Fearful Symmetries:
An Introduction to Quantum Algorithms

Cristopher Moore, University of New Mexico and the Santa Fe Institute
Physics

Problems:
- come from Nature
- have solutions that are as simple, symmetric, and beautiful as possible (far more so than we have any right to expect)

Fig. 1: Nature
Problems:

- are artificial
- are maliciously designed to be the worst possible
- may or may not have elegant solutions...
- ...or proofs (cf. Erdős)

Fig. 2: The Adversary
In 1928, Dirac saw that the simplest, most beautiful equation for the electron has \textit{two} solutions. Four years later, the positron was found in the laboratory.
Conservation is Symmetry

\[\frac{dx}{dt} = \frac{\partial \mathcal{H}}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial \mathcal{H}}{\partial x} \]

perhaps you are more familiar with \(p = mv \) and \(F = ma \); try with \(\mathcal{H} = (1/2)mv^2 + V(x) \)

Conservation of momentum follows from translation invariance:

moving entire world by \(dx \) doesn’t change energy

\[\frac{dp}{dt} = -\frac{\partial \mathcal{H}}{\partial x} = 0 \]
Conservation is Symmetry

Noether’s Theorem:
symmetry implies conservation

\[
\frac{d\theta}{dt} = \frac{\partial H}{\partial J}, \quad \frac{dJ}{dt} = -\frac{\partial H}{\partial \theta}
\]

Conservation of angular momentum follows from symmetry under rotation!

In classical and quantum mechanics, *all* conservation laws are of this form.
Relativity is Symmetry

Physics is invariant under changes of coordinates to a moving frame:

\[
\begin{pmatrix}
 x \\
 ct
\end{pmatrix} \rightarrow \gamma \begin{pmatrix}
 1 & -v/c \\
 -v/c & 1
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

at small velocities, Galileo:

\[x \rightarrow x - vt , \ t \rightarrow t\]
Groups

A *group* is a mathematical structure with:

- **associativity:** \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
- **identity:** \(a \cdot 1 = 1 \cdot a = a \)
- **inverses:** \(a \cdot a^{-1} = a^{-1} \cdot a = 1 \)
- but not necessarily \(a \cdot b \neq b \cdot a \)

 (these are *non-Abelian* groups)
Some Common Groups

- cyclic: \mathbb{Z}_n (addition mod n), \mathbb{Z}_n^* (multiplication)
- symmetric group (permutations): S_n
- invertible matrices
- rotations: $O(3)$
- $O(3)$ contains S_5!
Symmetry Groups

Transformations that leave an object fixed:

\[\mathbb{Z} \times \mathbb{Z} \quad D_8 \quad S_5 \]
When Symmetry is Periodicity

- Given a function $f : \mathbb{Z}_n \rightarrow S$ we can ask for which h we have

 \[f(x) = f(x + h) \]

 for all x.

- These h are multiples of the periodicity r.

- The set of all such h forms a subgroup.
Periodicity Gives Factoring!

- To factor n, let $f(x) = c^x \mod n$.
- Find smallest r such that $f(x) = f(x + r)$ i.e., $c^r \equiv 1 \mod n$. Suppose r is even:
 \[
 c^r - 1 = kn = (c^{r/2} + 1)(c^{r/2} - 1)
 \]
- Now take g.c.d. of n with both factors (easy).
- Works at least $1/2$ the time with random c!
Factoring: An Example

Let’s factor 15. Choose $c=2$:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^x</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

$2^4 - 1 = 15 = (2^2 - 1)(2^2 + 1) = 3 \times 5$

Bad news: in general r could be as large as n, i.e., exponentially big as a function of #digits.
Quantum Measurements

Measure $f(x)$, and “collapse” to a superposition

\[
\begin{array}{cccccccccc}
 x : & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 2^x : & 4 & 4 \\
\end{array}
\]

This is a random coset of the subgroup H.

But, if we simply measure x, all we see is a random value! This is the wrong measurement.
The Fourier Transform

Periodicities are peaks in \hat{f}, where ($\omega = e^{2\pi i/n}$)

$$f(x) = \frac{1}{\sqrt{n}} \sum_k \hat{f}(k) \omega^{kx}, \quad \hat{f}(k) = \frac{1}{\sqrt{n}} \sum_x f(x) \omega^{-kx}$$

Change of basis $Q_{x,k} = \frac{1}{\sqrt{n}} \omega^{kx}$ from x to k. This transformation is unitary:

$$Q^{-1} = Q^\dagger$$
Quantum mechanics allows us to perform unitary transformations.

We can “do” the Fourier transform mod n with only $O(\log^2 n)$ elementary quantum operations.

We then measure the frequency, this gives us the periodicity of $f(x)$.

Shor’s Algorithm
Efficient Circuits for the QFT

- We can break down the QFT recursively (like the FFT) into elementary gates:

- Quadratic in the number of qubits
- Thus n can be exponentially large!
Graph Isomorphism

- Factoring appears to be outside P, but not NP-complete. (Indeed, we believe that BQP does not contain all of NP.)
- Another candidate problem in this range:
Solving with Symmetry

- Take the union of the two graphs. Permuting the $2n$ vertices defines a function f on S_{2n}. What is its symmetry subgroup H?

- Assume no internal symmetries. Then either f is 1-1 and $H = \{1\}$, or f is 2-1 and $H = \{1, m\}$ for some m that exchanges the two graphs.
The Permutation Group

- The set of $n!$ permutations of n things forms the permutation group S_n:

 \[X \mid I \mid = \begin{array}{cc} & \times \\ \times & \times \end{array} \]

- A richly non-Abelian group ($ab \neq ba$.)
The Hidden Subgroup Problem

- We have a function \(f : G \to X \)
- We want to know its symmetries \(H \subseteq G \)
- Essentially all quantum algorithms that are exponentially faster than classical are of this form:
 - \(\mathbb{Z}_n^* = \) factoring
 - \(S_n = \) Graph Isomorphism
 - \(D_n = \) some cryptographic lattice problems
Non-Abelian Fourier Transforms

- For non-Abelian G, we need representations:
- Geometric pictures of G in d-dimensional space

S_5 has a three-dimensional representation: permute the colors by rotating.
Non-Abelian Fourier Transforms

- S_3 has 1 (trivial), $\pi = \pm 1$ (parity), and rotations of three points in the plane:

 $\rho((1\ 2)) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\rho((1\ 2\ 3)) = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}$

- Gives $1+1+4 = 6$ “frequencies,” just enough. Coincidence?
For any group, there is a finite number of irreducible ("prime") representations.

These allow us to define a Fourier transform over that group.

Everything beautiful is true...
It turns out that this naïve generalization of Shor’s algorithm doesn’t work: the permutation group S_n is “too non-Abelian.”

Tantalizingly, we know a measurement exists, but we don’t know if we can do it efficiently.

How much can quantum computing really do? How “special” is factoring?