

nRM
s =100 for all the team sizes, dmin=25, 20, 15 m for 2,

4, and 6 robots, respectively. The nw parameter is cho-

sen to allow a fair coverage of a region, compatibly with

a mission duration set to 30 minutes and accounting for

the number of robots. In particular, nw=3|Rf |, 2|Rf |, 1|Rf |

for 2, 4, and 6 robots, respectively. Five runs are exe-

cuted for each experimental configuration.

Figure 7 reports the results obtained in the Office

environment, using a zero mean GP. Looking at the

prediction performance for 2 robots (Figure 7(a)-(b)),

it can be observed that all the strategies are able to

significantly lower down both the RMSE and the pre-

dictive standard deviation. PM performs slightly better

than RM. In addition, PM has a comparable perfor-

mance with RAND in terms of RMSE and predictive

standard deviation – there is no statistical significant

difference between the two. This means that, when the

state space of the spatial phenomenon to learn is large

and the number of available robots is low, the use of

a complex and informed strategy to select data sam-

ples might not introduce significant improvements in

the map’s quality.

On the other side, benefits can be observed with

respect to efficiency. The traveled distance for the pro-

posed strategies (Figure 7(d)) is consistently lower than

the one from RAND. The computation time (Figure 7(c))

is comparable for the proposed strategies without any

filtering and RAND, while it is significantly lower when

the filtering technique is enabled (PM-waf and RM-

2-waf). This means that our sensing strategies move

robots around in an efficient way.

Figure 7(e)-(h) and Figure 7(i)-(l) show results for 4

and 6 robots, respectively. In these two settings, PM ob-

tains better results compared to RAND, with RM still

not performing as well as PM overall. For the RMSE,

the advantage offered by PM is slight, but often sta-

tistically significant (e.g., p-value=0.004064 in one-way

ANOVA at 30 min between PM and RAND for 4 robots).

The predictive standard deviation decreases using PM

around 15 minutes, which is consistently maintained

until the end of the mission. Such improvement is sta-

tistically significant (e.g., p-value=0.00005615 at 30 min

between PM and RAND for 6 robots). The results ob-

tained by RM suggest that it could not be convenient to

spend too much time on lowering down the uncertainty

of a single region. However, we argue that, by setting

the nw parameter equal to 1, we could obtain a perfor-

mance similar to that of PM even for 2 and 4 robots.

The relatively comparable performance of RAND in

terms of map quality (RMSE and predictive standard

deviation) comes from the fact that this strategy uni-

formly samples the spatial phenomenon (recall that robots

keep polling each other). However, also in such scenar-

ios, RAND has a remarkable downside in the distance it

requires the robots to travel, making it a very inefficient

sampling strategy.

While the quality of the communication map is slightly

worse when the proposed methods run the filtering method
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Fig. 7: Simulation experiments, Office environment, zero-mean GP.

of Section 4.3.2, the computation time and the traveled

distance are lower, making use of filtering preferable

when computing power is limited and time is a hard

constraint.

Figure 8 shows results for the proposed strategies

with the filtering method, where the threshold value

is varied to obtain different numbers of locations. The

number of locations obtained are ∼ 1600, ∼ 600, ∼ 300,

∼ 100, for no filtering, τ = 0, τ = 5, τ = 11, respec-

tively. As expected, the less aggressive on filtering, the

higher the quality of the communication map in terms

of RMSE. At the same time, the GP training time in-

creases considerably, resulting into a training time close

to that of the proposed strategies without any filtering.

The samples used to build the GP models without filter-

ing is around the 90% of the samples used with RAND,

while the samples used to build the GP models with

filtering is around the 50% of the samples used with

RAND.
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Fig. 8: RMSE and GP training time for 4 robots in

the Office environment, varying the threshold value τ

in Algorithm 3 to get different number of candidate

locations.

By using different GP mean functions, the benefit

is visible in the quality of the communication map for

all the methods (Figure 9 shows results with 6 robots).

In particular, also our proposed strategies using filter-

ing method obtain comparable RMSE and predictive
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standard deviation. There is a slight increase in the GP

training time because of the extra term in the GP cal-

culations for the mean function.

The results for the Cluttered environment are very

similar to those of Office, and all the above considera-

tions still hold — see Figure 10 for results with 6 robots.

Finally, Figure 11 shows two instances of communi-

cation maps built for a source located at the center of

the simulation environments for 6 robots using the PM

strategy. Intuitively, the communication maps capture

well how the signal strength changes over the environ-

ment: it is maximum close to the transmitter robot (at

the center) and then it decreases with distance, keeping

higher in locations in line-of-sight with the transmitter

robot (for example, see the ridge in the communication

map in Figure 11(a)).

5.3 Experiments with Real Robots

We also deployed and tested our algorithms on a team

of two and four TurtleBot 2 robots, in the Swearingen

Engineering Center at the University of South Carolina.

Each platform is equipped with an RGB-d camera (Mi-

crosoft Kinect) and an on-board laptop with an inte-

grated WiFi card. The maps used for localization are

built in a setup phase, where a single robot is manually

driven around the environment to collect readings, pro-

cessed by the ROS gmapping package (Grisetti et al,

2007).

Two of the environments used are depicted in Fig-

ure 12. They have different characteristics: the first one

(shown in Figure 12(a)) is characterized by long cor-

ridors with some intersecting short corridors and one

small loop. Note that between the two long corridors,

there is an outdoor space, which the robots cannot ac-

cess. The other environment (in Figure 12(b)) has in-

stead corridors surrounding small office rooms.

Starting with the parameters for the algorithms from

the simulation, we performed first some initial experi-

ments to fine tune them to account for real world chal-

lenges. For example, the timeout td needs to be in-

creased due to locomotion noise which, in the real world,

is clearly non-negligible.

Some preliminary experiments showed that the MWM

communication model provides a good number of candi-

date locations and has good accuracy (see Section 4.3.1)

for the environments considered. As such MWM is used

to generate candidate locations using Algorithm 3. PM,

RM, and their variants with MWM as communication

prior are compared against RAND.

For each of the two physical environments of Fig-

ure 12, two and four Turtlebot 2 robots are used to

verify the performance of both the proposed and the

baseline strategies, for a 20 min duration.

The trends of the quantitative results are slightly

different to those obtained in simulation as the robots

travel comparable distances with the different strate-

gies – Figures 13 and 14 show results for two robots

on the map shown in Figure 12(a). This can be ex-

plained by the fact that, differently from simulations,

the environment has narrower corridors which has two

implications: first, the corridor structure of the environ-

ment guides the robots; second, such narrow corridors,

together with motion noise, increases the probability

of collisions. The values of uncertainty and RMSE are

slightly higher compared to the simulation and they

show also some increase during the mission: besides the

higher complexity of the signal, the main reason lies on

the fact that the robots travel much less distance (e.g.,

200 m with real robots vs. 800 m in simulation) and as

such they collect a lower number of samples. However,

the GP model represents well the measurements with a

RMSE and a predictive standard deviation comparable

to those of simulation.

Figure 15 shows the results for 4 robots in the Lab-

Corridors environment. The results for the Office-Corridors

environment of Figure 12(b) are very similar to those

of Lab-Corridors, and all the above considerations still

hold.

Using communication models as mean function for

the GP does not provide as much benefit as in simu-

lation: the RMSE is slightly higher when using DIST

and WAF as mean functions, compared to a zero-mean

function. However, GP models with DIST and WAF

mean functions seem to provide a slightly more reliable

prediction, as shown by the predictive standard devia-

tion (see Figures 13(d), 13(e), and 13(f)).

The communication map that is built by GP looks

consistent with the obstacles; e.g., Figures 16 and 17

show a 2D communication map, by fixing one location,

in the two maps. Since we experience some noise in lo-

calization, the associated WiFi strength measurements

turned out being not accurate in a limited number of

times. Further, although our approach computes the

utility function not only on the basis of the selected des-

tination locations, but also of the paths followed by the

robots, few times the robots interfered with the motion

of others, especially using RAND and the PM strat-

egy, which have a lower coordination level compared

to RM. Including the communication model in the GP

mean function reduces the absolute value in terms of

standard deviation, at the cost of slightly increasing

the training time.
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Fig. 9: Simulation experiments, Office environment, first row: GP with DIST mean function, second row: GP with

WAF mean function.
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Fig. 10: Simulation experiments, Cluttered environment, zero-mean GP, 6 robots.

5.4 Discussion

Some general insights are highlighted here from the re-

sults obtained by our experimental activity, as well as

some lessons learned that are starting points for our

future work.

In general, when increasing the number of robots

and when the main constraint is determined by the

traveled distance, our coordinated sensing strategies are

beneficial to avoid any overlap in measurements. Fur-

thermore, if computational resources are very limited,

including filtering methods makes the proposed sys-

tem real-time. Using a communication model as a mean

function of the GP provides benefit in terms of model-

ing, however slightly increasing the computational de-

mand. In the real world, while the general highlights

still hold, the communication channel is much more

complex to be modeled, especially considering dynamic-

ity. Moreover, the noise in locomotion and sensing needs

to be taken into account also during the planning phase

to avoid robots to be stuck and prevent wrong mea-

surement associations. However, also in real world, our

proposed sensing strategies provide good results.
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(a) Office

(b) Cluttered

Fig. 11: Maps for a source located in the center of the

simulation environments (6 robots, PM strategy).

(a) Lab-Corridors
66 m× 92 m

(b) Office-Corridors
30 m× 70 m

Fig. 12: Two environments, portions of third floor at

Swearingen Engineering Center, University of South

Carolina.

6 Conclusion

In this work, utilizing a Gaussian Process representa-

tion of the WiFi signal strength distribution, we de-

signed and tested multi-robot online sensing strategies

for mapping the quality of WiFi communication links

between pairs of locations in a known environment.

Such sensing strategies are fit for homogeneous or het-

erogeneous teams of robots. In addition, we introduced

the use of communication models as prior to improve

overall performance and computational efficiency. Ex-

periments in simulation and with real robots show how

our distributed coordination strategies can effectively

and efficiently perform communication map building

task.

Future work will extend the approach to explicitly

consider temporal variations and will employ more com-

plex communication models that account for multiple

paths, e.g., (Lindhé and Johansson, 2013). In addition,

a method that allows long-term monitoring of WiFi sig-

nal strength is in our plans. Furthermore, it will be in-

teresting to have dynamic teams and more synchronous

coordination among different groups of robots, also in

order to plan for sequences of pairwise measurements.

The task of building communication maps will be inte-

grated together with other missions robots might have,

such as exploration (e.g., see the preliminary multi-

robot system for exploration reported in (Amigoni et al,

2018), which uses communication maps built with an

approach similar to that presented in this paper) or

environmental monitoring (Manjanna et al, 2017). Ex-

trapolating this work to outdoor, under-water, and aerial

environments opens several interesting research direc-

tions.
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Fig. 13: Results with two Turtlebot 2 robots in Lab-Corridors, where the first column identifies the use of the GP

with zero mean, the second one, the use of the GP with DIST mean function, the third one, with MWM mean

function.
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Fig. 15: Lab-Corridors environment, zero-mean GP, 4 robots.
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