Underwater Monocular Image Depth Estimation
using Single-beam Echosounder

Monika Roznere and Alberto Quattrini Li

Abstract— This paper proposes a methodology for real-time
depth estimation of underwater monocular camera images,
fusing measurements from a single-beam echosounder. Our
system exploits the echosounder’s detection cone to match
its measurements with the detected feature points from a
monocular SLAM system. Such measurements are integrated
in a monocular SLAM system to adjust the visible map points
and the scale. We also provide a novel calibration process to
determine the extrinsic between camera and echosounder to
have reliable matching. Our proposed approach is implemented
within ORB-SLAM?2 and evaluated in a swimming pool and
in the ocean to validate image depth estimation improvement.
In addition, we demonstrate its applicability for improved un-
derwater color correction. Overall, the proposed sensor fusion
system enables inexpensive underwater robots with a monocular
camera and echosounder to correct the depth estimation and
scale in visual SLAM, leading to interesting future applications,
such as underwater exploration and mapping.

I. INTRODUCTION

Exploration is fundamental for many underwater work,
from archaeological preservation [1] to ecological sur-
veys [2], and it will continue to advance with the techno-
logical progress of autonomous underwater robotic systems.
Thus far, one of the main challenges is in visual underwater
perception, notably in Simultaneous Localization and Map-
ping (SLAM) [3], which, if solved, can enhance the situa-
tional awareness of the robots and enable autonomy. SLAM
is particularly difficult for low-cost Remotely Operated Vehi-
cles (ROVs) and Autonomous Underwater Vehicles (AUV5s),
often configured with low-end sensors, such as inexpensive
Inertial Measurement Unit (IMU), compass, pressure sensor,
single-beam echosounder, and monocular camera.

Many state-of-the-art real-time visual SLAM systems are
feature-based methods, which use raw images to extract
features, track them over subsequent frames, and finally
estimate poses and 3-D points [4]. While high accuracy was
demonstrated with stereo cameras and IMUs — typically high-
end in the underwater domain — low-cost vehicles are far
from being robust enough to enable autonomous operation.
In cases when the IMU is unreliable and stereo camera is
unavailable, low-cost vehicles must rely on purely-visual
monocular SLAM systems, which suffer from ambiguous
depth scale and drift [S].

This paper addresses the problem of estimating image
depth from a monocular camera on an inexpensive commer-
cially available ROV, by integrating distance measurements
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Fig. 1: Given a monocular camera and an echosounder

mounted on a low-cost underwater robot (BlueROV2), how
can scale be corrected for a monocular SLAM system?

from a low-cost single-beam echosounder — see Fig. [I] for
a depiction of the problem in focus. Distance measurements
from the echosounder are matched with estimated 3-D points
from the monocular visual SLAM system, and a scale cor-
rection is applied to the estimated 3-D points or camera pose.
To ensure proper matching, we devise a calibration method
to determine the extrinsic between camera and echosounder
that minimizes the matching error of measurements from the
two sensors of a known object. From our previous work [6],
[7], this paper provides the following contributions:

o A calibration algorithm based on cone fitting that
utilizes a simple sphere. This allows for recovery of
extrinsic between camera and echosounder.

o A method for projecting the echosounder measurement
cone onto the monocular camera image frames and
matching its readings to the extracted feature points
from a monocular SLAM system.

e A real-time sensor fusion approach to integrate
echosounder measurements into a monocular SLAM
system, thus improving the depth estimate and scale.

e An implementation with ORB-SLAM?2 [8] and analysis
of pool and sea experiments that highlight the feasibility
of our approach for image depth correction.

o An example application of underwater color correction
given the improved estimated image depth of the scene.

This work represents a first effort towards inexpensive solu-
tions for underwater perception to make low-cost underwater
vehicles more autonomous and accessible to the scientific
and industrial communities. The promising results provide
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insights for future directions.

This paper is structured as follows: the next section
presents background work on SLAM and sensor fusion.
Section [I1I| describes the calibration approach and the depth
fusion in a monocular SLAM system. Sections and
analyze the experimental results and discuss extensions.
Finally, Section concludes the paper.

II. BACKGROUND

State-of-the-art visual odometry and SLAM systems em-
ploy two main classes of methods for estimating camera
motion. (1) Direct methods minimize the alignment er-
ror based on intensity values between images (e.g., LSD-
SLAM [9] and DSO [10]). (2) Indirect methods minimize
reprojection errors of tracked features (e.g., ORB-SLAM?2 [8]
and work of Lim et al. [11]). Hybrid methods combine both
methodologies, e.g., SVO [12].

The basic sensor configuration of such methods is com-
posed of a monocular camera, which suffers from scale am-
biguity and drift [13], resulting in an incorrectly scaled map
point cloud, negatively affecting the situational awareness of
the robot, especially for control and planning.

To increase the quality of the estimates calculated by the
state estimation algorithms, it is common to fuse data from
other sensors, for example multi-calibrated cameras [14],
[15] or IMU [16]-[22]. In the underwater realm, SLAM
systems are mainly based on sonar — an exteroceptive sensor,
whose measurements will not be affected by drift, as seen
with low-end IMUs. Folkesson et al. [23] proposed the
use of a blazed array sonar for real-time feature tracking.
More recently, Richmond et al. [24] described an underwater
SLAM system for autonomous cave exploration that uses
a multi-beam sonar, an underwater dead-reckoning system
based on fiber-optic gyroscope (FOG) IMU, an acoustic
Doppler Velocity Log (DVL), and pressure-depth sensors.
Similarly, SVIn2 [25] system fused measurements from a
profiling scanning sonar together with IMU, stereo camera
images, and pressure sensor. To reliably apply many of these
systems, it is important to undergo multi-sensor calibration,
such as camera to multi-beam sonar [26] and camera to
imaging sonar [27], [28].

Instead of fusing multiple sensors, recent work integrates
fiducial markers into the environment to act as ground truth
parameters for the SLAM system, either depending solely
on the markers (SPM-SLAM [29]) or using a fusion of
keyframes and markers (UcoSLAM [30]). Other methods
[31], [32] explicitly address changes in the scene, e.g., in
illumination, by preprocessing the images. The image en-
hancement methods do not typically depend on information
from the environment or do require high-end sensors (DVL).

In our work, we consider low-cost ROVs and AUVs
not equipped with costly devices, but usually installed with
a monocular camera and a single-beam echosounder, e.g.,
BlueROV2. Our method uses a monocular SLAM system
— NO reliable high-frequency IMU is installed on the robot.
We address the problem of “how to alleviate the issue of scale

ambiguity affecting monocular SLAM with measurements
from a single-beam echosounder?”

III. APPROACH

Our proposed system — see Fig. [2| — will correct the depth
scale for a monocular SLAM system, given a camera and
an echosounder with overlapping field of view. We define
the echosounder and camera model (Section to then
enable real-time projection of the sound cone onto the image
frame. We propose a calibration and optimization procedure
to ensure proper projection (Section [[lI-B), and we describe
the method to fuse the echosounder measurement with the
SLAM system in Section

A. Echosounder and Camera Model

To measure the distance to an object, a single-beam
echosounder emits an acoustic pulse ¢ and listens to the
reflected pulses, recording the time of flight. The time of
flight ¢; of the strongest reflected pulse is used to calculate
the distance measurement m; = v - (¢;/2), where v is the
sound velocity in water. Note that sound beams propagate
approximately in a cone — see Fig. [2| (right).

The echosounder returns valid measurements m; when the
distance to the object is between dy — the known blanking
distance or the minimum distance that the sensor can reliably
detect at — and dpax — the maximum distance for the
sensor. In general, an invalid measurement occurs when the
following inequality does not hold:

dO S m; S dmax (1)

Furthermore, if the echosounder’s position ¢t and direc-
tion unit vector V with respect to the camera reference frame
{C?} are known, its sound cone can be projected onto the
image frame for every new distance reading m;. The sound
cone can be approximated as a circle with the center ¢c; in
the camera reference frame as:

cci =ctg+m;-v 2
The radius of the circles is calculated as
r; = my - tan(a), 3)

where a is the sonar’s known cone angle.

Then by applying a camera projection model, we can
obtain the pixel value for the center — see Fig. [2| (right).
For a pinhole camera model with camera intrinsics K, the
pixel coordinates u and v are:

=K. cC; (4)

_ e

While a more complex model could be used, we approximate
the projection of the cone slice on the image with a circle.
In this way, we only need to compute another point on the
cone slice using the radius r;, by projecting it on to the
image and determining the circle in the image plane passing
through that point, with center (u, v).
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Fig. 2: Overview of the integration of the single-beam echosounder and monocular camera, with an indirect-based monocular
SLAM system (left). Echosounder-camera model (right). If a point ¢ox; is detected by the echosounder and is also visible
by the camera, the echosounder detection cone can be projected onto the image frame, encircling the point’s feature f.

B. Calibration

The echosounder’s position ctg and direction vector v
are calculated by calibrating over a collected dataset X of
oX; 3-D points of a known target object — detected by the
sonar in the camera reference frame — and the corresponding
echosounder readings m;.

We use a known-sized sphere as the target. Spheres are
typically used in acoustic calibration due to the guarantee
that some sound will reflect back to the sensor [33]. By
synchronizing the image input and echosounder readings, the
robot can move around and observe the loss of detection
moments. If the sphere is visible in the image frame, its
approximate 3-D center point is calculated by the circular
blob shape detection and by solving the Perspective-n-Point
problem. When the echosounder produces a valid reading,
the distance measurement and the corresponding current 3-D
point is saved. This set X of n 3-D points and measurements
describe the shape of the echosounder’s coverage cone.

Note, the 3-D data points are approximations of the true
points of acoustic reflections detected by the echosounder.
The relative error is correlated to the size of the sphere, the
distance from the sphere to the robot, and the distance from
the echosounder to the camera. We assume the error to be
minimal, and despite the slight inaccuracy the 3-D points are
useful as estimations for the calibration procedure.

The calibration algorithm is implemented as an optimiza-
tion process. The goal is to find the best camera-echosounder
extrinsic ¢tg and V that minimize the error between the ox;
3-D points in X and their corresponding measurements m;.
The solution should satisfy the constraint that all points lie
within the sound cone. More formally:

n

argmin Z(chi — C’tEH — mi)Q

cte,v i=1 (5)
st. Vex; €X, olex;) <r(ex;)
where o(cx;) = ||(cx; — ctE) X V|| is the shortest (orthog-

onal) distance between ¢x; and the cone axis — direction
vector V — calculated with the cross product, and r(cx;)
((ex; — ¢tg) - V) - tan(a) is the radius of the circle, a slice

of the cone, that ox; lies on.

The echosounder position ¢tp and direction vector v
may be initialized with hand-measured values to minimize
the chance of falling into a local minimum. Additional
constraints on the extrinsic can be added in the optimization
to reflect the mounting position of the echosounder, e.g., if
the echosounder is mounted on the left side of the camera,
then the x component of otg can only be negative.

The extrinsic parameters ¢tg and V resulting from this
optimization process are used for properly fusing the feature
points from the images and echosounder readings m;.

C. SLAM Depth Fusion

While absolute scale cannot be recovered from a monocu-
lar SLAM system, sonar readings can correct this ambiguity.
We assume that the SLAM system is feature-based, because
compared to direct-based method, indirect-based ones have
shown to track longer underwater [3]; in underwater sce-
narios, illumination changes frequently, resulting in loss of
localization for methods tracking pixel intensities. The main
steps of a SLAM system include: an initialization phase to
start the tracking with features visible from different points
of view; a tracking phase, for comparing new frames with the
current map using feature points; and a map updating phase,
for optimizing the 3-D points using a set of keyframes and
for performing loop closure [4].

Echosounder integration and depth scale correction occur
in the tracking phase, more specifically in the map ini-
tialization and per image frame tracking. By adjusting the
map points during map initialization, the SLAM system may
begin its process with a more accurate initial scale. Likewise,
per image frame tracking, particularly when estimating the
initial camera pose, requires the camera pose to be adjusted
with the correct depth scale to account for any error in the
motion model or in the sudden changes in view.

Algorithm [T] shows how to calculate the depth correction
ratio used for adjusting the map points or the camera pose.
First, iterate through all of the features whose pixel points lie
within the projected sound cone and take the closest point to
the camera (Lines 1-8). That point is the one that according



Algorithm 1 Depth ratio calculation

Input: list of current visual feature points fj and corresponding 3-D map points
Fo, echosounder measurement m;, current camera pose ¢Tw in the world {W}
reference frame, camera-echosounder extrinsic ctg, Vv
Output: Depth ratio d;

/*Find the closest feature point to the cone*/

1: wxs =0
2: for (every f;, wx; in Fp ) do
3: if ( in,projected,cone(fj, m;,ctg,V)) then
4: if (dist-to_cam(wx;, cTw) < dist-to.cam(w x5, cTw ) ) then
5: WXs = WXj
6: end if
7: end if
8: end for
/*Find new depth estimate of the visual point matching echosounder reading™/

9: d, = argmin . ([lcTw - wxI 117 — [ctE 17| — m;)?
10: return d; = d, /||lwxs — wtcel|

to the echosounder model should be corresponding to the
measurement. The new depth estimate d,,, of the found map
point yx, is calculated by optimizing its position along the
line of camera view to fit with the echosounder’s reading
(Line 9) and the ratio is calculated according to the current
map point depth (Line 10).

IV. EVALUATION AND APPLICATION

In this section, we illustrate the steps for collecting and
applying echosounder measurements. First, our ESCaliblﬂ
application is operated to help collect echosounder data for
calculating its position and direction vector with respect
to the camera. This is followed by details on integrating
echosounder extrinsic and measurements into a SLAM sys-
tem for image frame projection and depth scale correction.
Finally, we will display how the echosounder’s measure-
ments and the image feature points can be used with our
image color enhancement method [6].

While our methodology for fusing echosounder measure-
ments can be applied to any indirect based monocular SLAM
system, we modified monocular ORB-SLAM?2 [8], a real-
time keyframe-based SLAM system that has shown good
performance in underwater datasets [3], [5]. The optimized
extrinsic from the calibration step are used to match feature
points detected from ORB-SLAM?2 and to adjust the corre-
sponding depth values with the echosounder readings.

All experiments and data collection were performed in
a swimming pool or in the Caribbean Sea. We used the
BlueROV?2, its installed Ping echosoundelﬂ and either the
Sony IMX322LQJ-C camerd’| (included in the BlueROV2)
or the Sony IMX273 camerd’| (installed for separate perfor-
mance evaluation). The former camera — used in the pool —
has a resolution of 5 MP, a horizontal field of view (FOV)
of 80°, and a vertical FOV of 64°. While, the latter camera
— used in the sea — has a resolution of 1.6 MP, a horizontal

Ihttps://github.com/dartmouthrobotics/escalibr

2https://bluerobotics.com/learn/
ping-sonar-technical-guide/

Jhttps://www.bluerobotics.com/
store/sensors—sonars—cameras/cameras/
cam—-usb-low—-light-rl/

‘nttps://www.flir.com/products/blackfly-s-usb3/
?model=BFS-U3-16S2C-CS
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Fig. 3: Black glass sphere (left) and GUI (right).
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Fig. 4: The echosounder’s position ¢ty (red x) and direction
vector v (green line) are calculated via the optimization pro-
cess described in Equation (3)), based on the measurements
m; and the 3-D points ¢x; of the detected sphere (blue dots).

FOV of 96°, and a vertical FOV of 72°. The echosounder
has a maximum range of 30m and a cone angle a of 30°.

A. ESCalibr: Echosounder and Camera Calibration

For experimental setup, we suspended a black glass sphere
with a diameter of 25.4cm into the water at an arbitrary
depth. We observed that the thin rope, which holds the sphere
in water, is undetectable by the echosounder. Fig. [3] (left)
presents the simple setup needed for data collection.

We use our ESCalibr application to help us visualize
what the robot sees, the current echosounder reading and
confidence level (if applicable), and the amount of data points
collected so far at different distances. The GUI, snapshot
seen in Fig. 3] (right), also allows us to see in real time the
sphere detection and results from 3D point calculation. After
a period of time, the user can end the application and save
the data of collected detection points.

Fig. [ displays 4000 data points collected over 3 runs that
were detected with high confidence level. The echosounder’s
hand-measured position is (—0.17cm, 0.08 cm, 0.09 cm).
After calibration, the position oty became (—0.166cm,
0.101 cm, —0.049 cm), shown as a red x, with a direction
vector V of (0.080, —0.146,0.963), shown as a green line.

B. Depth Extraction and Adjustment

To validate the calibration extrinsic and the depth scale
correction accuracy, we set up a pyramid of boxes with
fiducial markers — acting as ground truth targets — and
move the BlueROV2 to different view points. See Table [
for the results of 10 runs, half with the hand-measured (b)
values and half with the calibrated (c) extrinsic values. The
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View 2 View 3

Tag ID 3
a 0.461 | 0.469 0.435 0.846
b 0.363 | 0.334 0.380 0.329
c 0.169 | 0.174 0.161 0.645

1.025
0.464
0.742

0.705 | 0.719
0.363 | 0.311
0.537 | 0.578

TABLE I: Depth scale error in Root Mean Square Error (m).
a: Regular Monocular ORB-SLAM?2. b: Adjusted with hand-
measured echosounder extrinsic. ¢. Adjusted with calibrated
echosounder extrinsic.

0

064 0 4
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Fig. 5: Trajectory results of the robot circling a reef rock.
Red: Monocular ORB-SLAM?2 [8] implementation. Green:
Monocular ORB-SLAM?2 and echosounder integration.

calibrated values provided the best results, except for View
2. The fault most likely occurred while calculating the depth
scale ratio. If a bad map point — e.g., a new corner appeared
and assumed to be near — is chosen, then the effect ripples
through the rest of the map points. Otherwise, hand-measured
parameter values provide decent results as well.

We also conducted an experiment to evaluate the results
after loop-closing. Here, the robot circled around a reef rock,
identical to what is depicted in Fig.[f] As illustrated in Fig.[5]
the SLAM and echosounder integration results in a trajectory
of the same form as the regular SLAM implementation, but
its scale is much larger, and corresponding to the actual
size of the reef rock. This heavily implies that without the
echosounder integration, the robot “thinks” it is closer to the
(actually larger) rock than it is in reality.

C. Application: Image Enhancement

Our proposed method can be applied to robotic vision-
based applications, such as our image enhancement
method [6] (see the paper for further details). This method
depends on the availability of image depth information,
or distance values between the camera and the objects of
interest in the scene. One distance value is not enough,
as it will not accurately color correct parts of the image,
especially when foreground objects are shaped uniquely
or are at different locations in the scene. In this case,
ORB-SLAM?2 feature points with adjusted depth values can
provide additional needed data.

Fig. [6] shows the steps to apply depth values to our image
enhancement process [6] and results: (a) is the raw undis-
torted image seen by the robot. In parallel, ORB-SLAM?2
detects features in the scene, as in (b). Here, we estimate
the depth values in the regions between the feature points
by applying the Voronoi diagram. With monocular ORB-
SLAM?2, the system may randomly set the scene with low
(c) or high (d) depth scale estimates, which leads to under-
or over-enhancement, respectively. On the other hand, our
approach (e) with SLAM and echosounder integration shows
the best results, with more detail and no over-correction.

Image enhancement is one possible application for our
system. Other underwater robotic operations include obstacle
avoidance, exploration, and scene reconstruction.

V. DISCUSSION AND FUTURE STEPS

The jointly calibrated system of single-beam echosounder
and monocular camera yields much potential to under-
water tasks, especially when integrated with SLAM algo-
rithms. While the proposed method was tested with ORB-
SLAM?2 [8], it will be beneficial to analyse it with other
SLAM systems. Other extensions include system integration
with a more suitable IMU or stereo camera.

Currently, the sonar’s reading is matched with the closest
map point in its sound cone, which is misleading if the
chosen point is on a parallel plane, like a wall or floor, not
detectable by the sonar. To account for these false positives,
one could add measurement uncertainty to the map points.

Furthermore, while the echosounder was shown to improve
the depth scale during SLAM operation, we would like to
also extend its capabilities to mitigate drift. We plan to
integrate the echosounder readings into the map optimization
phase to ensure that adjustments in keyframes also take into
account of the sonar values.

While the proposed system was applied to image enhance-
ment, it would be interesting to extend it to other underwater
robotic tasks, like autonomous object avoidance or tracking.

VI. CONCLUSION

We presented a new method for integrating a low-cost
single-beam echosounder and monocular camera together to
improve SLAM and underwater robotic tasks, such as image
enhancement. This paper provides analyses on experiments
in a pool and in the sea to show the feasibility of this new
design, as well as a discussion on accuracy improvements
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Fig. 6: Image enhancement [6] with SLAM depth estimates. (a) Raw. (b) ORB-SLAM2 output. (¢) Enhanced with low
SLAM depth estimates. (d) Enhanced with high SLAM depth estimates. (e) Enhanced by proposed method.

and future steps. In broad sense, mounting inexpensive sen-
sors on low-cost ROVs and AUVs will effectively augment
their autonomy, increasing their applicability in many fields.
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