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Abstract. Underwater navigation presents several challenges, including
unstructured unknown environments, lack of reliable localization sys-
tems (e.g., GPS), and poor visibility. Furthermore, good-quality obsta-
cle detection sensors for underwater robots are scant and costly; and
many sensors like RGB-D cameras and LiDAR only work in-air. To en-
able reliable mapless underwater navigation despite these challenges, we
propose a low-cost end-to-end navigation system, based on a monocu-
lar camera and a fixed single-beam echo-sounder, that efficiently navi-
gates an underwater robot to waypoints while avoiding nearby obstacles.
Our proposed method is based on Proximal Policy Optimization (PPO),
which takes as input current relative goal information, estimated depth
images, echo-sounder readings, and previous executed actions, and out-
puts 3D robot actions in a normalized scale. End-to-end training was
done in simulation, where we adopted domain randomization (varying
underwater conditions and visibility) to learn a robust policy against
noise and changes in visibility conditions. The experiments in simulation
and real-world demonstrated that our proposed method is successful and
resilient in navigating a low-cost underwater robot in unknown under-
water environments. The implementation is made publicly available at
https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation.

Keywords: monocular camera and sonar-based 3D underwater navigation, low-
cost AUV, deep reinforcement learning, domain randomization

1 Introduction

This paper presents an integrated deep-learning-based system, contingent on
monocular images and fixed single-beam echo-sounder (SBES) measurements,
for navigating an underwater robot in unknown 3D environments with obstacles.
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Obstacle avoidance is fundamental for Autonomous Underwater Vehicles
(AUVs) to safely explore the largely unmapped underwater realms (e.g., coral
reefs, shipwrecks). However, the underwater environment itself poses unique chal-
lenges in regards to safe navigation, which is still an open problem for AUVs [1].
There are limited sensors and positioning systems (e.g., GPS) that accurately
measure the surroundings and operate underwater, thus preventing the use of
well-established navigation methods [2] that were originally designed for ground
vehicles with sensors like LiDAR. In addition, the sensor configurations in low-
cost AUVs, equipped with monocular camera, inexpensive IMU, compass, and
fixed SBES, bear their own individual drawbacks, such as no scale information
and drifting/uncertain measurements. These challenges make the classic meth-
ods for obstacle avoidance and navigation in unknown environments – i.e., those
which (1) estimate the geometry of the space using sensors with direct [3] or
indirect [4,5] state estimation methods and (2) apply specific behaviors or plan-
ning in the partial map (e.g., Vector Field Histogram [6], Dynamic Window
Approach [7]) – not directly applicable in underwater scenarios.
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Fig. 1. How to guide an underwater robot
to 3D waypoints given only monocular
images, fixed echo-sounder range mea-
surements, and a localization system, but
no map, while also avoiding obstacles?

With recent advances in deep rein-
forcement learning (DRL)
[8, 9], several end-to-end deep neural
network based methods have emerged,
from raw images to control outputs.
These end-to-end methods – typically
tasked to endlessly navigate or reach a
visual target – demonstrated good per-
formance for ground robots in unknown
environments [10]. Comparatively, un-
derwater domains bring problems to
learning-based vision navigation due to
a more complex image formation model
that results in, e.g., backscattering and
light attenuation.

This paper proposes a goal-oriented
end-to-end DRL navigation approach,
given that classical planning methods
are not straightforward to apply as they
require accurate maps, which are difficult to obtain due to the underwater per-
ception challenges described above. In particular, we design the first multi-modal
end-to-end underwater navigation system in unstructured 3D environments for
which no map is available, based on Proximal Policy Optimization (PPO) [11],
which allows for continuous action space. The provided inputs are goal posi-
tions, estimated depth images, and range measurements from the fixed SBES.
Monocular camera and fixed SBES keep the AUV’s cost low, while exploiting
and complementing the individual sensor’ strengths – i.e., large field of view from
the monocular camera that can provide relative scene depth and the absolute
range measurement from the SBES. We also propose a method to mitigate the
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sim-to-real gap problem by leveraging domain randomization into our system.
We generated realistic simulated environments with different underwater visibil-
ity and randomized training environments, enhancing the model robustness to
the changing visual conditions in real underwater domain. Extensive experimen-
tal analysis with tests and ablation studies of the proposed navigation system
were conducted both in simulation and real-world. Results demonstrated high
safety and efficiency compared to traditional navigation baselines and other sen-
sor/model configurations, as well as reliable transferability to new environments.

2 Related Work

Obstacle avoidance and navigation without a prior map has been studied start-
ing with wheeled mobile robots equipped with bumpers and sonar sensors [12]
and later branching off into different environments and sensor configurations.
For underwater domains, one of the main challenges is the limit of choices for
sensors. While some underwater LiDAR solutions are available [13], they are
expensive (US$100,000 or more) and bulky – requiring a laser scanner and a
camera. In addition, there is a lack of global positioning systems and the acous-
tic based positioning systems are affected by noise, making mapping underwater
challenging [1]. Our goal is to enable navigation for low-cost AUVs. Therefore,
in the following, we discuss applications using sensors (i.e., SBES, cameras) that
are typically configured on low-cost underwater robots.

In practice, many underwater navigation systems depend on acoustic, iner-
tial, and magnetic sensors [14–16]. For example, Calado et al. [17] proposed a
method where the robot used a SBES to detect obstacles and construct a map of
them. However, SBES can only provide a fixed single distance measurement and
has high uncertainty given the wide beam cone – around 30°. To infer more about
the complex scene, the robot must frequently turn in multiple directions, which
negatively affects navigation efficiency. Alternatively, multi-beam and mechani-
cal scanning sonars can cover a larger field of view [18]. Hernández et al. [19] used
a multi-beam sonar to simultaneously build an occupancy map of the environ-
ment and generate collision-free paths to the goals. Grefstad et al. [20] proposed
a navigation and collision avoidance method using a mechanically scanning sonar
for obstacle detection. However, a scanning sonar takes a few seconds to scan a
360◦ view. The acoustic sensors’ accuracy depends on the environment structure
and the type of reflections that arise. In addition, multi-beam and mechanical
scanning sonars are significantly more expensive than monocular cameras and
SBES (in the order of >US$10k vs. US$10 - US$100).

While cameras have shown to provide dense real-time information about the
surroundings out of the water [21], there are fewer underwater obstacle avoid-
ance methods that use cameras. The underwater domain indeed poses significant
challenges, including light attenuation and scattering. Most work considers re-
active controls, i.e., no goal is specified. Rodŕıguez-Teiles et al. [22] segmented
RGB images to determine the direction for escape. Drews-Jr et al. [23] esti-
mated a relative depth using the underwater dark channel prior and used that
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estimated information to determine the action. There has been recent efforts in
3D trajectory optimization for underwater robots. Xanthidis et al. [24] proposed
a navigation framework for AUV planning in cases when a map is known or
when a point cloud provided by a visual-inertial SLAM system [5] is available.
Our proposed method navigates the robot to 3D waypoints without explicit
representation of the environment.

Recently, deep learning (DL) methods have shown to work well with under-
water robots. Manderson et al. [25] proposed a convolutional neural network
that takes input RGB images and outputs unscaled, relative path changes for
AUV driving. The network was trained with human-labeled data with each im-
age associated with desired changes in yaw and/or pitch to avoid obstacles and
explore interesting regions. Later it was extended with a conditional-learning
based method for navigating to sparse waypoints, while covering informative
trajectories and avoiding obstacles [26]. Our proposed method does not require
human-labeled data.

Amidst the progress in DRL, there is more research on robots operating
out of water with monocular cameras. Some of these methods addressed the
problem of safe endless 2D navigation without specifying any target location.
Xie et al. [27] trained a Double Deep Q-network to avoid obstacles in simulated
worlds and tested it on a wheeled robot. Kahn et al. [28] proposed a generalized
computation graph for robot navigation that can be trained with fewer samples
by subsuming value-based model-free and model-based learning. Other works
provided the goal as a target image instead of a location [29–31]. Some methods,
based on an end-to-end network, guided the robot to the goal using LiDAR
or RGB-D cameras [10, 32–34] and goal’s relative position for path planning.
Recently, a DD-PPO based method was used to navigate a robot in an unknown
indoor (simulated) environment, using a RGB-D camera, GPS, and compass [11].
Our method will be based on PPO, with the additional challenge of not having
depth information directly from the camera.

Nevertheless, due to the difficulties of applying DRL in real-world environ-
ments, most works performed training in simulation. However, policies learned in
simulated environments may not transfer well to the real-world environment, due
to the existence of reality (sim-to-real) gap [35]. To address this, several methods
utilized domain randomization, where parameters of the simulated world were
varied so that policies learned remained robust in real-world domain. For exam-
ple, Sadeghi and Levine [36] proposed a DRL approach for indoor flight collision
avoidance trained only in CAD simulation that was able to generalize to the real
world by highly randomizing the simulator’s rendering settings.

Our approach draws from the advances in DRL: we design an end-to-end
pipeline for low-cost underwater robot navigation to address the underwater
challenges, combining multiple sensors and applying domain randomization.
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Fig. 2. Flowchart for the Proposed End-to-End Underwater 3D Navigation System. The
pipeline includes two stages: a depth prediction module (DPT) followed by a decision
making module (PPO). During training, at each episode i, the robot is deployed in a
randomized simulated environment. Predicted depth map oimageDepth

t of the raw RGB
image oimageRGB

t , relative goal position ogoalt , echo-sounder reading oranget , and previous
executed action at−1 are stacked with past k observations from the previous times steps
to feed into the PPO network (solid lines). The robot performs the action sampled from
the output policy distribution. New observations (dashed lines) are then obtained for
computing the next action at time step t + 1. During real-world deployment, DPT’s
computationally less expensive counterpart MiDaS was used as the depth prediction
module for real-time inference.

3 Approach

The problem considered in this paper is as follows: an underwater robot de-
ployed in an unknown environment needs to navigate to a goal location G ∈ R

3,
minimizing the travel time, while avoiding collisions with obstacles.

To develop a mapless navigation solution for low-cost robots, we consider an
underwater thruster-vectored robot that has an inexpensive sensor suite com-
posed of: (1) a monocular camera, (2) a SBES placed below the camera and
looking forward, (3) a compass, (4) pressure sensor for water depth, and (5)
a (noisy) localization system. Selecting this sensor configuration allows us to
exploit the larger field of view (FOV) covered by the camera while obtaining
absolute front distance estimates with the fixed SBES.

For a general solution, robust to noise and changing visual conditions, we
approach the real-time 3D navigation problem by devising an end-to-end system
( see Fig. 2 ) based on a neural network for dense depth prediction from monoc-
ular images and on a deep reinforcement learning method that takes as input
the sensor suite data and outputs vertical and steering commands. We consider
a window of prior measurements and executed actions given the absence of prior
knowledge of the environment.

In the remainder of this section, we describe in detail the RL approach, the
depth prediction network, and how to address the sim-to-real gap.

3.1 Multi-Modal Deep Reinforcement Learning Navigation

Given an unknown environment, the navigation problem can be formulated as
a Partially Observable Markov Decision Process (POMDP), defined with a 6-
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tuple: state space S that cannot be directly observed by the robot, action space A
modifying the current state of the robot, observation space Ω, a state-transition
model T , the observation probability distribution O, and a reward function R
which returns the reward after a state transition.

Observation space. The observation Ot at time step t consists of: (1) the

predicted depth image oimageDepth
t ∈ R

128×160; (2) an SBES range measure-

ment oranget ∈ R; (3) the current relative goal position ogoalt ∈ R
3 – specifically,

[Dh
t
, Dv

t
, θh

t
]¦, where Dh

t
, Dv

t
are robot’s current horizontal, vertical distances to

the goal and θh
t
represents the relative yaw heading difference; and (4) the past

executed actions oaction
t

∈ R
2. We stack observations considering a time window

k to capture the robot’s progress towards the goal and to avoid obstacles that
left the periphery view. In experiments, model using 5 time steps (decision pe-
riod lasts 0.5 second for each step) showed good performance without adding
too much computational expense.

Action space. The action space is at = [vt, ωt] ∈ R
2, where vt is the vertical

linear velocity and ωt is the yaw angular velocity. To generalize the applicability
of the learned behavior to different robots, we consider the actions to be in a
range of [−1.0, 1.0] which will be linearly mapped to the range of velocities of
a specific robot. Note that while we could include the horizontal forward linear
velocity, we decided to keep it constant to facilitate surveying missions that
require the same velocity to collect consistent high-quality measurements.

The action is then given by the policy:

at = π(Ot) (1)

The goal is to find the optimal policy π∗ which maximizes the navigation policy’s
expected return over a sequence τ of observations, actions, and rewards:

π∗ = argmax
Ã

Er∼p(Ä |Ã)

[

∑

γtrt
]

(2)

where γ ∈ [0, 1.0] is the discount factor. The optimal policy would translate in
a path that is safe and minimizes the time it takes to travel to the goal.

Reward function. Our reward function rt at time t encodes the objectives
to stay not too close to any obstacle (robs

t
) and to reach the goal area as soon as

possible (rgoalt ).
When the robot is close to an obstacle, it will compute a negative reward:

robst =







−rcrash, dht < δh ∨ dvt < δv ∨ dsurt < δv
−s0(2δh − dht ), δh ≤ dht < 2δh
0 otherwise

(3)

where δh, δv represent the thresholds for the distances of the robot to the closest
obstacle dh

t
, dv

t
– horizontally or vertically, respectively. We also check the dis-

tance to the water surface dsur
t

, as there might be surface obstacles that cannot be
detected given the sensor configuration of the robot. The threshold values δh, δv
should consider the robot’s size and turning radius. When any of the constraints
are met – i.e., the robot is too close to an obstacle or the surface – the current
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episode terminates with a large negative constant reward −rcrash. In addition,
to guarantee safety, a penalty for motions within a range [δh, 2δh) of distance
to nearby obstacles is given according to the current distance. Otherwise, if the
robot is far from the obstacles, no negative reward is applied.

To guide the robot towards the goal both horizontally and vertically, we split
the goal-based reward into two parts. First, the horizontal goal-based reward:

rgoalht =

{

−s1|θ
h
t |, ∆h < Dh

t

rsuccess − s2|θ
h
t |, otherwise

(4)

If the robot’s horizontal distance to the goal Dt

h
is greater than a threshold

∆h, then the penalty is based on the robot’s orientation to the goal – i.e., a
robot already facing the goal gets a smaller penalty, as the constant forward
velocity will ensure shorter arrival time. Otherwise, if the robot is within the goal
area, then there is a positive reward with a preference to the robot’s orientation
towards the goal.

Likewise, the vertical goal-based reward:

rgoalvt =







s3|Ḋ
v
t |, Ḋv

t ≤ 0 ∧ ∆h < Dh
t

−s3|Ḋ
v
t |, Ḋ

v
t > 0 ∧ ∆h < Dh

t

−s4|D
v
t |, otherwise

(5)

When the robot is not near the goal, the vertical goal-based reward is a positive
value if the change in vertical distance over time Ḋv

t
is negative or 0 – i.e., the

robot is getting closer to the target depth. On the contrary, it is a negative
value if the change is positive – i.e., the robot is getting farther from the target
depth. Otherwise, if the robot is within goal area, the negative reward is relative
to the distance to the target depth. This split (horizontal and vertical) of the
goal reward showed better stability in experiments than when a single combined
goal reward was applied, potentially due to the separate focus of two mostly
independent actions.

The above obstacle- and goal-based rewards conflict with each other; they
could lead to oscillations at local optima when an obstacle is nearby. Thus, we
devised a priority-based strategy (when the robot is not in the goal area) that

focuses on moving away from the obstacle by scaling rgoalht :

rgoalht ∗= s5(d
h
t − δh)/δh, ∆h < Dh

t ∧ δh ≤ dht < 2δh (6)

In all the reward equations, s0, . . . , s5 are positive scaling factors. Intuitively,
they are set so that rewards are in an appropriate scale for a balanced training
performance.

Finally, the collective reward at time t can be obtained as:

rt = robst + rgoalht + rgoalvt (7)

Network architecture. The network structure depicted in Fig. 3(left) il-
lustrates how we integrate the information vectors from the sensors. First, the
stacked predicted depth images are processed by three convolutional layers, then
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Fig. 3. (left) Network Architecture. Predicted depth images are processed by three
layers of convolutional layers (orange). Its output is flattened and concatenated with
feature vectors (green) representing the stacked relative goal positions, echo-sounder
readings, and past actions. The final fully-connected layer outputs a navigation policy
and state value. (right) Top View of the Training Env. Our model was trained in the
above simulated environment in area A (inside area with fewer obstacles and smaller
space) and B (outside area with more obstacles and larger space).

the flattened output ∈ R
512 is concatenated with processed feature vectors con-

sisting of the stacked relative goal positions ∈ R
96, SBES readings ∈ R

32, and
past actions ∈ R

64. Specifically, the combined echo-sounder readings provide an
implicit scale on the relative depth prediction without requiring calibration. The
network will produce a navigation policy and state value.

3.2 Image Depth Prediction Network

Accurate image depth predictions is important for our navigation pipeline to
work. Previous work used ground truth simulated depth images with Gaussian
noise as input for training and applied depth estimation during deployment [27].
However, this broadens the sim-to-real gap as real-world noise in depth predic-
tions is more complex than implemented simulated noise models [37]. Instead,
we utilized one of the latest monocular depth prediction networks, Dense Predic-
tion Transformer (DPT) [38], which has an encoder-decoder design and applies
a transformer as the encoder’s main building block. We selected DPT over other
deep neural networks for depth prediction for its state-of-the-art performance in
single-view depth estimation and robustness across diverse environments.

3.3 Transferable Model

DRL often has the problem of generalization: models trained in one domain fail
to transfer to other domains even if there are small differences between the do-
mains [39]. Unlike in-air, images taken underwater will look drastically different
across various environments due to the more complex lighting and backscatter-
ing effects [40]. Thus, training the model in a single fixed environment would
lead to over-fitting to that environment’s visual conditions. One solution is to
retrain the depth prediction network with an existing underwater image depth



Collision-Free Navigation 9

dataset, which, however, is not available. Another solution is to enhance the in-
put underwater images to its approximate in-air counterpart [40, 41]. Yet, most
image enhancement techniques require difficult-to-retrieve information (e.g., wa-
ter attenuation coefficients, depth maps).

Our approach is to integrate underwater features into the simulation used
for training. We modified an existing underwater simulator framework for games
to create the training and testing simulations for our proposed approach. The
framework contains custom shaders that incorporates a light transmission model
to simulate underwater optical effects, thus providing a good amount of realism.

Domain randomization. We integrated domain randomization to generate
underwater environments with different visual conditions, thus enabling trans-
ferability. In particular, at the start of every training episode, we randomize the
underwater visibility – the gradient and conditions in visibility over distance.
Visibility was selected as it significantly impacts the relative depth estimation,
thus affecting to a large extent how the robot perceives its surroundings.

We decided not to apply domain adaptation [42] – i.e., the process of learning
different environment encoding and corresponding adapted policy during train-
ing, so that during testing the best environment encoding will be found with the
corresponding adapted policy – because searching the best environment encoding
is not very practical for underwater deployments. For instance, the search would
require robot motions towards obstacles to identify the (potentially changing)
visibility feature of the specific environment.

Multi-scenario training. We built the simulated training environment via
Unity Engine3. We generated two activity areas to represent two classes of envi-
ronments that an AUV might encounter: A – a small area with fewer obstacles,
and B – a big cluttered area with obstacles at various positions and heights
(see Fig. 3(right)). In each training episode, the robot’s starting pose and goal
location are randomly reset in the environment. This exposure to different train-
ing scenarios ensures that the learned policy will be more likely to handle more
complex environments [35].

4 Experimental Results

We trained and performed experiments in simulation, in real-world with a vector-
thruster underwater robot, and with underwater datasets to validate our DRL-
based multi-modal sensor navigation system. We performed comparisons and
ablation studies with other methods. Our framework is publicly available4.

4.1 Training Experimental Settings

Our model was first trained and tested on a workstation with two 12GB NVIDIA
2080Ti GPUs. It was implemented with PyTorch and Adam optimizer [43].

3
http://www.unity.com/

4
https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation

http://www.unity.com/
https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation
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Fig. 4. Partial top view of runs in Cluttered Env. (left): Bug2 (second), Our Model
w/o SBES (third), and Our Model w/ SBES (right). Legend: robot’s start pose (green
dot); obstacles (black dots); waypoints to reach in order (circled numbers).

In simulation, the robot’s forward velocity, vertical velocity range, and yaw
angular velocity range were set to 0.345m/s, (−0.23,0.23)m/s, (−π/6,π/6) rad/s,
respectively. While the training environment allows for higher velocities, we chose
low velocities to avoid any “jerky” motion that could happen with the AUV at
high speed. The camera’s horizontal and vertical FOVs were set to 80° and 64°.
The simulated echo-sounder’s max detection range was set to 4m, which are
all consistent with the real-world sensor configuration. The simulation environ-
ments’ visibility value was randomly chosen within the range of (3,39)m.

We trained for 250 iterations – each with at least 2048 time steps – and
observed the reward was stable after around 120 iterations (learning rate of 3e-
5). The detailed constant and threshold values for the reward function – i.e.,
rsuccess, rcrash, ∆h, δh, and δv – were set to 10, 10, 0.6m, 0.5m and 0.3m, while
the scaling factors s0, s1, . . . , s5 were set to 2.0, 0.1, 1.0, 1.0, 8.0, 1.0.

4.2 Performance Comparison with Different Sensor Configurations

We first tested the efficiency of our proposed multi-modal low-cost navigation
approach against a traditional metric-based goal-oriented navigation method
that does not require any map, given that no map of the underwater environment
is available. In particular, we selected Bug2 algorithm given its guarantees on
the path length. To have Bug2 work effectively, we employed a multi-beam sonar
(MBS), a common but expensive sensor for underwater obstacle avoidance, which
emits multiple beams in a plane with a typical horizontal FOV of 120◦. We also

Table 1. Waypoint Tests Results. 10 runs for each of the three methods: Bug2 with
multi-beam sonar, our model trained without fixed single-beam echo-sounder, and our
proposed model. The travel time average and standard deviation (in seconds) of suc-
cessful runs for each waypoint were calculated, as well as the overall success ratio to
reach all five waypoints.

Method Sensors
Traveling Time/s (less is better) Success Ratio

wp1 wp2 wp3 wp4 wp5 (higher is better)

Bug2 MBS 57.6 ± 0.3 66.95 ± 0.15 41.15 ± 0.45 69.8 ± 0.9 77.65 ± 0.45 100%

Ours w/o SBES Monocular Camera 51.8 ± 5.94 56.5 ± 2.09 35.62 ± 8.07 47.0 ± 2.03 76.0 ± 2.21 40%
Ours w/ SBES Monocular Camera & SBES 38.35 ± 0.45 49.8 ± 0.78 29.3 ± 0.78 44.3 ± 0.6 67.25 ± 0.6 100%
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considered our model trained without the echo-sounder as ablation study to
observe the effect of the SBES.

We generated a test environment in simulation with multiple obstacles. The
robot’s task was to navigate to five randomly set consecutive waypoints. We set
all waypoints at the same depth, as typical navigation with an MBS involves the
robot first arriving to the target depth and then navigating along the 2D plane.

Fig. 4 shows the trajectories of the three navigation methods and Table 1
reports the quantitative results measured in terms of traveling time and suc-
cess ratio. Our proposed system with inexpensive monocular camera and SBES
achieved the highest navigation efficiency with comparable safety to Bug2 with
MBS. While the Bug2 trajectory appeared not to be affected by noise, it spent
the longest navigation time especially when moving along the obstacles. Note the
echo-sounder played a fundamental role in safe navigation. If the echo-sounder
was excluded, the model relied solely on relative monocular image depth esti-
mation to detect surrounding obstacles. As a result, at times the chosen action
might be conservative, leading to sub-optimal paths in terms of distance, or too
aggressive, increasing the likelihood of collision.

4.3 Ablation Study with Transferability Tests

To show the transferability of our proposed model to different environments and
visibilities, we performed an ablation study with the same hyper-parameters
and protocols, but considering the following combinations of training settings in
a simulated underwater environment: (1) Rand : proposed domain randomiza-
tion, (2) No Rand (Water): fixed underwater visibility (approximately 11m),
and (3) No Rand (Air): no underwater features. To firstly exhibit the models’
generalizability, another simulated environment5 was employed for testing. With
different materials, textures, lightings and custom shaders, it had a different vi-
sual appearance compared to the training environment. In this environment, the
models were tested in three different scenes, constructed to resemble possible un-
derwater obstacles present in the real-world, such as natural structures (Scene1),
submerged wrecks (Scene2) and man-made structures (Scene3).

Table 2. Quantitative Results for Transferability Tests. 10 runs for the three models
in three scenes with different visual conditions. Note: N/A means the method failed to
reach the goal during the runs and bold means the best result.

Method
Scene1 Scene2 Scene3

Blurry Medium Clear Blurry Medium Clear Blurry Medium Clear

reward 5.74 ± 2.17 6.5 ± 5.95 28.14 ± 2.85 0.43 ± 2.26 10.93 ± 11.31 12.05 ± 8.92 24.64 ± 10.19 20.58 ± 13.7 29.18 ± 8.01
No Rand (Air) success 0% 10% 100% 0% 40% 50% 70% 60% 90%

trav. time N/A 70.0 67.2 ± 0.84 N/A 53.12 ± 0.65 55.2 ± 2.84 63.29 ± 0.88 66.5 ± 4.53 66.11 ± 1.07

reward 25.27 ± 8.42 18.35 ± 11.18 13.46 ± 14.51 2.19 ± 1.78 -1.58 ± 5.94 15.04 ± 10.6 18.03 ± 11.32 30.14 ± 7.5 29.42 ± 3.27
No Rand (Water) success 90% 90% 40% 0% 10% 70% 60% 90% 100%

trav. time 70.5 ± 4.93 88.17 ± 18.36 69.25 ± 1.35 N/A 115.0 59.79 ± 8.25 71.42 ± 6.9 73.39 ± 2.63 65.35 ± 0.78

reward 24.66 ± 9.3 28.39 ± 2.26 29.56 ± 2.58 21.68 ± 9.61 23.36 ± 7.49 24.86 ± 2.92 29.17 ± 11.34 30.26 ± 9.25 36.26 ± 0.83

Rand success 90% 100% 100% 80% 90% 100% 80% 90% 100%

trav. time 67.56 ± 0.44 68.45 ± 0.72 67.05 ± 1.27 52.0 ± 0.35 53.44 ± 1.23 50.75 ± 0.46 60.75 ± 0.56 62.56 ± 0.98 61.05 ± 0.57

5
https://github.com/Scrawk/Ceto

https://github.com/Scrawk/Ceto
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Scenes 8m 12m 20m

Scene1

Scene2

Scene3

Fig. 5. Example of Trajectories in Different Scenes with Different Training. Legend:
robot’s initial position and goal waypoint (green and red dots); robot collision (red
“X”); obstacles (approximated with polygons in the plots for simplicity).

We considered three visibility scenarios: blurry, medium, and relatively clear,
with maximum visibility ranges of 8m, 12m, and 20m, respectively. Fig. 5 shows
snapshots of each scene and the resulting trajectories in some sample runs.

Comparison metrics. The following metrics were used to compare the three
methods’ performances (see Table 2):

1) Rewards (higher is better): cumulative reward average and standard devia-
tion over 10 runs,

2) Success Ratio (higher is better): number of times the robot reached the goal
with no collision over 10 runs,

3) Travel Time (less is better): average and standard deviation traveling time
(s). Failed runs were not considered.

From the results, training with underwater features has the highest gain.
Adding domain randomization allows a further increase of the cumulative re-
wards, success rate, and travel time. Models trained without randomization did
not previously encounter abundant visual conditions, thus explored a limited
observation space. Accordingly, they would not be easily applicable to different
visibility conditions and are more vulnerable to noise especially in low-visibility
environments when depth estimations are inaccurate. Scene3 in particular was
challenging with blurry visibility, due to the narrow passage between the logs.

4.4 Performance Demonstration in Real-World Environment

We conducted real-world experiments with a BlueROV2 in a swimming pool.
The robot was equipped with a Sony IMX322LQJ-C camera6 with a resolution
of 5 MP, a horizontal and vertical FOV of 80° and 64°. The fixed SBES has
a 30° beam width and a maximum range set to 4m. The (noisy) robot’s pose
was provided by an on-board compass, a water-pressure sensor to recover water

6
https://www.bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/

https://www.bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/
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depth, and a short baseline acoustic positioning system (SBL)7. A 2.8GHz Intel
i7 laptop with Nvidia Quadro M1200 was used for running the inference network
through the Robot Operating System (ROS). For real-time inference, DPT was
replaced with its computationally less expensive counterpart MiDaS [44] as our
depth prediction network – about 0.08 seconds per inference.

Fig. 6. Pool Experiment. Navigation trajectories with localization noise smoothing (leg-
end: Start and goal green and red dots; obstacles, cuboids) and images from the robot’s
camera. Red arrows point to the approximate goal locations behind the boxes.

The swimming pool was about 20m by 7m in size with a shallow (1m) and
deep (3m) end, and a slope in the middle. Two black boxes (approximate size:
0.8 x 0.5 x 0.3 m were placed in two different configurations: side by side as a
large obstacle and with a 1m separation to create a channel.

Resulting paths and reference images are shown in Fig. 6. Our proposed
navigation approach successfully drove the BlueROV2 to different 3D waypoints,
avoiding obstacles by going around, above, or through a channel (see Fig. 6).
We observed that the SBL provided noisier position information compared to
in simulation – at times the robot’s location jumped up to a meter. While the
noise affected the calculation of the relative position to the goal, our approach
does not depend on the absolute robot location to infer obstacle distance, so the
robot was able to avoid obstacles.

4.5 Action Prediction from Static Underwater Images

We also tested joint image and SBES reading data from past field trials (in the
Caribbean Sea and lake) as input to our model for action prediction. Fig. 7 shows
a sample of such images with corresponding depth predictions, locations of the
goal, and predicted actions. As expected, with obstacles nearby the predicted
action prioritized obstacle avoidance, steering the robot away, otherwise, the
action’s direction pointed towards the goal. This qualitative test demonstrates
our model’s generalizability to real-world applications.

7
https://waterlinked.github.io/explorer-kit/introduction/

https://waterlinked.github.io/explorer-kit/introduction/
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Predicted action
Path to goal

Fig. 7. Single Image Action and Depth Prediction. 1st row: images from Lake Sunapee
and Caribbean Sea. 2nd row: their respective depth predictions. Direction and magni-
tude of the action predicted (red arrow); approximate goal location (yellow arrow).

5 Conclusion and Future Work

We presented the first 3D map-less underwater navigation approach, based on
Proximal Policy Optimization Network (PPO) and domain randomization, for
low-cost underwater robots with a monocular camera and a fixed single-beam
echo-sounder. By choosing deep reinforcement learning over classic methods, we
were able to address the intrinsic challenges of seamless underwater navigation
(e.g., lack of low-cost efficiency sensor and difficulty in generating a map given
noisy positioning and perception data). We validated our approach with several
comparisons and ablation studies in different simulated environments, as well
as real-world validation in a swimming pool and with static underwater images.
Results showed that the robot is able to navigate to arbitrary 3D goals while
avoiding obstacles inferred from estimated depth images and sonar readings.

In the future, we will investigate explicit sensor fusion of camera and SBES
data to achieve better depth prediction with absolute scale, e.g. early fusion [45],
as well as controller and SBL data. In addition, we will consider the generation
of more complex environments, other real-world experiments, and the design of
integrated models for different sensor configurations (e.g., stereo cameras) and
dynamic models to adapt our method to heterogeneous underwater robots.
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