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Outline

• The subtle task of asking sensible questions 
about information in the biosphere

• The chemical Carnot construction

• The relation to computation



Big and little questions

• (Big) how does energy flow limit the 
informational state of the biosphere?

• (Little) how does energy flow limit the 
change in information in the biosphere?

Requires theory of biological decay

Can get from equilibrium thermodynamics

(Similar questions can be asked about individuals, 
species, etc., as about the whole biosphere)



The obvious (little) answer

• Follows from dimensional analysis and the 
definition of temperature

• Information gain should be entropy loss

• Heat is entropy carried by energy

• Work is an entropy-less energy source

dW = dQ = −kBTdS ≡ kBTdI

In what senses is such an answer 
useful?  
wrong?
irrelevant?



I. The complex problem of thinking 
about information in the biosphere

• Many levels, separation of timescales, and 
flow of constraint and control make 
assembling from the molecules very hard

• Which information?  Genes?  Heats?

• Which building process?  Metabolism? 
Natural selection?

• What level?  Individuals?  Ecosystems?  
Biosphere?



The motivation to think about 
bounds rather than models

• Bounds from reversible processes also 
constrain irreversible ones

• Reversible-process bounds can be 
aggregated through state variables; 
irreversible models usually cannot be

• Bounds supersede models, unknown 
innovations, and ignorance of details



The challenge of using equilibrium 
information for the biosphere

• Life involves kinetics as well as 
energetics

• Our biosphere could (?) be a 
“frozen accident”

• Only if barriers are small 
enough that energy flow is 
limiting is information a 
relevant constraint

But such limits can be 
suggested in surprising places...



Allometric scaling of growth

West G.B., Brown J.H. & Enquist B.J. (2001) A general model for otogenetic growth. Nature, 413, 628-631
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Informational consequences of 
allometric scaling
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• Energy/mass used by any 
stage of life is an invariant

• What minimal energy would 
we expect is needed to put  
“information” into biomass?

• Energy/ideal by any life   
stage is an invariant

• Formation of biomass is 
clocked by information, not 
directly by energy

Q: Does life history depend on energy or information?



Curious consequences

• No direct evidence from growth that there 
is a cost to maintaining the living state

• Even decay seems to be created in 
proportion to growth and repair processes

• Living systems scale as if they were on the 
energy/information bound, even though they 
deviate from it by an “inefficiency” factor



II. Instantiating chemical 
measures of information

• Would like a model that is equivocally 
metabolic and evolutionary

• A literal subsystem is more intuitive than an 
abstract vision of “life”

• Consider cycles to leverage the Carnot 
construction from engines



Toy model for metabolism & evolution

http://www.cem.msu.edu/
~reusch/VirtualText/nucacids.htm
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http://www.rpi.edu/dept/bcbp/
molbiochem/MBWeb/mb1/part2/f1fo.htm

Phosphate-driven 
polymerization

ATP regeneration

(Possibly sequence-dependent) 
equilibrium relations



Reactions and chemical work
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Partial 
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Express chemical work 
from mechanical work



The “chemical Carnot cycle”
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Chemical “Carnot efficiency”
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inside the “Carnot” box
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work to “capacity” along 
arc CD
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Bounds between work and entropy
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Consider fractions of polymers Dilute-solution chemical potentials

• Express cycle work as 
function of distributions 
relative to equilibrium

• Kullback-Leibler divergence, 
or “relative entropy”



The energy/entropy representation
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III. The parallel thermodynamics 
of computation

• Can we attach a minimum energy cost to 
algorithms, and not merely machines?

• Does the cost aggregate in the same manner 
as the logic of computation?

• What relation of computation to chemistry?



Attaching energetic costs to algorithms

• All computable functions can be 
generated from a finite list of 
primitive Boolean operations

• Decompose every such operation 
into input, logic, output, and erasure

• Recognize that input, logic, and 
output can be done reversibly

• Erasure alone converts data entropy 
to heat entropy

• The cost of a computation is the 
cost of the erasures it requires
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Example: the Szilard single-particle gas

• Consider ideal calculation of 
XOR

• Input: two IID binary streams

• Output: one IID binary stream

• “Parity”-entropy of output is a 
component of input entropy 

• Sign(x1)-entropy of input 
stream is rejected to heat bath

S(X) = S(Y ) + Q/T

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

“Landauer’s principle”



The “Landauer cycle”

• Intake of data bits from high-entropy input 
stream is arc AB

• Erasure/rejection of heat is BC

• Rejection of data bits to low-entropy 
output stream is arc CD

• Data take the place of   ,N                       
in chemistry

The Landauer cycle is the 
chemical Carnot cycle

µ



Links of computation to chemistry

• Temperature and entropy are universals for 
heat engines, chemistry, and computation

• Chemical-number variables are the novelty; 
correspond to data streams in computation

• Ensemble treatment of data is equivalent to 
ensemble treatment of molecular 
arrangement (a new insight for computation 
from chemistry)



A chemical application of 
computational theory (Tom Schneider)

• Classic information theory problem: reliable 
signal communication over noisy channels

• Concept of error-correcting encoding can be 
formulated as a computation problem

• Optimal error correction can be assigned an 
energetic cost

• Through the Landauer-chemistry map, same 
ideas can be applied to optimal molecular 
recognition

http://www-lmmb.ncifcrf.gov/~toms/



Computation in relation to 
error-correcting encoding

(reversible 
computer)

(reversible 
computer)

Traditionally we erase the channel 
noise, passing the input signal 
entropy through to the output



Shannon’s theorem for channel 
capacity (Gaussian channel)
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Q: Can we encode messages so that they can 
be recovered with probability approaching 
unity, even at finite channel noise?

Fill D-bit code space with 
maximally distant spheres

Channel capacity per symbol transmitted



Optimal molecular recognition

• “Prime” a protein in solution (introduce internal 
energy to stress its conformation)

• Allow binding to a random site on DNA or RNA

• Allow priming energy to relax as protein 
migrates along chain, as a function of sequence

• Reliably stop migrating only when target          
sequence is found 

Q: What is the minimal energy cost to enable a 
protein to reliably select a single sequence from a 
suite of random possibilities?



Schneider’s Shannon theorem 
for reliable discrimination
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Priming (enthalpy) provides energy for D non-covalent associations

(Entropy of the protein/
sequence ensemble)

Coordinate the 2D binding affinities

“Machine capacity” per degree of freedom



Channel versus molecule problems

• “Priming” energy corresponds to 
signal power; kT corresponds to 
channel noise in Shannon bound

• Shannon erases the noise power; 
Schneider erases the “signal”

• This use of enthalpy to reject 
entropy is the math of 1st-order 
phase transition
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Concluding thoughts

• Kinetics of the ensembles of life lend 
themselves to a machine-like description

• Equilibrium bounds on energy and 
information work better than they “should”

• Carnot-like decompositions give clarity to 
both metabolism and evolution

• We have a principled map between 
chemistry and computation



Some Further Reading

• T. M. Cover and J. A. Thomas, Elements of 
Information Theory (Wiley, New York, 1991)

• E. Fermi, Thermodynamics (Dover, New York, 
1956)

• C. Kittel and H. Kroemer, Thermal Physics, 
(Freeman, New York, 1980)

• E. Smith, Thermodynamics of Natural 
Selection I - III, J. Theor. Biol. http://dx.doi.org/
10.1016/j.jtbi.2008.02.010, 008, 013 or SFI 
preprint #06-03-011


