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Abstract. In this paper, we discuss how to effectively map an under-
water structure with a team of robots considering the specific challenges
posed by the underwater environment. The overarching goal of this work
is to produce high-definition, accurate, photorealistic representation of
underwater structures. Due to the many limitations of vision underwa-
ter, operating at a distance from the structure results in degraded im-
ages that lack details, while operating close to the structure increases the
accumulated uncertainty due to the limited viewing area which causes
drifting. We propose a multi-robot mapping framework that utilizes two
types of robots: proximal observers which map close to the structure
and distal observers which provide localization for proximal observers
and bird’s-eye-view situational awareness. The paper presents the fun-
damental components and related current results from real shipwrecks
and simulations necessary to enable the proposed framework, including
robust state estimation, real-time 3D mapping, and active perception
navigation strategies for the two types of robots. Then, the paper outlines
interesting research directions and plans to have a completely integrated
framework that allows robots to map in harsh environments.

Keywords: Underwater, Multi-Robot, Navigation, Mapping, and Lo-
calization

1 Introduction

Underwater structure mapping is an important capability applicable to multiple
domains: marine archaeology, infrastructure maintenance, resource utilization,
security, and environmental monitoring. The underwater environment is chal-
lenging and dangerous for humans in many ways, while robotic operations face
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additional challenges compared to the above-water ones. In particular, sensing
and communications are restricted and planning is required in three dimensions
based on limited information. Current approaches for underwater autonomous
operations are limited to hovering at a distance [1,2,3], possibly resulting in oc-
cluded views and coarse models; operating autonomously near an underwater
structure, thus obtaining high-resolution images, has been impossible so far.

Fig. 1: Aqua2 Autonomous Un-
derwater Vehicle exploring the
top structure of the Stavronikita
shipwreck, Barbados.

The overarching goal of this work is to cre-
ate a 3D model of the underwater struc-
ture providing a high-resolution photo-real-
istic representation. To achieve this goal, we
propose a framework that considers a team of
robots operating in close cooperation. Some
Autonomous Underwater Vehicles (AUVs),
termed proximal observers, will be operating
close to the underwater structure generating
a dense vision-based 3D reconstruction of the
observed surface; see Fig. 1 where an Aqua2
vehicle swims over the deck of a wreck. The rest of the robots, termed distal ob-
servers, will operate further out maintaining the global picture of the underwater
structure and the pose of the proximal observers with respect to the structure.

In this paper, we discuss the fundamental components we have developed that
contribute to the realization of the above framework. The distal observer mon-
itors the relative pose of the proximal observer utilizing a Cooperative Local-
ization (CL) [4,5] scheme. The proximal observer maintains its current pose
estimate even in the face of sensor failures. The visual data from the proximal
observer are integrated into a 3D map, utilizing either real-time dense depth map
fusion or a formulation of photometric stereo. Finally different motion strategies
are employed by the distal and proximal observers to maximize target visibil-
ity. Experimental results for each component from deployments over a ship-
wreck are presented together with simulations in a realistic 3D robotic simulator
(Gazebo [6]). These results highlight the potential of the proposed approach and
provide insights on interesting research directions for mapping in harsh environ-
ments and on future plans for full system integration.

2 Related Work

Many approaches utilize visual and visual/inertial data for estimating the pose of
a robot [7,8,9,10]. However, evaluations on a variety of underwater datasets have
demonstrated the challenges of the underwater domain [11,12]. Even when the
integration of multiple sensors produces consistent estimations [13], operating
around a 3D structure often results in loss of tracking when no unique visual
features are present. An alternative to estimating the state of a moving robot is
relative localization from another robot [4,5,14]. This is a challenging problem
underwater due to limited visibility and potential occlusions.
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Active perception, which was first introduced in the context of exploration [15,16,17],
enables robots to actively map the environment. Due to the challenges of the
underwater domain, there are only few active perception applications aiming to
minimize uncertainty during coverage [18,19] or explore interesting features [20]
in simplistic environments with respect to obstacles. Advancements in deep
learning have produced robotic systems that move freely while observing ar-
eas of interests [21,22,23] based on datasets collected by human operators. By
construction, these systems are limited by the agility of the operator, the do-
main of the training set, and the excessive data needed for the production of
such frameworks. Past works utilized well-established sampling-based techniques
which provide strong guarantees [24] but are computationally expensive. On the
other hand AquaVis [25], our previous work, proposed a lightweight real-time
framework based on path-optimization that can navigate safely a complex 3D
environment and at the same time observe multiple visual objectives using an
arbitrary multi-sensor configuration.

Several active sensing approaches for 3D mapping require enumerating and sim-
ulating sensing from different discrete 6-D pose hypotheses [26,27,28,29] at high
computational cost; other approaches are limited to 2-D slices of constant depth
or height [30,31] or they require the use of rough initial models [32,33]; in ad-
dition, most operate on occupancy grids reducing the resolution of the recon-
structed surfaces drastically. Exploration strategies [34,35] that guide a vehicle
towards frontier voxels without requiring sampling in pose space are closely re-
lated to our work, but they are limited to a single robot, and require a prior
map. Multi-robot 3-D reconstruction methods have been presented [36], but
robots are distributed in space to map independently without tight cooperation,
and operate at distance to the target structure [37,38].

3 Proximal-Distal Mapping Framework

Our proposed mapping framework relies on proximal and distal observers to
overcome the inherent challenges of the underwater domain. Fig. 2 shows the
full envisioned process. Here, we discuss each fundamental component that will
enable the mapping by these two types of robots, highlighting the current results.
For grounding our discussion, we refer to the specific underwater robots used,
although the components and framework can be generalized.

The main target vehicle is the Aqua2 AUV [39]. Aqua2 utilizes the motion of
six flippers, each one independently actuated by an electric motor, to swim.
Aqua2 has 6 DOF, of which five are controllable: two directions of translation
(forward/backward and upward/downward), along with roll, pitch and yaw. The
robot’s primary sensor is vision, more specifically three iDS USB 3.0 UEye cam-
eras: two facing forward and one in the back. Aqua2 also has a pressure sensor
and an IMU which are used for controlling the motions and can be utilized for
visual-inertial state estimation [40,41,8,42,13].
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View from the 
Distal Observer

View from the 
Proximal Observer

Distal Observer

Proximal Observer

Fig. 2: Two AUVs exploring a wreck. Inserts present the view of each observer:
the distal observer, in purple, keeps a large portion of the wreck and the proximal
observer in view. The proximal observer, in red, has a close-up view of the wreck.

A lower-cost robot considered is the BlueROV2, a thruster-vectored robot that
has an inexpensive sensor suite composed of: a monocular camera, an IMU, and
a pressure sensor.

3.1 Robust State Estimation

A major challenge underwater is robust robot state estimation, given the lack of

Fig. 3: The view of the Aqua2
AUV just before traveling over the
starboard side of the Stavronikita
wreck.

global localization infrastructure. In addi-
tion to many underwater challenges such
as lighting variations, limited visibility,
and color absorption by distance, when
AUVs operate around underwater struc-
tures they often encounter complete loss
of visual tracking due to the field of view
facing only open water, or a featureless
surface such as a sandy bottom. Utilizing
a dataset collected over a shipwreck by an
Aqua2 AUV we report average time for
loss of tracking on some of the most com-
mon VO/VIO software packages. As can
be seen from Table 1, most of the pack-
ages get completely lost when the robot
reaches the starboard side of the deck; see
Fig. 3 for the view from the Aqua2 AUV about to travel over the railings at the
starboard side of the deck; the image is dominated by blue water.

There are two major components that are necessary for proximal and distal
observers to coordinate: 1) relative pose estimation so that the local observa-
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tions can be mapped into a global reference frame; 2) robust single AUV pose
estimation so that each robot can localize.

Table 1: Performance of popular open-source VIO packages on the wreck dataset.
The root mean squared ATE compared to COLMAP trajectory after se3 align-
ment.

Algorithm Time to first Recovery? RMSE
track loss (in sec) (in m)

OKVIS [7] 23.4 Partial 5.199
VINS-Fusion[43] 23.6 Partial 53.189
SVIn2[44] 23.4 Yes 1.438
Robust Switching Estimator N/A Yes 1.295

Relative Pose Estimation To locate robots in a common reference frame,
we formulate a cooperative localization framework, where robots can estimate
their relative pose. A major challenge underwater is the lack of ground truth,
as setting up a motion capture system is prohibitively complicated. As a result,
most learning based approaches face a shortage of training data. We employ a
novel approach by Joshi et al. [45] utilizing a Generative Adversarial Network
(GAN) [46] to train on simulated images, where the simulator provides the pose
of the AUV, and then test on real images. Estimating a number of fixed points
on the AUV in conjunction with the vehicle’s geometry and a calibrated camera
yields accurate estimates of the 3D pose of the observed AUV; for details please
refer to [45].

Robust AUV Pose Estimation In order to address this common challenge,
a novel estimator robust to VIO failures is outlined here. A model-based esti-
mator is employed in conjunction with SVIn2 [44], an accurate VIO package in
a robust switching estimator framework. The proposed estimator monitors VIO
health based on the number of features tracked, their spatial distribution, feature
quality, and their temporal continuity. When health deteriorates below a certain
threshold, the model-based estimator is utilized, initialized at the last accurate
pose of the VIO system. When VIO recovers and features are tracked again, the
estimator switches back to SVIn2 which is itself initialized to the corresponding
model-based estimator pose. The result is a sequence of segments (model-based
and VIO) maintaining a consistent pose through the whole trajectory. In the
event of loop closure, the corrections are propagated, through the pose graph,
to the complete trajectory.

Results: Some of the most popular open-source packages were tested on a se-
quence collected over a wreck. COLMAP [47,48] was used to estimate reference
camera trajectory from the image sequence. The resulting reconstruction from
COLMAP can be seen in Fig. 4(a). As can be seen in Table 1, the state-of-the
art methods lost track when the AUV faced blue water with no visible structure.
SVIn2 managed to recover due to loop closure, while OKVIS without loop closure
drifted much further and VINS-fusion drifted even further, with respect to the
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COLMAP reference trajectory, at 53 meters. Our proposed switching estimator
managed to keep track throughout the trajectory with the lowest RMSE error.
Figure 4(a) presents the sparse reconstruction from COLMAP together with the
estimated poses. When the AUV was facing blue water, the camera pose was
not tracked. In contrast, the switching estimator managed to accurately track
the trajectory throughout as can be seen in Fig. 4(b).

(a) (b)

Fig. 4: (a) Wreck reconstruction using COLMAP together with the estimated
camera poses [47,48]. (b) Trajectory estimation utilizing a switching estimator
using SVIn2 [44] and a model based estimator.

3.2 Photorealistic Reconstruction

With a robust state estimate, the robots can create a 3D map. Here, we dis-
cuss components that enable real-time dense 3D mapping within the proxi-
mal/observer framework: 1) using just a stereo camera; 2) using lights to have
a more robust 3D map.

Real-time Dense 3D Mapping Dense surface reconstruction relies on stereo
matching across the left and right camera of the proximal observer and on fusing
multiple depth maps to achieve improved robustness and accuracy. To achieve
real-time performance, we decompose dense surface estimation in stereo match-
ing and depth map fusion modules with constant computational complexity.

The core of our dense 3D reconstruction pipeline is a binocular stereo matching
module which estimates depth for the pixels of the left image from a rectified
stereo pair of images. We are able to process image pairs at several frames per
second on the CPU using a publicly available multi-threaded implementation.5

5 https://github.com/kbatsos/Real-Time-Stereo

https://github.com/kbatsos/Real-Time-Stereo
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(a) Left image at time t (b) Right image at time t (c) Depth map at time t

(d) Depth map at t− 1 (e) Depth map at t+ 1 (f) Fused depth map at t

Fig. 5: (a)-(b): input images. (c)-(e): input depth maps for fusion. (f): fused depth
map.

Stereo matching operates by assigning a cost or score to each possible disparity6

that can be assigned to a given pixel of the reference image, typically the left.
(We will use cost in the remainder without loss of generality.) Cost is computed
in square windows centered around the pixels under consideration.

All matching costs are stored in a cost volume with dimensions equal to the
width and height of the images and the number of disparity candidates for every
pixel. (The maximum disparity corresponds to the minimum depth of interest,
while minimum disparity can be set to 0.) The cost volume can be optimized to
impose piece-wise smoothness and extract accurate depth maps via the widely
used Semi-Global Matching algorithm (SGM) [49]. Here, we integrate the rSGM
implementation of Spangenberg et al. [50] into the stereo matching code. Finally,
disparity is converted to depth using the known baseline and focal length of the
cameras. Sub-pixel precision is obtained by fitting a parabola to the minimum
cost and its two neighboring values [51]. To support the subsequent depth map
fusion module we associate a confidence value to each depth estimate. To this
end, we adopt the PKRN measure [52], which is the ratio of the second smallest
over the smallest cost for a given pixel after SGM optimization. An example of
a pair of input images and the resulting depth map can be seen in Fig. 5.

Depth maps estimated by the stereo matching module suffer from artifacts due to
lack of texture, occlusion, and motion blur. Assuming that errors do not persist
over multiple frames, we propose to improve the depth maps by fusing them.

6 Disparity is defined as the difference between the horizontal coordinates of two po-
tentially corresponding pixels in the same epipolar line (scanline) in the left and
right image. Disparity is inversely proportional to depth.
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Fig. 6: Constraints used in depth map fusion. Points A, B and C are depth
candidates either estimated for the reference view directly or rendered to it from
other views. The solid orange polyline is the cross section of the surface estimated
by view k. Left: point A is supported by the orange surface. Middle: point B is
occluded by B’ which is in front of B in the ray of the reference view. Right:
point C violates the free space of C’ on the ray of view k.

The principle behind depth map fusion is that, as long as individual overlapping
depth maps produce either relatively consistent 3D estimates for the same part
of the scene or uncorrelated noisy estimates, measuring the consensus and con-
flicts among depth estimates allows us to improve the accuracy of the correct
estimates and to reject outliers. To achieve real-time, scalable 3D reconstruc-
tion, our approach operates in sliding window fashion, keeping a small number
of recent depth maps in memory at a given time. This decomposition allows the
pipeline to operate at constant speed regardless of the size of the scenes and the
number of frames that have been collected. At each time step, the middle depth
map in the sliding window is used as reference and the remaining depth maps
are rendered onto it along with the corresponding confidence maps.

Fig. 7: Shipwreck’s partial
point cloud from the stereo
dense 3D mapping pipeline.

In this paper, we adopt visibility-based fusion
from our previous work [53,54]. The setting here
is more challenging since the input depth maps
are estimated from two images only, and are
thus more susceptible to occlusion. The input
for computing a fused depth map for a given
reference view is a set of Nf depth maps and
the corresponding confidence maps. The fusion
process begins by rendering the depth and con-
fidence maps to the reference view yielding a
new set of Nf depth and confidence maps from
the perspective of the reference view.

At the end of the rendering stage, we have at most Nf depth candidates per
pixel of the reference view as depths may project out of bounds. For each depth
candidate dj , we accumulate support and visibility violations. Support comes
from other depth candidates for the same pixel that are within a small distance
of dj . dj is then replaced by the confidence-weighted average of the supporting
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depths. The confidence of the fused depth estimate dj is set equal to the sum of
the supporting confidences. See Fig. 6 (left).

Visibility violations are of two types: occlusions and free space violations. An
occlusion occurs when dj appears behind a rendered depth map from view k, Dr

k

on the ray of the reference view, as in Fig. 6 (middle), while a free space violation
occurs when dj appears in front of an input depth map Dl on the ray of view
l, as in Fig. 6 (right). For each detected violation, we penalize the confidence of
dj by subtracting the confidence of the conflicting depth estimate.

At the end, we assign to each pixel the depth candidate with the maximum fused
confidence, as long as it is positive. (We can also apply larger thresholds on the
confidence to remove noisy depths.) Because processing is independent per pixel,
it can be performed in parallel, with the most computationally expensive step
being rendering to the original depth maps to detect free space violations. An
example is shown in Fig. 5, while a point cloud made of a several fused depth
maps is shown in Fig. 7.

Photometric Stereo Mapping Below 20-30 m deep in the water column, the
sun’s rays diminish significantly. To sufficiently illuminate the scene, AUVs are
commonly equipped with independently controllable lights. Interestingly, what
the AUVs perceive through their camera-imagery while their lights are on/off
can provide information on the 3D structure and albedo of the scene.

The problem of estimating the visible scene given images illuminated by light
sources is called the photometric stereo (PS) problem [55,56]. The main principle
of the PS algorithm is that a surface point’s albedo and normal can be recovered
by modeling the changes in that surface point’s reflectance under various lighting
source orientations. From previous work [57,58], four images and their light cor-
respondences ensure that surface points are illuminated sufficiently and uniquely.
This configuration can be a very simple model to solve with the assumption that
the camera never moves, the light orientations are known, and the surface mate-
rial of the object in focus is also known. However, this assumption does not hold
since the AUV is traveling underwater. We expand the PS algorithm to address
the in-water light behavior as well as the AUV non-stationarity characteristic,
that the camera is never still. Our complete model allows the AUV, with at least
one camera, to estimate high-resolution 3D models of the scene by flicking on
four different lights in sequence and capturing their respective images.

When light travels through water, it is continuously attenuated over distance as
it collides with different particles, characterized by the uniqueness of the water-
body’s properties. Therefore, the final image captured by the camera is composed
of the direct signal – the light that traveled from a light source, interacted with
the scene, and reflected back to the image sensor – and backscatter – the light
that traveled from a light source and reflected back from particles not part of
the scene. We refer to our prior work [59] for a deeper explanation of the image
formation model. The attenuation parameters in the image formation model can
be calibrated prior to deployment with a color chart or a black and white marker.
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How the light reflects from the scene depends on the object’s material. Most un-
derwater PS works assume that the underwater scene is comprised of Lambertian-
type surfaces. Simply, the amount of light reflected from the surface is inde-
pendent of the viewing direction. It is only dependent on the incoming light’s
intensity and the angle between the light’s direction and the surface normal.

The PS objective function is referred to as photometric consistency [58]:

o(n, Z) =

∑NI

i=1(|Ii − I ′i(n, Z)|)
NI

(1)

As the name dictates, the goal is to minimize the difference between the predicted
I ′ and observed I pixel values of a scene point in the set of NI images, by
estimating the scene point’s surface normal n and distance from camera Z.

As the AUV is non-stationary, the cameras’ and collocated lights’ changing ori-
entations need to be considered accordingly and fed into the PS model. If the
AUV has only one camera, the PS framework requires additional pose estima-
tion information that could be estimated using a SLAM system (e.g., Monocular
ORB-SLAM [60]). In our case with Aqua2 equipped with two cameras, pose can
be estimated as presented above in Section 3.1. The estimated depth maps pro-
vided by the stereo cameras can be utilized as initial guesses for the PS model
– thus, the PS model can be used to improve the overall 3D scene modelling
capabilities. By solving for the unknowns in the non-stationary PS model, one
can derive the 3D scene or the distances of the scene points from the camera.

Fig. 8: Non-stationary photometric stereo model results given AUV with one
camera and pose estimation and initial depth map from ORB-SLAM [60].

Results: Simple tests were performed with an AUV (BlueROV2) integrated with
a single camera and four lights. Pose estimates and initial depth maps are pro-
vided via ORB-SLAM [60]. Fig. 8 shows the non-stationary photometric stereo
modeling results of a synthetic rock viewed at its edge. Eight images were cap-
tured, four of them with lights on and four corresponding lights off. As ambient
light was present, the images with lights off are integral for subtracting the am-
bient illumination within the PS model. These results show the capability of
using lights to improve the 3D modeling of scenes when initial depth maps and
pose estimations are available.
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3.3 AUV Navigation

With localization and mapping techniques, the next goal is to effectively coor-
dinate the proximal and distal observers for a fully integrated system. The two
AUVs start at a location near the wreck, with the proximal observer in the front
and the distal observer behind. Initially, the two robots convoy together [61]
approaching a target structure such as a wreck; the proximal leads and the dis-
tal follows keeping the proximal inside its field of view. When the two robots
have reached the starting positions, they start mapping the target structure in
a collaborative way by assuming two different behaviors: the proximal observer
focuses on covering the target structure in close proximity collecting high reso-
lution observations, while the distal observer focuses on tracking the proximal
observer from a larger distance maintaining a more informative and macroscopic
perspective of the general structure and aiding the localization of the proximal
robot simultaneously.

Multi-robot operations in the proposed scheme could expand from reactive co-
ordination for each robot independently by assuming absence or very limited
explicit communication, to high-level deliberative collaboration with increased
communication capabilities. Addressing the specifics of the communication (acous-
tic or light-based) is an interesting future research direction; here, we discuss
how the coordinated navigation between proximal and distal observers can be
adapted according to different levels of communication.

Proximal Observer Navigation As a base case, we assume no communica-
tion from the distal to the proximal observer, thus the proximal observer will
greedily attempt to cover the entirety of the target structure. Several exploration
or mapping strategies could be deployed where the proximal observer actively
decides which areas to visit with an informed global planner, but for the sake
of simplicity in order to showcase the fundamental concept of the proximal ob-
server, the robot will follow a predefined lawnmower pattern in close proximity
to the structure. The proximal observer will have to operate in close proximity
to highly unstructured environments through a complex terrain, therefore, in-
stead of blindly reaching local goals, it has to avoid obstacles. For this purpose,
it can utilize AquaNav [62], a state-of-the-art real-time vision-based underwater
navigation framework developed in our previous work that enabled underwater
robots to navigate safely through challenging 3D environments. Though, since
the main purpose of the proposed framework is to map and not just navigate chal-
lenging terrains, to maximize observations of the target structure, AquaVis [25],
an extension of AquaNav that performs active perception on automatically ex-
tracted visual objectives, is employed instead.

Distal Observer Navigation The distal observer should move in a way that
will keep a distance from both the target structure and the proximal observer
while following the latter. To follow the proximal observer, the distal observer in
absence of communication could utilize motion predictors. On the other hand,
assuming limited communication, the proximal observer could publish the tra-
jectory it plans to follow, allowing for more informed decisions. Then, the distal



12 Xanthidis et al.

observer could employ the strong capabilities of AquaVis to track the proximal
observer by processing as visual objectives the future positions of the target
robot, while also avoiding collisions with other potential objects. At this stage,
AquaVis was modified to consider only the expected position of the proximal ob-
server at each corresponding state and produce a solution that ensures visibility
of the target robot at all times, assuming no occlusions. Finally, for simplicity
the distal observer will be moving towards global waypoints in a similar pat-
tern as the proximal observer. More deliberative and informed policies will be
investigated in the future.

Results: Fig. 9 presents the trajectory of the distal (purple) and proximal (red)
observers as they cover the deck of a USS YP-389 shipwreck [63] model (187.5m
× 63.6m × 29.7m) simulated in gazebo with seabed at depth 39.7m. The dynam-
ics of the AUVs together with the selection of viewpoints result in a variety of
poses such that visual objectives (the wreck for the proximal, and the proximal
AUV for the distal) are kept in the center of the field of view. The proximal
AUV utilizes a lawnmower pattern as the starting point for AquaVis [25] while
the distal observer uses the states of the planned trajectory of the proximal as
the objectives. The simulation takes about 10 minutes with both robots trying
to maintain a forward velocity of 0.5m/s.

Fig. 9: Two AUVs exploring a wreck. Multiple snapshots combined to illustrate
the two trajectories. The distal observer, in purple, keeps a large portion of the
wreck and the proximal observer in view hovering above. The proximal observer,
in red, utilizes a lawnmower pattern to cover the top of the wreck.

4 Conclusions, Lessons Learned, and Future Directions
While each component is necessary to achieve photorealistic mapping of under-
water structures, the results presented here provide insights for the integration
and research questions that are interesting to pursue:

– What is the trade-off between real-time 3D reconstructions and accurate
ones? The underwater robots need enough information to navigate safely
around the underwater structures; at the same time the more details added
will contribute to denser reconstructions. We will encode hybrid hierarchical
representations that can be used from the different components.
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– How to optimize the AUV navigation given the number of conflicting opti-
mization criteria? Examples of criteria include fine-grained coverage of the
structure to ensure accurate reconstruction; minimization of overlaps; ensur-
ing that the robots’ state estimates do not diverge. We will explore Pareto-
optimal decision framework.

– How to optimize communication between robots? Here, we did not explicitly
discuss the communication bandwidth available; in general, communication
is very limited underwater – with a bandwidth in the order of kb/s. It is
important to identify efficient data representation of the 3-D reconstruction
and on a cross-layer optimization for deciding when and how to share.

Once we integrate these different components, our plan is to deploy the system
in an archaeological expedition to map large shipwrecks.

In this work, a novel multi-robot approach was presented for mapping of large
and challenging underwater structures, such as shipwrecks, or energy and aqua-
culture infrastructure. The main contribution of this work is twofold: (a) to
present the main components necessary for enabling such mapping – i.e., 1) ro-
bust state estimation, where we presented a robust system that is able to switch
between state estimators according to their reliability, 2) dense mapping, where
we presented approaches that can run in real-time and and with low-cost sensor
configuration, 3) team coverage with distal and proximal observers – and (b) dis-
cussing the insights and interesting research questions, towards a fully-integrated
system for underwater structure mapping.
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