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Abstract— This paper presents an extension to a state of
the art Visual-Inertial state estimation package (OKVIS) in
order to accommodate data from an underwater acoustic
sensor. Mapping underwater structures is important in several
fields, such as marine archaeology, search and rescue, resource
management, hydrogeology, and speleology. Collecting the data,
however, is a challenging, dangerous, and exhausting task. The
underwater domain presents unique challenges in the quality of
the visual data available; as such, augmenting the exteroceptive
sensing with acoustic range data results in improved reconstruc-
tions of the underwater structures. Experimental results from
underwater wrecks, an underwater cave, and a submerged bus
demonstrate the performance of our approach.

I. INTRODUCTION

This paper presents a real-time simultaneous localization
and mapping (SLAM) algorithm for underwater structures
combining visual data from a stereo camera, angular velocity
and linear acceleration data from an Inertial Measurement
Unit (IMU), and range data from a mechanical scanning
sonar sensor.

Navigating and mapping around underwater structures is
very challenging. Target domains include wrecks (ships,
planes, and buses), underwater structures, such as bridges and
dams, and underwater caves. The primary motivation of this
work is the mapping of underwater caves where exploration
by human divers is an extremely dangerous operation due
to the harsh environment [1]. In addition to underwater
vision constraints—e.g., light and color attenuation—cave
environments suffer from the absence of natural illumination.
Employing robotic technology to map caves would reduce
the cognitive load of divers, who currently take manual
measurements. The majority of underwater sensing for
localization is based on acoustic sensors, such as ultrashort
baseline (USBL) and Doppler Velocity Logger (DVL). How-
ever, such sensors are usually expensive and could possibly
disturb divers and/or the environment. Furthermore, such
sensors do not provide information about the structure of
the environment.

In recent years, many vision-based state estimation al-
gorithms have been developed using monocular, stereo, or
multi-camera system for indoor, outdoor, and underwater
environments. Such algorithms result in cheaper solutions
for state estimation. Vision-based systems can be character-
ized as incremental, when there is no loop closure, termed
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Fig. 1. The custom made sensor suite collecting data for the calibration
of the visual, inertial, and acoustic range data.

Visual Odometry (VO) systems, and full vision-based SLAM
systems [2].

Employing most of the available vision-based state esti-
mation packages in the underwater domain is not straight-
forward due to many challenges. In particular, blurriness and
light attenuation result in features that are not as clearly
defined as above water. Consequently, different vision-based
state estimation packages result in a significant number
of outliers or complete tracking loss [3], [4]. In such a
challenging environment, our preliminary work on using
visual data and a video light for mapping an underwater
cave [1] resulted in the successful reconstruction of a 250
meter long cave segment.

Vision can be combined with IMU and other sensors in
the underwater domain for improved estimation of pose [5].
The open source package OKVIS [6] uses vision with IMU
demonstrating superior performance. More recently, ORB-
SLAM has been enriched with IMU [7] to recover scale
for a monocular camera. In this paper, we propose a robust
vision-based state estimation algorithm combining inertial
measurements from IMU, stereo visual data, and range data
from sonar, for underwater structure mapping domains.

Two general approaches have been employed for fusing
inertial data into pure visual odometry. In the first approach,
based on filtering, IMU measurements are used for state
propagation while visual features are used for the update
phase. The second approach, relying on nonlinear optimiza-
tion, jointly optimizes all sensor states by minimizing both
the IMU error term and the landmark reprojection error.
Recent nonlinear optimization based Visual-Inertial Odom-
etry (VIO) algorithms [6], [7] showed better accuracy over
filtering approaches with comparable computational cost.

In this paper, a tightly-coupled nonlinear optimization
method is employed to integrate IMU measurements with
stereo vision and sonar data; see Fig. 1 for the underwater
sensor suite used during calibration of both camera intrin-
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sics and extrinsics, required for good performance of VIO
approaches.

The idea is that acoustic range data, though sparser,
provides robust information about the presence of obstacles,
where visual features reside; together with a more accurate
estimate of scale. To fuse range data from sonar into the
traditional VIO framework, we propose a new approach of
taking a visual patch around each sonar point, and introduce
extra constraints in the pose graph using the distance of
the sonar point to the patch. The proposed method operates
under the assumption that the visual-feature-based patch is
small enough and approximately coplanar with the sonar
point. The resulting pose-graph consists of a combination
of visual features and sonar features. In addition, we adopt
the principle of keyframe-based approaches to keep the graph
sparse enough to enable real-time optimization. A particular
challenge arises from the fact that the sonar features at an
area are sensed after some time from the visual features due
to the sensor suite configuration. Experimental data were
collected from an artificial shipwreck in Barbados, the Ginnie
ballroom cavern at High Springs, in Florida; and a submerged
bus in North Carolina. In all cases, a custom sensor suite
employing a stereo camera, a mechanical scanning profiling
sonar, and an IMU was used.

The paper is structured as follows. The next section
outlines related work. Section III present an overview of the
experimental system used. Section IV describes the proposed
method with special focus on the mathematical formulation
for introducing sonar data in the OKVIS framework. Section
V presents experimental results on datasets we collected
in different underwater structures, validating the proposed
method. The paper concludes with a discussion on lessons
learned and directions of future work.

II. RELATED WORK

Compared to above water visual odometry techniques
where GPS might be available (e.g., [8], [9]), visual odome-
try in underwater cave environment is a challenging problem
due to the lack of natural light illumination and dynamic
obstacles in addition to the underwater vision constraints
i.e. light and color attenuation. There are not many works
for mapping and localization in an underwater cave. Gary
et al. [10] presented a 3D model of underwater cave using
LIDAR and sonar data collected by DEPTHX (DEep Phreatic
THermal eXplorer) vehicle having DVL, IMU, and a depth
sensor for underwater navigation. Most of the underwater
navigation algorithms [11]–[16] are based on acoustic sen-
sors such as DVL, USBL, and sonar. Nevertheless, collecting
data using DVL, sonar, and USBL while diving is expensive
and sometimes not suitable in cave environment. In this
context, vision-based state estimation could be used as it
is cheaper and easily deployable; however, because of its
incremental motion-based nature, it accumulates drift over
time. Corke et al. [17] compared acoustic and visual methods
for underwater localization showing the viability of using
visual methods underwater in some scenarios.

In recent years many vision-based state estimation al-
gorithms have been developed using monocular, stereo, or
multi-camera system for indoor, outdoor and underwater
environments. Monocular VO systems such as PTAM [18],
Mono-SLAM [19], ORB-SLAM [20] are mainly feature-
based—i.e., tracking features over a certain number of im-
ages. SVO [21] combines feature-based and direct methods
to generate a fast and robust monocular VO. One conse-
quence of monocular system is the loss of scale. Despite
the variety of open source packages available, Quattrini
Li et al. [4] provided a comparison of open-source state
estimation algorithms on many datasets, showing insights on
the challenges to adapt such methods to different domains.

Exploiting SLAM techniques in underwater environment
is a difficult task due to the highly unstructured nature. To
avoid scale ambiguity in monocular systems, stereo camera
pairs are used. Salvi et al. [22] implemented a real-time EKF-
SLAM incorporating a sparsely distributed robust feature
selection and 6-DOF pose estimation using only calibrated
stereo cameras. Johnson et al. [23] proposed an idea to
generate 3D model of the seafloor from stereo images. Beall
et al. [24] presented an accurate 3D reconstruction on a large-
scale underwater dataset by performing bundle adjustment
over all cameras and a subset of features rather than using
a traditional filtering technique. A stereo SLAM framework
named selective SLAM (SSLAM) for autonomous underwa-
ter vehicle localization was proposed in [25].

Vision is often combined with IMU and other sensors for
improved estimation of pose. Oskiper et al. [26] proposed
a real-time VO using two pairs of backward and forward
looking stereo cameras and an IMU in GPS denied en-
vironments. Howard [27] presented a real-time stereo VO
for autonomous ground vehicles. This approach is based on
inlier detection— i.e., using a rigidity constraint on the 3D
location of features before computing the motion estimate
between frames. Konolige et al. [28] presented a real-time
large scale VO on rough outdoor terrain integrating stereo
images with IMU measurements. Kitt et al. [29] presented
a visual odometry based only on stereo images using the
trifocal geometry between image triples and a RANSAC-
based outlier rejection scheme. Their method requires only
a known camera geometry where no rectification is needed
for the images. Badino et al. [30] proposed a new technique
for improved motion estimation by using the whole history
of tracked features for real-time stereo VO.

Hogue et al. [31] used stereo and IMU for underwater
reconstruction. Stereo and IMU were used for VO in [32]
and [33]. Sáez et al. [34] proposed a 6-DOF Entropy
Minimization SLAM to create dense 3D visual maps of
underwater environments using a dense 3D stereo-vision
system and IMU; it is an offline method. Shkurti et al. [5]
proposed a state estimation algorithm for underwater robot
by combining information from monocular camera, IMU,
and pressure sensor based on the multi-state constrained
Kalman filter [35] .

There are also a body of work using low-cost sonar in
underwater. Folkesson et al. [36] used a blazed array sonar



Fig. 2. Custom-made underwater sensor rig with depth sensor, IMU, stereo
camera, and a mechanical scanning sonar.

for real-time feature tracking. A feature reacquisition system
with a low-cost sonar and navigation sensors was described
in [37].

Differently from other work, our proposed system, as
described in the next section, includes a sonar in a new
configuration to improve the reconstruction of underwater
structures with a focus on caves. As such, a new method for
integrating such data is presented.

III. SYSTEM OVERVIEW

The sensor suite employed for underwater structures re-
construction is a custom-made stereo rig, shown in Figure 2.
In particular, the current system consists of the following
components:

• two IDS UI-3251LE cameras,
• IMAGENEX 831L Sonar,
• Microstrain 3DM-GX4-15 IMU,
• Bluerobotics Bar30 pressure sensor,
• Intel NUC.

The two cameras are synchronized via an Arduino-like
board, and they are able to capture at 15 frames per second
with a resolution of 1600 × 1200 pixels. The sonar can
provide data at a maximum of 6m range, scanning in a
plane over 360°, with angular resolution of 0.9°. A complete
scan at 6m takes about 4 s. Note that the sonar provides
for each measurement (beam) 255 intensity values, that is,
at 6m maximum range, 6/255m is the distance between
each returned intensity value. Clearly, higher response means
a more likely presence of an obstacle. Sediment on the
floor, porous material, and multiple reflections result in a
multimodal distribution of intensities. The IMU produces
linear accelerations and angular velocities in three axes at
a frequency of 100Hz. The depth sensor produces depth
measurements at 15Hz. The latter has not been used as data
were collected from the same depth.

The hardware was designed with cave mapping as the
target application. As such, the sonar scanning plane is
parallel to the image plane. At first, the sensor suite is carried
by divers. As a future design, we plan to mount it on an
Autonomous Underwater Vehicle (AUV). In particular the
hardware used is compatible with the Aqua AUV [38] and by
mounting the scanning sonar on the robot identical sensing
capabilities are provided. To enable easy processing of data,
ROS [39], [40] has been used to record data in bag files.

Fig. 3. The block diagram of the proposed algorithm.

IV. PROPOSED METHOD

Figure 3 presents an overview of the proposed approach.
Data from the different sensors is combined to produce an
accurate estimate of the state of the sensor suite. More
specifically, the proposed method estimates the state xR of
the robot R by minimizing a joint estimate of the reprojection
error, the IMU error term, and the sonar range error. The
coordinate frames for camera, IMU, sonar, and world are
denoted as C, I, S, and W respectively. The state vector
contains the robot position W pT

WI = [W px,W py,W pz]
T ,

the robot attitude expressed by the quaternion qT
WI , the

linear velocity W vTWI , all expressed in world coordinates;
in addition the state vector contains the gyroscopes bias bg ,
and the accelerometers bias ba. Thus, Eq. (1) represents the
state xR:

xR = [W pT
WI ,q

T
WI ,W vT

WI ,bg
T ,ba

T ]T (1)

The error-state vector is defined in minimal coordinates while
the perturbation takes place in the tangent space; see Eq. (2):

δχR = [δpT , δqT , δvT , δbg
T , δba

T ]T (2)

which represents the error for each component of the state
vector with a transformation between tangent space and
minimal coordinates [41].

A. Cost Function

The joint nonlinear optimization cost function J(x) for the
reprojection error er and the IMU error es is adapted from
the formulation of Leutenegger et al. [6] with an addition for
the sonar error et:
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I=2∑
i=1

K∑
k=1

∑
j∈J (i,k)

ei,j,k
T

r Pk
rei,j,kr +

K−1∑
k=1

ek
T

s Pk
seks

+

K−1∑
k=1

ek
T

t Pk
t e

k
t (3)

where i denotes the camera index—i.e., left or right camera
in a stereo camera system with landmark index j observed
in the kth camera frame. Pk

r , Pk
s , and Pk

t represent the
information matrix of visual landmark, IMU, and sonar range
measurement for the kth frame respectively.



B. Error Terms Formulation

The reprojection error function for the stereo camera sys-
tem and IMU error term follow the formulation of Leuteneg-
ger et al. [6]. Reprojection error describes the difference
between a keypoint measurement in camera coordinate frame
and the corresponding landmark projection according to the
stereo projection model. Each IMU error term combines
all accelerometer and gyroscope measurements by the IMU
preintegration between successive camera measurements and
represents both the robot pose, speed, and bias errors be-
tween the prediction based on the previous state and the
actual state.

Fig. 4. The relationship between sonar measurement and stereo camera
features. A visual feature detected at time k is only detected by the sonar
with a delay, at time k + i, where i depends on the speed the sensor suite
is moving.

In the presented system, the sonar measurements are used
to correct the robot pose estimate as well as to optimize the
landmarks coming from both vision and sonar. Due to the
low visibility of underwater environments, when it is hard
to find visual features, sonar provides features with accurate
scale. A particular challenge is the temporal displacement
between the two sensors, vision and sonar. Figure 4 illustrates
the structure of the problem: at time k some features are
detected by the stereo camera; it takes some time (until
k + i) for the sonar to pass by these visual features and
thus obtain a related measurement. To address the above
challenge, visual features detected in close proximity to the
sonar return are grouped together and used to construct a
patch. The distance between the sonar and the visual patch
is used as an additional constraint.

For computational efficiency, the sonar range correction
only takes place when a new camera frame is added to the
pose graph. As sonar has a faster measurement rate than the
camera, only the nearest range to the robot pose in terms
of timestamp is used to calculate a small patch from visual
landmarks around the sonar landmark for that given range
and head position. Algorithm 1 shows how to calculate the
range error ekt given the robot position W pk and the sonar
measurement zkt at time k.

The sonar returns range r and head position θ mea-
surements, which are used to obtain each sonar landmark
W lS = [lx, ly, lz] by a simple geometric transformation in
world coordinates:

W l = (TWITIS [r cos(θ), r sin(θ), 0]S), (4)

Algorithm 1 SONAR Range Error Algorithm
Input: Estimate of robot position W pk at time k

Sonar measurement zkt = [r, θ] at time k
List of current visual landmarks, Lv

Distance threshold, Td
Output: Range error ekt at time k

/*Compute sonar landmark in world coordinates*/
1: W l = TWITIS [r cos(θ), r sin(θ), 0]S)

/*Create list of visual landmarks around sonar land-
mark*/

2: LS = ∅
3: for (every li in Lv ) do

/*Compute Euclidean distance from visual landmark to
sonar landmark*/

4: dS = ‖W l− li‖
5: if ( dS < Td) then
6: LS = LS ∪ li
7: end if
8: end for
9: r̂ = ‖W p̂WI −mean(LS)‖

10: return r − r̂

where TWI and TIS are the respective transformation matri-
ces used to transform the sonar measurement from the sonar
coordinates to the world coordinates. More specifically, T
represents a standard affine transformation matrix (rotation
and translation). TIS represents the transformation from the
sonar frame of reference to the IMU reference frame, and
TWI represents the transformation from the inertial (IMU)
frame to the world coordinates. Consequently, the sonar
range prediction is calculated using Lines 2-9 of Algorithm 1:

r̂ = ‖W p̂WI −mean(LS)‖ (5)

where LS is the subset of visual landmarks around the
sonar landmark. As mentioned above, the concept behind
calculating the range error is that, if the sonar detects any
obstacles at some distance, it is more likely that the visual
features would be located on the surface of that obstacle,
and thus will be at approximately the same distance. Thus,
the error term is the difference between the two distances.
Note that we approximate the visual patch with the centroid
(mean(LS)), to filter out noise on the visual landmarks.

Consequently, the sonar error ekt (xk
R, zkt ) is a function of

the robot state xk
R and can be approximated by a normal

conditional probability density function f and the conditional
covariance Q(δχ̂k

R|zkt ), updated iteratively as new sensor
measurements are integrated:

f(ekt |xkR) ≈ N (0,Rk
t ) (6)

The information matrix is:

Pk
t = Rk

t

−1
=

(
∂ekt

∂δχ̂k
R

Q(δχ̂k
R|z

k
t )

∂ekt

∂δχ̂k
R

T
)−1

(7)



The Jacobian can be derived by differentiating the expected
range measurement r̂ (Eq. (5)) with respect to the robot pose:

∂ekt

∂δχ̂k
R

=

[
−lx + W px

r
,
−ly + W py

r
,
−lz + W pz

r
, 0, 0, 0, 0

]
(8)

The estimated error term is added in the nonlinear opti-
mization framework (Ceres [42]) in a similar manner of the
IMU and stereo reprojection errors.

V. EXPERIMENTS

The proposed approach has been tested in numerous chal-
lenging environments. In the following, experimental results
from three representative scenarios are presented. For each
dataset, a description is provided together with the results
of the proposed state estimation approach. In addition, a
short discussion of the challenges encountered during the
field trials is included.

One of the first datasets was collected at an artificial
shipwreck in Barbados; see Fig. 5(a). The initial deployment
of the sonar sensor suffered from a configuration where data
was collected at a very slow rate and at a maximum range of
one meter. However, even with this configuration, the floor
of the shipwreck is visible, which suggests that the sensor
suite can be used even in less structured environments, such
as coral reef regions. Figure 5(b) shows a top view of the
trajectory together with sonar and visual features. Figure 5(c)
presents a side view, where the vertical pole visible in the
back of Fig. 5(a) is visible on the left side. Note that Fig. 5(c)
shows the trajectory of the camera going slightly upwards,
although the image frame of Fig. 5(a) shows the floor being
horizontal. The shipwreck sits on the sea floor with an
inclination, a fact that the IMU was able to capture from
the calculation of the gravity vector.

We also collected a short segment from inside a cavern
in Ginnie Springs, in Florida (USA). Such footage provided
preliminary data from an underwater cave environment; see
Fig. 6(a). The video light utilized was providing illumination
on only part of the scene. Figures 6(b), 6(c) present two
views of the trajectory together with the visual and sonar
features. The reconstruction shows both visual landmarks and
sonar points giving a sense of the cavern as the diver was
swimming around. In this experiment, the sonar was config-
ured at higher rate with maximum range of 6m. However,
because of the light and environment characteristics—i.e.,
the scene was not uniformly illuminated—the visual features
were sparse.

Finally, the inside of a sunken bus was mapped at Fantasy
Lake Scuba Park, NC, USA; see Fig. 7(a). The image quality
was quite poor due to the many particulates in the water. A
top view is presented in Fig. 7(b) where the trajectory of the
sensor as it entered the bus and traverse through its length
is clear. Figure 7(c) presents a side view of the same results.
Gaps on the sonar data are visible corresponding to areas
where the windows of the bus were. In addition, at the right
side of the figure the three steps of the bus are outlined.

In all environments, the images contain a significant
amount of blur (softness) which clearly increases with dis-
tance. Moreover, dynamic obstacles, such as fishes, but more
importantly floating particles that reflect back with high
intensity, were present in all datasets; see Fig. 8.

In such challenging environments, it is very hard to
get ground truth. However, the trajectory and the distance
covered qualitatively resembled the one followed by the
diver. Furthermore, the sonar landmarks were indeed used
to correct the pose estimate, allowing the optimization to
converge and keeping the error very low. Compared to
OKVIS that uses just stereo images and IMU measurements,
all the results in the datasets show more features mapped,
e.g., several rings in the cavern, indicating the improved
mapping of underwater structures.

VI. CONCLUSIONS

As vision-based state estimation achieves a certain degree
of maturity, more sensors are being integrated. Extending
the well studied problem of Visual Inertial integration, we
introduce a new sensor, a mechanical scanning sonar, which
returns range measurements based on acoustic information.
While the primary motivation of our work has been the
mapping of underwater caves [1], the technique was tested
in different environments, including a shipwreck at the clear
waters of Barbados, artificial wrecks in the lakes of the
Carolinas, and a cavern. A novel approach of merging sonar
points with visual features is used to extend the pose graph
generated for applying a global nonlinear optimization. The
integration of the range data in the popular optimizer of
Ceres [42] resulted in scale estimation improvements.

During the different experiments, it became clear that a
minimum visibility and clarity in the visual data is required
for basic performance; however, the data used degraded to
a degree not often seen in typical datasets used for testing
VO or VIO approaches. Moreover, the use of a strong video
light, while necessary in the cave environment, it requires
careful calibration of its position in order not to saturate the
camera. Furthermore, different surfaces resulted in different
reflectance properties of the acoustic signal; we are currently
analyzing the sonar data over different materials to improve
the quality.

Future work, besides more data collection, will incorporate
the stereo features obtained by the use of a strong video
light during the data collection process. The robustness of
the features introduced by the artificial light in a cave
environment was presented in the work by Weidner et al. [1].
Preliminary work have demonstrated that even low-level
ambient light cancels the effect of the artificial light, making
the approach viable only inside caves. Furthermore, data
from a depth sensor will be added in the proposed framework
to account for vertical motions. Currently the majority of the
data collected were from the same depth thus reducing the
impact of such sensor. In addition, techniques to improve the
quality of the images will be investigated.

Integration of multiple sensors will improve the quality of
the estimation in addition to the density of the reconstruction.



(a) (b) (c)

Fig. 5. Bajan Queen artificial reef (shipwreck) in Carlisle Bay, Barbados. (a) Sample image of the data collected inside the wreck (beginning of trajectory).
(b) Top view of the reconstruction. (c) Side view of the reconstruction.

(a) (b) (c)

Fig. 6. Underwater cave, Ballroom Ginnie cavern at High Springs, FL, USA. (a) Sample image of the data collected inside the cavern. (b) Top view of
the reconstruction. (c) Side view of the reconstruction.

(a) (b) (c)

Fig. 7. Sunken bus, Fantasy Lake Scuba Park, NC, USA. (a) Sample image of the data collected from inside the bus. (b) Top view of the reconstruction.
(c) Side view of the reconstruction, note the stairs detected by visual features at the right side of the image.

A variety of domains will be affected with underwater
archaeology and speleology being the primary areas. The
resulting technology will be integrated to existing AUVs and
ROVs for improving their autonomous capabilities.
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