GENERALIZED FFTS - A SURVEY
OF SOME RECENT RESULTS

DAVID K. MASLEN AND DANIEL N. ROCKMORE

ABSTRACT. In this paper we survey some recent work directed towards gen-
eralizing the fast Fourier transform (FFT). We work primarily from the point
of view of group representation theory. In this setting the classical FFT can
be viewed as a family of efficient algorithms for computing the Fourier trans-
form of either a function defined on a finite abelian group, or a bandlimited
function on a compact abelian group. We discuss generalizations of the FFT
to arbitrary finite groups and compact Lie groups.

1. BACKGROUND

The classical Fast Fourier Transform (FFT) is one of the most useful algorithms
ever developed. It is the cornerstone of many digital signal processing algorithms
and as such impacts our lives daily. The best known of these algorithms is the
Cooley-Tukey FFT. Originally discovered by Gauss, as an efficient means of in-
terpolating asteroid orbits [41] and later rediscovered by Cooley and Tukey for the
efficient analysis of time series [26] this algorithm permits the fast and reliable com-
putation of the Discrete Fourier Transform (DFT), which gives the decomposition
of a periodic function into a linear combination of sines and cosines. For historical
discussions of the development see [24, 25, 51].

There are various contexts in which this algorithm and its many variants may be
formulated. Our point of view is a representation theoretic one. For us, an FFT is
an algorithm which gives an efficient decomposition of a function on a group, or its
coset space, into a sum of irreducible matrix coefficients. In this setting the classical
FFT is an algorithm for abelian groups and it is natural to look for generalizations
of these techniques to other groups.

The first such results in this direction appear to be due to Willsky [92] who
was looking for new algorithms for filter design. Others also did much to lay the
groundwork in this relatively new interdisciplinary area looking to extend the uses
of the FFT in signal processing [57, 11, 22] and data analysis [31]. In this paper we
will survey some of the recent results about such generalizations. We focus primarily
upon recent work using factorization of group elements, in the finite group case,
and the analogous approach for compact groups [68, 69, 64]. We shall consider the
algorithmic aspects of this work and leave a discussion of the potential applications
for another paper in this volume [80].

We proceed as follows. In Section 2 we discuss two abelian FFTs, an FFT
due to Yates, as well as the Cooley-Tukey FFT. These algorithms may be given
formulations that reveal many properties of generalized FFTs. They are based on
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the factorization of group elements, the factorization of representations as tensor
products, and the use of bases well-behaved under the restriction of representations
to a subgroup. An important feature of our approach to Cooley-Tukey is a scheme
for indexing basis vectors in the representations by paths in a related diagram.

Section 3 discusses the relevant generalization of the Fourier transform to finite
groups. The majority of this section is devoted to a summary of the “separation
of variables” methodology which is based on the use of adapted bases and factor-
ization of group elements. This is a completely general technique for constructing
FFTs for finite groups and besides yielding many new FFT algorithms, it also gives
a framework for deriving many earlier FFTs, both abelian and nonabelian, in a
uniform fashion. We also consider the problem of how to find the best FFT that
uses these techniques. Separation of variables is one approach for FFT design. We
explain others at the end of the section.

In Section 4 we turn to the continuous compact case. Here we pursue the point
of view that explains the Cooley-Tukey FFT as an efficient expansion of a band-
limited function on the circle as a linear combination of complex exponentials. For
arbitrary compact groups there is also a natural notion of band-limited function. In
this case computation of a Fourier transform requires a quadrature law or sampling
theorem as well as an efficient algorithm for computing the Fourier coefficients from
the samples. The latter sometimes involves the use of fast orthogonal polynomial
transforms, which are discussed separately in Section 5. We close with some open
questions in Section 6.

Because this paper is a survey, it is largely expository in nature. Pointers to more
thorough discussions of the material are given throughout the paper. Our particular
focus has caused us to omit other important generalizations of the FFT. Perhaps
the most noticeable omission is a discussion of the wealth of exciting advances in
the area of wavelets, for which either of the works [18, 27] would be a great place
for the interested reader to begin.

Acknowledgements. We would like to thank Larry Finkelstein and Bill Kantor
for inviting us to participate in the DIMACS workshop on groups and computation.
We would also like to thank Michael Clausen for several helpful suggestions.

2. Two ORIGINS FOR THE FFT

The generalizations discussed in this paper have as their natural predecessors
some of the well-known abelian FFT algorithms. To date, abelian groups have
provided the most useful class of FFTs, justifying the wealth of algorithms devoted
to this special case. It would be well beyond the scope of this paper to discuss all of
these approaches and we refer the interested reader to the books [38, 90] and their
many references for this material.

Instead, to focus our attention, in this section we discuss just two of these earlier
algorithms, both of which illustrate many features of a more general theory. Our
first example is an algorithm due to the statistician Yates [93]. This was developed
for the efficient analysis of data from 2*-factorial designs—a particular aspect of
the statistical analysis for experimental designs. Our second example is the Cooley-
Tukey FFT [26], probably the most famous of these abelian techniques. Here too
the motivation came from the need for efficient data analysis, in this case data
from time series. Both algorithms may be formulated as solutions to computational
problems which have naturally suggested group theoretic formulations.
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2.1. Yates - Fast interaction analysis for 2*-factorial designs. One version
of the abelian FFT is due to the statistician and design theorist Yates. In order to
efficiently compute the interaction analysis for data from a 2*-factorial design, Yates
described an algorithm which, as we will see, is an FFT for the group (Z/2Z)*.
As aset, a 2%-factorial design is simply the set of all k-tuples of signs {41, —1}*,
which can be thought of as the vertices of the k-dimensional hypercube or the space
of binary k-tuples. In the context of statistical design it is a natural way of index-
ing the trials of an experiment which depends on k factors, each of which may be
set at a high or low level. For example, consider the following toy data set for
a 23-factorial design. Here we could imagine the following scenario: A farmer is
interested in factors affecting the growth of his wheat. In particular he’d like to
understand how sunlight, weed killer and fertilizer affect the height of the plant.
Simplifying things, the plants are exposed to all three factors at various combina-
tions of two possible levels, high and low, denoted as + or — respectively. Each of
the eight possible combinations is applied to the same number of plants and finally
the average height, denoted ;¢ for a given choice of sunlight (s), weed killer (w)
and fertilizer (f), at each combination is recorded. Table 1 gives a possible sum-
mary of such an experiment. Thus, for example, row two in Table 1 indicates that

s o f | oy
+ [+ [+ 69
-+ [+ 8
+ |-+ 63
- =1+ 77
+ |+ [ 6l
-+ =] 92
R
—T=1=1 39

TABLE 1. An example of a possible data set for a 23-factorial design.

at a low level of sunlight, and high levels of weed killer and fertilizer, the average
wheat plant height was 81 centimeters.

Our farmer is interested in the various effects of the factors, both individually and
in combinations. There are various quantities which seem to be worth examining.
The zeroth order effect is the grand mean or total average height, denoted ..
This is simply the average of all the (already averaged) heights

1
Hgr = g Z Asop f -
(s,w,f)e{+,-}°
The grand mean estimates the intrinsic yield of simply growing wheat, i.e., by
virtue of planting wheat, the average height which could be expected independent
of doing anything to the plant. Next to be considered might be the “pure” first
order effects: the effect of one particular factor, all other factors being held equal.
In the case of sunlight this might be measured by considering the differences of the
average yields at a high level of sunlight versus the average at a low level

1

1
Hs = Z(m’" fogp gt g tagyy) - Z(Of——— to_ytayoFoa_gy)
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Pure second order and third order effects have similar descriptions, the collection
of which may be coded up as the computation of the following matrix-vector mul-
tiplication

r 1 1 1 1 1 1 1 gt Sptgr

1 =1 1 -1 1 =1 1 -1 a4y 4us

1 1 -1 =1 1 1 =1 -1 gy dpiwy

I =1 -1 1 1 =1 =1 1 a4 | | 4psw

I 1 1 1 =1 =1 =1 =1 || aypse |~ dpp 2.1)
1 =1 1 -1 =1 1 =1 1 g 4usp '
1 1 -1 -1 =1 =1 1 1 g A p

I =1 -1 1 =1 1 1 -1 a___ dpisw F

When written in this fashion, it becomes evident that this analysis is the same
as computing the projection of the data vector onto an orthogonal basis in which
the projections have a natural interpretation.

At this point group theory may enter. The data vector is considered as an
element in the vector space of complex-valued functions on the group (Z/2Z)>.
Initially the data is expressed in terms of the basis of delta functions on the group,

a = Z a(z)b;.

cE(Z/22)3
Posed in this way, analysis of the data is a rewriting of the data vector in terms of
a new basis for which the coordinates seem to carry more information. In this case,
the new basis is precisely the basis of characters (one-dimensional representations)
of (Z/2Z)3, and the computation of the matrix vector product above is the Fourier
transform of the data.

Notice that if computed directly, 82 operations are required to compute the full
analysis in the above example. Analogous decompositions may be obtained for
any 2% factorial design and in general (2¥)? operations are required to compute the
analysis directly. For k large this cost is prohibitive.

Yates succeeded in finding an algorithm which is much more efficient than direct
computation. More precisely, he discovered an algorithm which requires at most
3-2% .k = 3.2% log(2*) operations [93]. To give a brief, group theoretic interpretation
of his algorithm, let Hy, denote the matrix of the Fourier transform on (Z/2Z)*.
Thus H; 1s the 2 x 2 matrix

1 1
Hy, = ( 1 1 ) ;

and Hj is the matrix appearing in equation (2.1). Any character of (Z/2Z)> may
be written as a tensor product of characters of the group Z/2Z. By factoring
characters in this way 1t easily follows that Hz = H; ® Hy ® Hy, and hence that
Hs has the factorization

Hs=[1.® H4].[[L® Hi ® L] .[H1 ® 1]

where I; denotes the j x j identity matrix and ® the usual tensor product of ma-
trices. This is a sparse decomposition of the matrix Hg, and the Fourier transform
of a is computed by multiplying by each of these sparse matrices in turn.

We shall see other algorithms based on factoring representations as tensor prod-
ucts later in the paper. This method is useful for computing Fourier transforms on
a direct products of groups, and on solvable groups.
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Remark 2.1. The Fourier transform we have just described on the group (Z/2Z)*
is also known as the Walsh-Hadamard transform.

2.2. Cooley-Tukey - A fast algorithm for time series analysis. Cooley and
Tukey’s (re-)discovery of the FFT was motivated by the need to efficiently ana-
lyze data from time series. Loosely speaking, this is data—sometimes called the
“signal”—which is (continuously) indexed by time. Standard analysis of such data
rewrites the function as a Fourier series, i.e., as a linear combination of sines and
cosines, families of periodic functions which have a well-understood behavior. The
particular application that Cooley and Tukey had in mind early in the 1960’s was
the analysis of seismic data, potentially monitoring seismic activity within the So-
viet Union. Efficient algorithms were needed to detect nuclear tests, thereby avoid-
ing the need for site visits, which at that time were a sticking point in the negotiation
of a nuclear test ban treaty. In general, long time series would be obtained and
fast algorithms were mandatory for a useful analysis (cf., [24, 25]). We proceed by
presenting a fairly standard treatment of the algorithm and then giving it a group
theoretic reinterpretation.

2.2.1. The Cooley-Tukey algorithm. The discrete Fourier transform (DFT) of a se-

quence of N complex numbers, xg, z1,...,2zn_1 1s the sequence
N-1
Xk:ijwjk, k=0,1,2,....N — 1; for w= 2™V,
j=0 (2.2)

If computed directly, each number X would require N operations which gives a
total of N2 operations to compute the DFT. As N becomes large this cost quickly
becomes prohibitive. Cooley and Tukey derived and implemented an algorithm
which given a prime factorization of N = p; ---p,, computed the DFT in N )", p;
operations [26]. TIf each p; = 2, this is 2N log, N operations. This algorithm,
together with many variants as well as different approaches to computing the DFT,
yield a family of techniques which for any N give an O(N log N) algorithm for
computing the DFT (see, e.g., [19, 38, 90]). This speed-up has had tremendous
significance, effectively making digital signal processing a reality.

To see how this algorithm works, let us consider what happens when N = pq has
factors. In this case we change the indexing of the sequences z; and X by setting

J =12 tug, k= my 4+ map (2.3)

and then defining the two-dimensional arrays

xi i, = %j, At =0,...p—1, 19 =0,...q—1
and
Xmims, = Xk, m; =0,...p—1, my =0,...q—1
Substituting into (2.2) we obtain
g-1 p=1
Xnymy = 3 w2mdmae) N (ayiimg, o (2.4)
i2=0 i1=0

The computation may then be performed in two steps. First, ¢ transforms of length
p are computed according to

p—1

v _ E i1m
Xiz,ml - (wq) ! 1332.172.2.

i1=0
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Next, p transforms of length ¢ are computed,

g—1

Z wiz(m1+m2p))2'i2 -

i5=0
Notice that instead of (pq)? operations, the above uses (pq)(p + ¢q) operations. If
we had more factors in the expression (2.4), then this approach would work even
better, giving Cooley and Tukey’s result. The main idea is that we have converted a
one-dimensional algorithm, in terms of indexing, into a two-dimensional algorithm.

2.2.2. Group theoretic interpretation of the FFT. Let G = Z/NZ be the group of
integers modulo N. Then the characters of GG are the functions (g, ..., (ny—1 defined
by Cx(j) = wi*. If we view the sequence z; as defining a function on Z/NZ and
the sequence Xy, as defining a function on the group of characters, then the discrete
Fourier transform is seen to be the Fourier transform on Z/NZ. In other words, it
is given by the sums

If N = pq, then the indexing used above in the Cooley-Tukey algorithm can be
explained in terms of the subgroup, ¢Z/NZ, generated by the group element gq.
Consider the reindexing we used for the group element j via the expression

J =12+ (i19).
As j is now viewed as an element of the group Z/NZ, this equation represents a
“factorization” of j as the sum of the group elements i and ¢;q. The elements
i1q are precisely the elements of the subgroup ¢Z/NZ, and the elements i; form a
complete set of coset representatives for Z/NZ relative to this subgroup.

The index m; has a different interpretation, in terms of restrictions of charac-
ters to the subgroup ¢Z/NZ. This subgroup has characters x,,(i1q) = (w?)1™,
and the restriction of (; to qZ/NZ is the character (x| ¢Z/NZ = xm,. The quan-
tity )~((i2; my ) is therefore indexed by pairs consisting of a coset representative for
(Z/NZ)/(qZ/NZ) and a character of ¢Z/NZ. If we let A denote the set of coset
representatives, then the expression (2.4) for the Fourier transform used to derive
the FFT can be rewritten as follows

X(Q) =Y Ca) Y (CLaZ/NZ)(b)wass
acA beEgqZ/NZ

where ¢ is any character of Z/NZ. In this form, both (2.4) and the Cooley-Tukey
algorithm generalizes to any finite group with a proper nontrivial subgroup (see
Section 3). If we want to derive the Cooley-Tukey algorithm for larger factorization
N = p;1 - -pr, we simply apply this technique to a chain of subgroups of Z/NZ.

The indexing scheme for characters in Z/NZ may be nicely described by a di-
agram indicating the restrictions of the irreducible representations from group to
subgroup within the chain Z/NZ > qZ/NZ = Z/pZ > 1. As an example, the
diagram for Z/6Z > 2Z/6Z = Z/3Z > 1 is shown in Figure 1. In this diagram
there is a unique path of length two from 1, at the right hand side, to (; at the
left. Thus the representations of Z/6Z may be indexed by paths of length 2. The
characters of 2Z/6Z correspond to paths of length one starting at the left. If we
are given a character (j of Z/6Z determined by a path of length two, then the path
corresponding to the restriction may be obtained by forgetting the last edge of the
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my =0 Cl

G2

G
my =1 C4

Gs

X2

F1GURE 1. The Bratteli diagram for Z/6Z > 2Z/6Z > 1.

path. This determines m;. Although ms can be described using this diagram,
this index is not needed by the algorithm, as it only appears in conjunction with
my. When we come to treat the Fourier transforms of functions on nonabelian
finite groups, we will see that the values of the Fourier transform of a function
are no longer indexed by representations, but they may still be indexed by paths
in a diagram reflecting the restrictions of irreducible representations of subgroups
occurring in a chain of subgroups.

Remark 2.2. The paper [3] gives a different representation theoretic interpretation
of Cooley-Tukey, relating it to the Weil-Brezin map.

2.2.3. The transition from continuous to discrete. Many data sets, e.g., seismic
data, come from a continuous signal from which we have taken a finite set of
samples. This means that we must conduct our analysis with incomplete data; the
signal is a function on the real line, but we can only compute Fourier transforms of
a finite sequence. To relate the Fourier transform of a continuous function to the
transform of a finite sequence, we should make the following assumptions:

e The signal is a periodic function on the real line.
e The signal is band-limited. I.e. | the signal has a finite Fourier expansion.

Notice that the first assumption implies that we may view the signal as a function
on the circle, and thus the second assumption makes sense. In practice, neither of
these assumptions will be satisfied, but as we only ever encounter data over a finite
time period, we might as well assume the signal has been extended to a periodic
function of the line. The second assumption is on slightly firmer ground, as it
is possible to bound the effect of higher frequencies on the sampling procedure,
provided there is only a small part of the signal is at these frequencies.

Without loss of further generality, we may assume that the signal f is periodic
function on the real line of period one, so that the second assumption implies that
f has the expansion

)= 3 fkyemit
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ff)r 0 <t < 1. The number N is called the bandwidth of f. The Fourier coefficients
f(k) are given by the formula

flk) = /0 f(t)e?miktdt, (2.5)

In order to compute the Fourier coefficients we need some way to reduce the
integrals (2.5) to finite sums involving a discretization of f. Such results go by the
name of quadrature or sampling theorems. If f is band-limited with bandwidth NV,
then the following quadrature rule is well-known:

2N . o
f <2N.7+ 1) e27rzk]/(2N+1). (26)
:0

Thus, the signal may be recovered from its finite collection of equispaced samples
{f (ﬁ) [0<j<2N + 1}, in the sense that this information is sufficient to

. 1
f(k):2N+1

J

compute its Fourier coefficients. If we define finite sequences, z; = ﬁf (mﬁT),

and X = f(k), then the quadrature rule (2.6) becomes a DFT of length 2N + 1,
and may be computed efficiently by the Cooley-Tukey algorithm.

When used as above, the Cooley-Tukey FFT is an algorithm for computing the
Fourier expansion of a band-limited function on the circle. For this there are two
ingredients:

1. A sampling theorem which reduces the necessary integrals to finite sums.
2. A fast Fourier transform, which efficiently computes the discretized integrals.

We shall see later that both of these ingredients have natural generalizations to
compact groups.

2.2.4. Summary. We have seen above that various tasks in data analysis required
algorithms for the efficient projection of data vectors onto vectors which admit some
natural interpretation for the problem at hand. In both cases these projections have
a group theoretic interpretation as the projection of functions defined on a group,
onto vectors derived from irreducible representations of the group. With this group
theoretic interpretation, a natural direction for generalization arises: Given a func-
tion on a group with a finite expansion in terms of irreducible matrix coefficients,
describe an algorithm to efficiently compute this expansion. The remainder of this
paper is a description of some recent progress towards solving this problem.

3. FFTs FOR FINITE GROUPS

The first generalization we pursue casts both Yates’s algorithm and the Cooley-
Tukey FFT as a particular instance of a fast Fourier transform on a finite group.
This more general framework seems to have been first considered by Willsky [92]
for uses in signal processing. Later motivations came from filter design [57] and
data analysis [31].

Definition 3.1 (Fourier Transform). Let G be a finite group and f be a complex-
valued function on G.

1. Let p be a matrix representation of G of dimension d,, i.e., p is a group
homomorphism from G into the group of d, x d, invertible complex matrices.



GENERALIZED FFTS 9

Then the Fourier transform of f at p, denoted f(p) is the matrix sum,

Fp) =" F(s)p(s). (3.1)

SEG
2. Let R be a set of matrix representations of G. Then the Fourier transform
of f on R is the collection of Fourier transforms of f at the representations

mwR.

Fast Fourier transforms or FFTs are algorithms for computing Fourier trans-
forms efficiently.

Example 3.2. It is not difficult to see that both examples of Section 2 are spe-
cial cases of this definition. In each case the irreducible representations are one-
dimensional so there is no ambiguity about the choice of basis for the matrix repre-
sentations. For (Z/2Z)*, the functions x,(w) = (=1){"¥) for v, w € (Z/2Z)* (and
inner product computed mod 2) give all irreducible representations. In the second
case the functions (j(k) = e2™iik/N are the irreducible representations of the group

Z/NZ.

Remark 3.3. The definition of Fourier transform given above is most convenient for
our purposes, but a number of equivalent versions are possible.

1. Computing the Fourier transform of f at p is equivalent to computing the
collection of scalar transforms at the matrix coefficients p;;, for 1 <¢,j < d,

F(p)is =Y F(9)pij (5)-
SEG

2. It 1s well-known that the matrix entries of a complete set of inequivalent
irreducible matrix representations of G form a basis for the vector space of
complex functions on G. Computing the Fourier transform of a function f at
such a complete set of representations is equivalent to expanding the function
fY(s) = f(s71) in the basis of matrix coefficients. We shall simply refer to
such a calculation as the computation of a Fourier transform.

3. The Fourier transform at a complete set of irreducible representations is equiv-
alent to change of basis in the group algebra C[G], from the basis of point-
masses (delta functions) to a basis of matrix coefficients.

4. The Fourier transform at the regular representation is a map from functions
on the group to convolution operators on the group.

5. A model representation of G is the direct sum of a complete set of ir-
reducible representations of G. Computing a Fourier transform at a model
representation is equivalent to computing a Fourier transform on the corre-
sponding complete set of representations.

The arithmetic complexity of computing a Fourier transform conceivably de-
pends on the choice of basis for the representations.

Definition 3.4 (Group complexity). Let G be a finite group, and R any set of
matrix representations of G. The complexity of the Fourier transform for the
set R, denoted Tg(R), is defined to be the minimum number of operations needed
to compute the Fourier transform of f on R via a straight-line program for an
arbitrary complex-valued function f defined on GG. Define the complexity of the
group G to be

¢(G) = min{Ta(R))
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where R varies over all complete sets of inequivalent irreducible matrix representa-
tions of G.

Remark 3.5. 1. The computational model used here is a common one in which an
operation is defined as a single complex multiplication followed by a complex
addition.

2. Note that Tg(R) = Ta(®,.p). e, the complexity for a set of representa-
tions is equal to the complexity for the direct sum of the representations.

The complexity of a finite group provides a classification of finite groups ac-
cording to the complexity of the most efficient algorithm to compute some such
transform on the group. Direct computation of any Fourier transform gives the
upper and lower bounds

|G|—1<C(G) < Ta(R) < |Gf

In [68] we have introduced the related quantity ¢¢(R), called the reduced com-
plexity and defined by

ta(R) =Ta(R)/ G| (3.2)

This definition simplifies the statements and proofs of many following results.

The separation of variables approach. The separation of variables approach
is a method of constructing fast Fourier transform algorithms on arbitrary finite
groups, which generalizes the Cooley-Tukey method for cyclic groups. Aspects of
this approach to computing Fourier transforms have previously appeared [12, 22,
31], but it has only recently been given a general formulation [68, 69, 70]. (See also
[23] for results in this direction.)

The basic idea is to re-index the calculation so as to replace the single sum (3.1)
defining a Fourier transform by a multiple sum over many different “coordinates”.
To do this, we find group and representation theoretic interpretations for the sub-
stitution (2.3), thereby generalizing the ideas of Section 2.2 to other classes of finite
groups. Once our sum is in this multi-dimensional form, we apply ideas analogous
to those in multiple integration; factoring terms that don’t involve a particular
index through the individual sums, and computing the sums coordinate by coordi-
nate. In this way, both new and previously discovered FFTs are obtained, but in a
uniform fashion.

The separation of variables approach has a few main ingredients. The essential
ones are the factorization of group elements and the use of adapted sets of rep-
resentations, or Gel’fand-Tsetlin bases. These tools permit the rewriting of the
transform as a multiple sum, which can be computed summing over one coordinate
at a time. A careful choice of the factors of the group elements and the use of
Schur’s Lemma allows even further simplification of these expressions. These ideas
can be applied either at the level of matrices (Section 3.1) or at the scalar level
(Section 3.3), in which the Fourier transform is viewed as a collection of individual
transforms at the matrix coefficients. Because scalar multiplication is commutative,
whereas matrix multiplication is not, the scalar approach is much more flexible, and
allows the summations to be performed in different orders. The added flexibility
does not come for free, but is obtained at the expense of a slightly complicated
indexing scheme for the matrix coefficients, which expresses the computation in
terms of paths in Bratteli diagrams indexing the Gel’fand-Tsetlin basis.
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Not all FFT algorithms are described by the separation of variables approach. In
Section 3.4 we summarize alternative approaches for abelian groups which proceed
by relating the Fourier transforms of groups which are not in a group-subgroup
relationship. In Section 3.5 we consider the effect of having a normal subgroup.
In that case the separation of variables technique is supplemented by factoring
the group representations with tensor products. This is a key idea behind the
fast transforms for abelian group extensions [83], solvable groups [12, 19], and
supersolvable groups [7].

3.1. Separation of variables at the matrix level.

3.1.1. The main 1dea. Let G be a finite group, f a complex-valued function on G,
and let p be a matrix representation of G. To construct an FFT algorithm on G,
proceed as follows. Assume that that each group element g has a factorization of
the form ¢ = a,, - - -a;. Substitution of this into the definition of a Fourier transform
(3.1) and the use of the homomorphism property of group representations gives

foy=">_ plan)--pla)f(an -+ -ar)

J=ap...a1

S plan)-- 3 plaz) 3 plar) flan - -ar). (3.3)

az ai

The transform is now in a multi-dimensional form, and so can be computed by
summing on a; first, then summing on as, and so on. An algorithm for computing
Fourier transforms constructed in this way is a matrix separation of variables
algorithm. Unfortunately, this trick alone does not give a fast Fourier transform.
For this, the key point is to use the freedom of choice in the factorizations and the
representations. We make these choices with the goal of obtaining matrices p(a;)
with of a special form, e.g., block diagonal, or block scalar, or both.

To illustrate how this could lead to an efficient algorithm, suppose that the
matrices p(a;) are all block diagonal with the blocks increasing in size with i. We

start with the matrix-valued function Fy(a,,...,a1) = f(an,...,a1) - I, where T
denotes the identity matrix. This function depends on all coordinates, ay,...,a,.
After summing over the first 7 coordinates, we obtain a function Fj(ay,,...a;41),

which has the recursive definition

Fi(an,...aix1) = > _ p(ai)Fi1(an, ..., a;). (3.4)
a;
As iincreases, the matrices occurring in equation (3.4) have blocks of increasing size,
but the number of variables involved in the definition of F; decreases. By playing
these two factors off against each other, efficient algorithms can be obtained.

In practice the matrices p(a;) are not only block diagonal, but may also have
some blocks repeated, or also have a block scalar structure. In most cases, the
redundancy coming from repeated blocks is the main effect giving an efficient algo-
rithm. It is important here that the structure of the block matrices occurring are
compatible. All this is achieved by using subgroup-adapted sets of representations,
or equivalently, Gel’fand-Tsetlin bases.

Remark 3.6. The above is a brief synopsis of the papers [70, 68]. Special cases of the
matrix separation of variables approach also occur in work of Clausen on FFTs for
the symmetric group, cf. [23], especially Section 10. Orszag discusses an analogous
coordinate by coordinate approach for computing eigenfunction transforms in [75].
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Auslander, et. al. discuss how in the abelian case, choice of coset representatives
can influence running times for various architectures [4].

3.1.2. Adapted representations and structured matrices.

Definition 3.7 (Subgroup-adapted representations). Let G be a finite group, let
R be a set of matrix representations of (G, and let H be a subgroup of G. If p is a
representation of G, let p | H denote the representation of H obtained by restricting
pto H. Wesay that R is H-adapted if there is a set Ry of inequivalent irreducible
matrix representations of H such that the set of restricted representations

(RIH)={plH|peR}
is a matrix direct sum of representations in Ry .

Thus a set of representations is adapted to a subgroup H if the restrictions to
H of the representations in the set have block diagonal form according to their
decompositions into irreducible representations of H. A set of representations is
said to be adapted to a chain of subgroups if it is adapted to each subgroup
in the chain.

Gel’'fand-Tsetlin bases are an equivalent, and sometimes more useful, way of
formulating this concept. A basis for a representation space is called a Gel’fand-
Tsetlin basis relative to the subgroup H if the matrix representation obtained by
expressing the representation in coordinates for this basis is adapted. Systems of
Gel’'fand-Tsetlin bases for collections of representations are defined similarly.

Remark 3.8. Sometimes it it more convenient to deal with just a single represen-
tation, rather than a whole set R of representations. In this case the simple trick
of taking the direct sum A = @, ., p, allows us to relate many results about single
representations to results about sets of representations. In particular, note that R
is H-adapted if and only if {A} is H-adapted.

In terms of these definitions, we can reformulate Schur’s Lemma in the following
fashion.

Lemma 3.9 (Schur’s Lemma). Assume G > K > H is a chain of finite groups,
a € K centralizes H, and p 1s an irreducible representation of G, which is adapted
to both K and H. Then p(a) has the following block diagonal/block scalar form.

Horizontal block position
indexed by (¢, V')

R [ 5%11 5%21
Vertical py | Y1z [ shil | s5ol
block
Position [ voy [ ST T | 52,1
1nd§;{ed o | V22 s2.01 | s2,1
(1, v) !
plLK =1 B pus® ..., where the pu; are irreducible representations of K.

pwil H=v;1 ®via® ..., where the v; are irreducible representations of H.
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The indices, p, i’ and v,v' range over the sets, {y;} and {v;;}, consisting of those
representations occurring in the restriction of p to K and H respectively. The Sin
are scalar. There is a nonzero scalar block at position (u,v), (u',v') only if p = '
and v =v'.

In this form, Schur’s Lemma says that the representation matrices of elements
of K centralizing H are sparse. Multiplying two such matrices can be done very
efficiently, so if the elements we choose in the factorizations for the separation of
variables algorithm have this form, then we should be able to construct a fast
Fourier transform. To make this more precise, we need a measure of how sparse
these matrices are. For this, we set up the following notation.

Assume K > H are finite groups with complete sets of inequivalent irreducible
representations K and H respectively. Then let

M(K, H) = The maximum multiplicity occurring in the restriction of

representations from K to H
=max{{u|H,v): p€ K,ve H}

= The maximum possible number of nonzero entries in a row of p(a).

Corollary 3.10. Assume G > K > H and let a € K centralize H.

1. Letp be a representation of G' adapted to G, K, and H, and let F' be any d,xd,
matriz. Then p(a) - F' can be computed in M(K, H) - d?) scalar operations.

2. Let A be a model representation, i.e., the direct sum of a complete set of
inequivalent irreducible representations of G, and let F' = EgEG A(g)f(g) for
any complez-valued function f on G. Assume A 1s adapted to G, K, and H.
Then A(a) - F may be computed in M(K, H) |G| scalar operations.

3.1.3. A typical example: The symmetric group. Given Corollary 3.10, the appli-
cation of the separation of variables idea only involves some simple counting -
assuming the multiplicities are easy to compute. To illustrate, we now rederive an
algorithm due to Clausen [22] for computing Fourier transforms on the symmetric
group.

To construct an FFT for the symmetric group, we will need to use representations
adapted to the chain of subgroups

Sp > Spo1 > o> 51 ={1} (3.5)

where S; < S, is the subgroup fixing pointwise the elements j +1,...,n. Such a
basis is uniquely determined up to scale factors. Two common choices are Young’s
orthogonal and Young’s seminormal forms (see eg. [55]).

Theorem 3.11 (Clausen [22], Theorem 1.4). The Fourier transform on S, may
be computed at a complete set of irreducible representations adapted to the chain of

(n+1)n(n—1)
3

subgroups (3.5) in no more than -n! scalar operations.

Proof. According to our general philosophy, we factor the elements of the symmetric
group using the pairwise adjacent transpositions ¢s,...,%,, where ¢; denotes the
transposition (j — 1, j). Specifically, if we let Y, denote the set of words of length
n—1,

{t2~t3~~~tn,e~t3~~~tn,...,e~e~~~e~tn,e~e~~~e}
where e denotes the identity, then the factorizations needed for the separation of
variables algorithm are those in the sets, Y,,Y,_1,..., Y5 of words of length (g)



14 DAVID K. MASLEN AND DANIEL N. ROCKMORE

Now use the separation of variables algorithm for this set of words. Ie., calculate
the Fourier transform of a model representation A by first summing over the right-
most factor, then the next right-most and so on. This process naturally breaks up
into n — 1 sections as we sum over those factors coming from each of the sets Y.

Consider now the summations and multiplications for the factors coming from
Y:. In these summations, all the matrices occurring have the form of Fourier
transforms of functions on S, and are therefore block diagonal according to the
restriction of A to S;. Computing one block at a time, the multiplications that
occur satisfy the conditions of Corollary 3.10 with G = Sy, a = ¢; for some i,
K = S; and H = S;_5. Young’s Rule (see e.g. [55]) shows that M(S;, S;_2) = 2.
So the matrix multiplication by A(#;) on the left that occurs at this stage takes
only 2|Si| scalar operations. The matrix additions that occur do not add to the
overall operation count. If we now total the operations occurring in the separation
of variables algorithm, and take into account that multiplying by the identity can
be done for free, then we obtain the following count

S pe S elsd) @ -i-n="ERE= g g

O

3.1.4. General results and further ezamples. The example of the symmetric group
illustrates most of the general features of the matrix separation of variables tech-
nique. In particular, the sets Y3 appearing in the proof are factorizations of sets
of coset representatives for the successive subgroup pairs occurring in the original
subgroup chain. It is common, in this approach, to split the algorithm in this way,
and the cancellations that occur in the sum (3.6) are then valid in general. This
sort of estimate and analysis motivates the use of the ¢ notation. The approach of
using coset representatives together with a separation of variables type algorithm
appears in [31, 23, 19].

To state a fairly general result of this type, we introduce an extension of the
multiplicity notation. If G is a finite group, K,, > --- > Kj is a chain of subgroups,
and g is any element of G, then let M(g) = M(K, H) for K the smallest subgroup
in the chain containing g, and H the largest subgroup in the chain centralizing g.

Theorem 3.12 ([68], Corollary 4.9). Let K, > --- > Ky be a chain of finitle
groups, let R be a complete set of inequivalent irreducible representations of K,
adapted to the chain, and let X be a set of words representing the factorizations of

a complete set of coset representatives of K,,/K,_1. Let v be the mazimum length
of any word in X. Then

tKn(R) < tKn—l(RKn—l) + Z Z ./\A(So) (37)

k=05, .. .5s0eXx

where Xy, is obtained from X by deleting k elements from the right of each word
and then deleting all words with an identity element at the far right.

This result is by no means the best of its type. On the one hand, we could
be more careful about counting the exact number of operations appearing in the
matrix multiplications. This is done in [68], where we do a careful analysis of all
the possible matrix multiplications that can occur, and how the structures of the
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block matrices interact with each other. Generalizing in another direction, we can
place some conditions on the types of factorizations that we allow, and thus obtain
succinct results for an arbitrary finite group (cf. Section 3.2).

Theorem 3.12 gives us FFTs for a number of interesting groups: the classical
Weyl groups, wreath products of S,,, and classical finite groups of Lie type. As an
example, we state a result for the general linear group although in the next section
we will improve on 1it.

Let GL,(q) denote the group of invertible n x n matrices with entries in the field
of q elements where ¢ is a prime power. Let P, be the parabolic subgroup of GL,
of all block matrices of the form

(5t 39)

where A € GL,_1(q), B € }Fg_l and C' € F.

Theorem 3.13. Let n > 2, let q be a prime power, and let R be a complete set of
inequivalent irreducible representations of GLn(q) adapted to the chain of subgroups

GL,>P,>GL,_1xGL >GL,_1>--->GL;.

Then we have

1
C(GLn(9)) < Ter,((R) < 5'22”q2"‘2 |GLn(q)].

The proof of this result follows the same lines as for the symmetric group, using
a result of Thoma [88] to bound the multiplicities. Theorem 3.12 merely serves to
organize the operation count. A similar procedure goes through for the finite groups
of Lie type, using the recent work of Hagedorn [45] for bounding the multiplicities.

Remark 3.14. Linton, Michler and Olsson [63] give an algorithm to compute the
Fourier transform on GL,(q) using certain monomial model representations. The-
orem 3.13 improves on this result.

3.1.5. Homogeneous spaces. A nice feature of this approach is that we obtain re-
sults for homogeneous spaces with no extra effort. If G is a finite group, and H is a
subgroup, then specifying a function on the homogeneous space G/H is equivalent
to specifying a right H-invariant function on . Using this correspondence, we
can define the Fourier transform of a function on G/H and pose the same ques-
tions about the complexity of such a transform. Under appropriate conditions,
an analogously defined reduced complexity, tz,7r, obeys the same kinds of recur-
rence relations as tg. More specifically, with the right definitions, equation (3.7)
holds with g, replaced by ik, k;, and ik, _, replaced by tx,_,/x,;. Using this
correspondence, results for groups transfer immediately to results for homogeneous
spaces. As an example, we obtain the following result for the symmetric group.
(See [68] for further examples.)

Theorem 3.15. The Fourier transform of a complex function on S, /Sn—_r may
be computed at a complete set of irreducible representations of Sy, adapted to the
chain of subgroups (3.5) in at most

k2 —1 S,
k 2k i
<n "3 )‘Sn—k

scalar operations.

This result 1s only useful for £ > 3, but other techniques may be used for £ = 1.
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3.2. Finding the right factorizations. The construction of a separation of vari-
ables type algorithm for computing Fourier transforms of functions on a finite group
involves many choices. Not only do we choose a chain of subgroups, but we are also
free to choose the factorizations of each element of the group.

After choosing a chain of subgroups, Theorem 3.12 tells us how to construct an
algorithm given only factorizations of coset representatives. In addition, it suggests
that we choose factors for which the value of M is small, or equivalently, factors
which commute with as large a subgroup of the chain as possible. However, this
choice may conflict with the desire to use a long chain of subgroups, but still have
short factorizations of group elements.

The general problem of finding an optimal set of factorizations seems difficult
to solve, but still we can find partial solutions. An important step in simplifying
the discussion is to separate the different contributions to the complexity of our
algorithm coming from the length of subgroup chains, the length of factorizations,
and the multiplicities M(s). We do this by considering a weaker upper bound on
the complexity which is a trivial corollary of Theorem 3.12. Although this does not
solve the problem of finding optimal FFTs, it does in practice give useful guidelines,
and perhaps most importantly, it provides a place to start in the search for the best
factorizations.

3.2.1. Strong generating sets and adapted diameters.
Definition 3.16. Assume G is a finite group, S is a subset of GG, and
K={K,>K,_1> > Ko} (3.9)

is a chain of subgroups of G.

1. The subset S C G is said to be a generating set for the chain of sub-
groups if SN K; generates a set of coset representatives for K;/K;_; for
each j > 1.

2. The subset S C G is a strong generating set for G, relative to the chain of
subgroups, if G = K, and Ko = 1 and S is a generating set for the chain of
subgroups.

3. The adapted diameter of the chain, relative to S is defined to be

V(S K) =1+ +m

where v; is the maximum length of a product of elements in S N K; that is
required to construct the coset representatives of K;/K;_1, starting from the
coset of the identity, ¢.e.,

yi =minq1>0: [ J (SNK;) . Kj_s =K
0<i<l

Note that S is a strong generating set for a chain of subgroups if and only if its
adapted diameter is finite.

The condition that a set of group elements S is a strong generating set for the
chain (3.9), is precisely the requirement that products of elements of S may be used
as the factorizations in a separation of variables algorithm based on the recursive
application of Theorem 3.12. The adapted diameter of a chain K relative to S is the
smallest maximum length of factorization that could occur in such an algorithm.
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The weaker complexity bound for the Fourier transform depends on the adapted
diameter of a subset, on a factor describing how refined the subgroup chain is, and
on a factor depending on the multiplicities of restriction of representations. Assume
G is a finite group, S is a subset of G, and

is a chain of subgroups of G.

1. Let M(S,K) = max{M(s) : s € S}, where M(s) is calculated relative to the
chain K, > ---> Ky > 1.
2. Let v(K) = max{|K; /K;_1] : 1 < j < n}.

Theorem 3.17. ( [70] ) Assume K is a chain of subgroups of length n, and S is
any subset of G. Let R be a complete set of irreducible representations of K,,
adapted to the chain. Then

tr. (R) < (S, K)o(K)M(S,K) + trcs(Ricy)-
If Ko = 1 then tx,(R) < (S, K)u(K)M(S, K).

If £ and £ are two chains of subgroups of (G, we say that £ is a refinement of
K, if every subgroup in K is also in £, and the largest and smallest subgroups of
L are the same, respectively, as those of K. The following easy lemma shows the
effect of refining a subgroup chain.

Lemma 3.18. Assume G is a finite group, K, L are chains of subgroups in G, and
S is a subset of G. If L is a refinement of K, then v(£) < v(K) and M(S, L) <
M(S,K), but 7(5, £) > 1S, K).

3.2.2. Choosing the generating set. Now we look at the problem of choosing the
generating set S. We take the point of view that the factors v(KX) and M(S,K) in
Theorem 3.17, are more important that v(S, ). This supposition is borne out in
many examples, but it 1s also a convenient assumption. Whereas it is possible to
simultaneously locally minimize v(K) and M(S, K), it oftens seems impossible to
simultaneously minimize either of these factors along with (S, K). First we shall
see how we may add elements to S without decreasing M(S). Then, given a chain
of subgroups K with G = K, and Ky = 1, we shall show how to construct a strong
generating set S such that M(S) is a minimum for .S among all strong generating
sets for (G. This construction does not require the computation of any restriction
multiplicities.

Assume K = {K, > --- > Kg}. Extend this to a chain £ U {1} that includes 1,
by defining K_; = 1. Let S be a subset of G. Then S be defined by

S = U K45y N Centralizer(K,- ()
SES
where for each s € S, K +(;) 1s the smallest subgroup in KU {1} containing s, and
K- (s is the largest subgroup in K U {1} centralizing s.
Lemma 3.19. 1. If S is a subset of T, then v(S,K) < (T, K), but M(S,K) >
M(T,K). )

2. SCS and M(S,K)=M(S5,K).

Now we turn to the problem of minimizing M(S, K), for fixed K, subject to
the constraint that the adapted diameter v(S,K) is finite. Assume K = {G =
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K, > --- > Ko = 1}. Construct a subset Sx of G, inductively as follows. Let
S(0) = Kg = 1. Define S(i) = Sk N K; inductively by

S(i) = S(i — 1) U (K; N Centralizer(K;))

where j is maximal with respect to the property that S(7) generates K;. Let

Theorem 3.20. Let all definitions be as aboven and assume that Sk s a strong
generating set for G, which minimizes M(S,K) among all strong generating sets
relative to the chain K. T.e., Sk minimizes M(S,K) on subsets of G subject to the
constraint that v(S, K) is finite.

It is significant that this construction does not require the evaluation of any
restriction multiplicities. The problem of finding the multiplicities, let alone matrix
coefficients, is much harder than the computations with group elements required to
construct the set Sx. Although actually constructing an FFT requires knowledge
of the restriction multiplicities and much more, this simple construction of sets with
minimal M(S) greatly speeds up the search for efficient algorithms.

Finally, we note that the construction of Sk allows us to give a definite procedure,
albeit a complicated one, for minimizing the product v(KX)M(S, K) over all chains
and strong generating sets. It is clear that we need only conduct our search on the
set of chains K, as for any chain M(S, K) will be a minimum at S = Sk. Therefore
we need only find subgroup chains that minimize v(K)M(Sk, ). The following
lemma shows that we may restrict this search even further.

Lemma 3.21. Assume, K, L are subgroup chains containing G and 1, and L 1s a
refinement of K.
1. If y(Sk, L) is finite, then Sz C Sk.
2. Any minimum of v(L)M(S¢, L) occurs at some chain, £ such that Sg is not
a strong generating set for any nontrivial refinement L' of L.

Remark 3.22. Tt is also possible that we are given a generating set S for GG, and
are asked to construct a subgroup chain so that the complexity of the separation
of variables algorithm based on this generating set and subgroup chain is small. If
the generating set is minimal, then an ordering of the elements of S, as s1,...,s,
gives rise to a subgroup chain defined by K; = (s1,...,s;). A first step to finding
a good ordering is to find one that minimizes the numbers ¢*(s;) — ¢™(s;) defined
relative to this chain.

One approach to this is to draw a graph with vertices corresponding to the
elements of S, and edges corresponding to pairs of noncommuting elements. For
example, if G is a Weyl group and S is the set of simple reflections, then this graph
will be the Coxeter graph for that Weyl group. In general, we have ¢*(s;) = 7, and
¢~ (s;) may be read from the graph as the largest j such that s; is not connected
to any of sq,...s; by an edge. In this way we see that finding an ordering that
minimizes the numbers ¢*(s;) — ¢7(s;) is related to the problem of drawing the
graph in a form that resembles a chain.

3.3. Separation of variables at the scalar level. The separation of variables
idea can be applied even more fruitfully on the scalar level than on the matrix
level. One reason is that by treating the Fourier transform as a collection of scalar
transforms, we may better keep track of the products of matrix elements that
occur in the separation of variables approach to its computation. Armed with this
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information, we can now use the commutativity of scalar multiplication, not present
in the matrix case, to change the order of the summations in the algorithm.

The starting point for the scalar approach is the same as in the matrix case. We
assume that G is a finite group, A is a representation of G, and we have chosen
a factorization ¢ = ay, ---a; for each element of G. The Fourier transform of f is
then given by

FAY=3" 3 Afan) - Alay) flan -+ -a1)

As in the matrix algorithm, we want to choose the a; so that the matrices p(a;)
have a block diagonal/block scalar form.

The algorithm will proceed by summing over the a; in some order, but not
necessarily with increasing ¢, and the way that the matrix elements of the matrices
factor through the sums may be chosen differently from the matrix case. First,
however, we must write the sum (3.3) in coordinates and expand out the matrix
multiplications. For this we need a method of matching up the nonzero matrix
entries of the factors in this product, and that requires a method of indexing the
rows and columns of the matrices that describes the block structure easily. The
right combinatorial tool for this last task is the set of paths in a Bratteli diagram,
which we shall now define.

3.3.1. Bratteli diagrams and path configurations.

Definition 3.23 (Bratteli diagram). Assume K,, > --- > Ky = 1 is a chain of
subgroups. Then the Bratteli diagram for this chain is the graded diagram
defined as follows.

1. For i =0,...,n, the vertices at level ¢ are the inequivalent irreducible repre-
sentations of K;. At level 0 there is a unique vertex, 1.
2. If a is at level 7 and 3 is at level i — 1, then draw M(«, 3) arrows from 3 to
a, where
M(a, 8) = the multiplicity of fin a | K;—1

We already have an example of a Bratteli diagram in Section 2. Figure 1 is
the Bratteli diagrams for the chain Z/8Z > Z/4Z > Z/2Z > 1. The best known
Bratteli diagram is the Young lattice (see Figure 2).

Bratteli diagrams have a simple interpretation as an indexing scheme for the
block matrices p(a) of the preceding section (cf. Lemma 3.9). Assume p is an irre-
ducible representation of K, adapted to the chain K,, > ---> Kg = 1. The arrows
from level n — 1 to the representation p at level n index the blocks corresponding
to the restriction of p from K, to K,_1, with arrows starting at the same vertex
indexing identical blocks in different positions along the diagonal. Arrows from
level n — 2 to level n — 1 index blocks within these blocks, and so on. In this way
we can index the blocks for the restriction K, | K; by paths from level i to level
n. This type of indexing has proved useful in refining the application of the matrix
separation of variables approach (cf. [68], esp. Section 4.2).

By restricting all the way down to Ky = 1, we obtain an indexing scheme for
the rows and columns, and hence matrix coefficients, of the chain-adapted repre-
sentation p. For this, an arrow from an irreducible representation v of K; to an
irreducible representation n of K;;1 is associated with a Kj-equivariant injection
of the corresponding representation space V., into V; such that the images of the
injections for different arrows are mutually orthogonal K;-invariant subspaces of
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-

FIGURE 2. The Young lattice for Sy.

Vy. Given any path in the Bratteli diagram from the trivial representation 1 at
level 0, to the vertex p at level n, we may compose all the injections for that path
and apply the resulting map to a fixed nonzero vector in the trivial representation.
This gives a vector in V,. As the path ranges over all possible paths from 1 to p in
the Bratteli diagram, the set of vectors we obtain makes up a Gel’fand-Tsetlin basis
for V, adapted to the chain of subgroups which gave rise to the Bratteli diagram.

Remark 3.24. What this does is create an isomorphism between the “path algebra”
of the Bratteli diagram and the chain of semisimple algebras defined by the succes-
sion of group algebra inclusions C[K;] — C[K;41]. In this way the group algebra
C[K,] is realized as a multimatrix algebra (see eg. [44]).

The beauty of the Bratteli diagram formalism lies in the convenient characteri-
zation it gives for all types of structured matrices which can arise through the use
of Gel’fand-Tsetlin bases.

To begin, consider a € K; < K,. According to the above explanation, the
entries of p(a) are indexed by pairs of paths from 1 to p in the corresponding
Bratteli diagram. Since a € K;, the matrix entry py,(a) can be nonzero only when
paths u and v intersect at the level 7, z.e., at K;, and agree from level 7 to level n.
In this case the matrix coefficient pyq(a) is independent of the subpath from level
¢ to n. This is precisely the diagrammatic realization of a block diagonal matrix
with certain equal sub-blocks.

For another example, consider the situation in which a € K, centralizes Kj.
Using the path algebra formalism, it is not too difficult to show that in this case
puv(a) can only be nonzero when u and v agree from level 0 to level j, then varying
freely until they necessarily meet at p at level n. Here the matrix coefficient depends
only the pairs of paths between levels 7 and n.

These are two of the simplest examples of the relation between index dependence
and matrix structure. More complicated structures are easily imagined and easily
described.

Matrix products have a simple description in this notation. Suppose A = (Ay,u,)
and B = (By,v,) are block matrices, with rows and columns indexed by paths in a
Bratteli diagram, starting at level 0 and ending at p on level n. To multiply these
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matrices, we first form the quantity Ay, u,Bu,u,, which is indexed by a triple of
paths from level 0 to p. We then sum over all possible values of the path us. The
index sets for all the quantities involved are represented pictorially in Figure 3.

A Summation over
middle path.
—_— —_—
B
A.B
FIGURE 3.

If, instead, A was a block matrix in spanc(p(K;)) and B was in the centralizer
of p(Kj), then the intermediate quantity in the computation of the matrix product
would be indexed by the configuration of paths shown in Figure 4.

FIGURE 4.

Remark 3.25. In the discussion above we have used pairs of paths from level 0
terminating at an irreducible representation p to index the matrix elements of p. If
we replace p by any representation adapted to the whole chain of subgroups, then
we may index matrix elements by pairs of paths in the Bratteli diagram, except that
the paths may now end at any irreducible representation at level n which occurs
in the representation. As always, the pairs of paths must end at the same vertex
for the matrix element to be nonzero. In particular, the nonzero matrix elements
of an adapted model representation are indexed by all the pairs of paths from level
0 to level n, ending at the same vertex.

3.3.2. Efficient multiplication of multiple matriz products. The examples above are
simple matrix products. The power of indexing via paths lies in the ability to
describe multiple products of structured matrices. In a multiple matrix product,
the indexing shows more clearly which matrix entries from which matrices are
multiplied, and thereby reveals ways of organizing the computation of the product
in ways other than usual matrix multiplication. The idea is that entries of a multiple
matrix product are computed as sums of products of matrix entries, and it is
possible that certain subsums may occur repeatedly even though these smaller
computations are never realized as the result of any complete matrix multiplication.
As an easy example, consider the situation in which two matrices A and B have
many initial segments of rows equal and columns equal (respectively). Particular
entries in the product will require the initial summation of these segments, all of
which are the same, none of which gives an actual entry.
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Example 3.26. Assume the chain of subgroups
K3> Ky > K1 >1

has a partial Bratteli diagram as shown in Figure 5.

FIGURE 5.

Thus, p is an irreducible representation of K3, 171 and 5y are irreducible represen-
tations of K5, and 7, and 7y, are irreducible representations of K1, such that

Ky dy, =2 dy, =1;
Ko dy =3 dy, = 2;
m | K1 =71 @ 7ys; n2 | K1 = 2v1;
1(3 : dp = 8;
pl Ko =2m @ ns; plKi1=471 @2y,

Thus, a basis of V, can be indexed by the paths in Figure 5, which in turn are
represented as triples (v1, va, v3) where v; indexes the path from level i — 1 to level
i. For example, (3,2, 1) indexes the path shown in Figure 6.

1

FIGURE 6.

Suppose we would like to compute a product of the form ABC where A and C
are in the span of p(K3) and B is in the span of the collection of matrices which
centralize the span of p(K1). Simple matrix multiplication says that w, z entry of

ABC' is
(ABC)yz =YY AuaBuyCye
Ty
where the sums are over all paths z and y in Figure 5. In order to better organize
the computation we consider the structure of the matrices A, B, and C.
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As explained above, since A and C' are in the span of p(K3) we have that their
z,y entries must be zero unless ¢ and y agree on the last leg and furthermore any
two paths which agree on the ordered pairs of subpaths given by their first two
legs (i.e., subpaths from level 0 to level 2) must be equal. This shows that such
matrices must have the following form.

111 211 321 112 212 322 333 343
111 X111 X2 Xi3
211 Xa1 Xog Xos
321 X371 X392 Xs3
112 X111 X2 Xis
212 Xo1 Xaz Xo3
322 X31 X329 Xs3
333 Yii Yo
343 Yo1 Yas

Similarly for B in the span of the centralizer of p(K1), the above discussion
explains that B, , must be zero unless v and w agree on the initial leg (i.e., until
level 1) and given that, an entry only depends upon the last two steps of its indexing
paths in this way, B must have the form

111 211 321 112 212 322 333 343
111 X1 0 X2 0
211 0 X1 0 X9
321 Y11 Yo Yiz Yia
112 X9 0 X9 0
212 0 X9 0 X9
322 Yo Yos Yoz You
333 Y31 Y32 Y3z Y3y
343 Y Yio Yiz Yy

Notice that this matrix has the form
Xeoh)e(Y®h)

for X € M2(C), Y € M4(C). Consequently, we see that the full matrix product
ABC with entry
Z waBxy Cyz
@,y
is in fact a sum over
1. only those z’s such that the final leg of z equals the final leg of w.
2. only those y’s such that the final leg of y equals the final leg of z.
3. all pairs of paths z and y must agree on their initial legs (so that By, is
nonzero).

Furthermore,
4. the value of By, depends only on the final two steps of z and y.

Notice that 1, 2 and 4 together imply that the only indices summed on are the
middle steps of z and y. Thus, we may view the multiplication of ABC in the
following schematic fashion: as a sum over the middle paths in subdiagrams of a
Bratteli diagram of the form shown in Figure 7.

That 1s, w and z index the outside paths, and xq, 24,y are filled in, subject
to the constraints depicted in Figure 7. Ordinary matrix multiplication fills in
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](2 w
KS . ;
[(2 z
FIGURE 7.

these indices (paths) according to the order of multiplication, but a non-matrix
multiplication fills them in according to the values of 1 and then fixing y and 5.
These are each suggested by the sequence of diagrams shown in Figure 8, where at
each step a summation over the dashed paths is indicated.

GG
N

FIGURE 8.

3.3.3. Contraction and complezity. The indexing scheme we have described also
provides a simple combinatorial method for calculating complexities. We shall only
describe this roughly here; full details will appear in the paper [69]. The basic idea
is that any collection of matrix multiplications may be described by a configuration
of paths, as in the diagrams above, with only some of the paths being summed over.
This configuration may be represented by a graded diagram, and the operation of
summation gives us a quantity represented by a different graded diagram obtained
by removing edges and vertices from the first. Let us call the summation operation
contraction, as it is a generalization of the notions of contraction of tensors and
therefore matrix multiplication. The trick is that contraction only takes as many
scalar operations as there are configurations described by the first diagram, and
these can be counted.

Lemma 3.27 (Counting lemma). For any graded diagram,

o label vertices at level i with irreducible representations of K;,
o label each edge from a vertex labelled o to a vertex labelled § with M(«, B),
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then the number of scalar operations required to perform any contraction corre-
sponding to the given graded diagram is

> I M)

labelings edges
of vertices a—f

3.3.4. Diagrams applied to scalar Fourier transforms. Using Lemma 3.27 we can
obtain the following general result.

Theorem 3.28. Assume G > K are finite groups, then the Fourier transform
of a function on G can be computed at a complete K-adapted set of irreducible
representations of G in no more than

(2|K| + |K\ G/K|d%) |G|

scalar operations, where dg 1s the mazimum dimension of any irreducible represen-
tation of K.

Proof. The first step is to write each element of G in the form ¢ = ksak; where
k1, ks are elements of K and a comes from a fixed set A of double coset represen-
tatives for K\ G/K. Not all triples (kz, a, k1) necessarily occur in our collection of
factorizations of group elements. Let A be the model representation of G obtained
by summing a complete set of irreducible representations adapted to G > K. We
start by computing a sum in the tensor product of two spaces of matrices

F(a)= Y f(ksaki)A(ks) ® Aky)

ki1,k2

3" Alk) @ Y Alki) f(koaks)

for each @ in A. This sum may be computed by summing on k; first and then on
ko, and takes a total of 2 |K||G]| scalar operations. If N denotes the order of G,
then F(a) lies in RY ® (RV)* @ RY ® (RM)*, and p(a) lies in RN @ (RY)*. For
each @ we must contract the middle (RY)* @ R” indices of the tensor F(a) against
p(a) which lies in RY @ (RY)*. Now we make use of the special structure of the
tensor F'(a), and the matrix A(a). Their entries may be indexed by configurations
of paths in the Bratteli diagram of the chain G > K. The intermediate quantity we
must compute before performing the summations for the contractions is indexed
by the configuration of paths shown in Figure 9, where representations of GG are at
level 2 and representations of K are at level 1. A simple application of Lemma 3.27

FIGURE 9.
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shows that the number of operations used to perform the contraction is

> My, a)M(y, p)dids.
vEG
a,ﬁER'

It is easy to see that this is bounded by Epeé‘ di = |G, so the total number
of operations required to perform all the contractions and sum them together is
|[K \G/K|-|G|. Adding this to the operations count for the computation of all the

F(a) gives the desired result. O

This result can be improved by noticing that the first two steps in the computa-
tion, summing over the subgroup, are actually Fourier transforms on the subgroup,
so FFT techniques may be applied to these sums as well. It is also conceivable that
the final sum over double coset representatives could be simplified, but this would
presumably require a better understanding of the matrix coefficients as “special
functions” of a.

Example 3.29. If G = SLs(q) is the group of unimodular 2 x 2 matrices over a
finite field with ¢ elements, then a convenient subgroup to which we may apply
Theorem 3.28 is the subgroup N of all unipotent upper triangular matrices.

Corollary 3.30. The Fourier transform of a complex function on SLs(q) may
be computed at a complete set of irreducible representations adapted to the chain
SLy > N, in (4¢ — 2) - |SLz| scalar operations.

This corollary improves on the results of [62]. As another example, Theorem
3.28 can be applied to the symmetric groups of low order, adapting to a well-chosen
abelian subgroup.

A similar technique may be applied to the general linear group over a finite
field, GL,(q). The factorization used there is a analogous to the generalized Euler
angle decomposition for classical compact groups that we shall consider in the next
section. In fact the proof of that case follows the derivation of fast algorithms for
compact groups very closely, so we shall simply state the result here.

Theorem 3.31. For any n > 2 and q > 2, the Fourier transform of a complex
function on GL,(q) may be computed at a complete set of irreducible representations
adapted to the chain

GL,>GLp1>GLp_y>--->GL,
i no more than
#7514 2" (GLa(1)
scalar operations.

The scalar separation of variables technique also works particularly well on ho-
mogeneous spaces where the associated spherical functions may sometimes be fac-
torized in terms of functions defined on subsets of G.

Remark 3.32. All the techniques we have described for computing FFTs on finite
groups are really using the fact that the group algebra C[G] is a semisimple algebra.
It is therefore possible to state analogous results in any semisimple algebra.
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3.4. Cyclic groups of prime order, and other abelian groups. We now de-
scribe some of the methods for computing Fourier transforms on finite groups that
are not solely based on a separation of variables argument.

So far, all the algorithms we have considered for FFTs over finite groups rely in
some way on the use of subgroups. Thus, the question arises of what to do when
there are no subgroups? The only situation in which this can occur is that in which
the group is cyclic of prime order, i.e., it is equal to Z/pZ for p a prime. In this
case the method of Rader [78] allows us to relate the problem to a convolution on
a cyclic group of order p — 1. Alternatively, the chirp-z transform due to Rabiner
et al. [77] allows us to relate the problem to a cyclic group of higher order. These
methods, in conjunction with the Cooley-Tukey algorithm, provides an O(n logn)
algorithm for any n. They may be explained as follows.

We first need to recall the connection between the DFT and convolution over
the group Z/NZ. If f and h are function on Z/NZ, then the convolution of f
and h, is a function f* h on Z/NZ defined by

N-1

frh(z)= )  f(z—yh(y) (3.10)

y=0

Notice that convolution is nothing more than multiplication in the group algebra.
Convolution and the Fourier transform enjoy the following useful relationship,

F*h(5) = f(G)HRG). (3.11)

As a consequence, the cyclic FFT allows the convolution of two functions f, h on
Z/NZ to be computed in efficiently via the algorithm

1. Compute f and h.
2. Compute the pairwise products f(j)h(j) for each j.
3. Compute the inverse Fourier transform of the sequence,

FO)R(0), ..., f(N = 1)h(N — 1),
This can be accomplished via a standard DFT.

This algorithm uses three FFTs and one pointwise multiplication, instead of the n?
operations needed for direct evaluation of the convolution. Rader’s FFT for cyclic
groups of prime order is obtained by relating the DFT computation to a convolution
algorithm.

To explain, let N = p be a prime. Then Z/pZ is a field under the usual addition
and multiplication modulo p, and the multiplicative group of nonzero elements
(Z/pZ)* is a cyclic group of order p — 1. Fix a generator g of (Z/pZ)*, and let
w = 2™/P Making the substitutions j = g%, k = g~? for the nonzero elements of
Z/pZ rewrites the Fourier transform of f on Z/pZ as

p—2
Fa™) = FO)+ 3 flaw". (3.12)

a=0
The summation in (3.12) is the convolution on Z/(p — 1)Z, of the sequence f(g?),
with the sequence w?", and may therefore be computed using Fourier transforms
of length p — 1. The sequence w?" is input independent, so we only need two such
Fourier transforms. Thus, T(p), the number of operations needed to compute a
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DFT for Z/pZ, satisfies the bound,
T(p) <2-T(p—1)+3p-3. (3.13)

If p is a prime bigger than 3, then p—1 is composite and Z/(p—1)Z has nontrivial
proper subgroups. We may therefore use the Cooley-Tukey algorithm to compute
Fourier transforms on Z/(p — 1)Z.

The idea of writing the Fourier transform in terms of a convolution does not
depend on N being prime. Rabiner et al. [77] (see also [13]) make the change of
variables jk = (j2 + k% — (j — k)?)/2 to obtain

OETE NZ (£ 72) wli=H 72
j=0

This is a non-cyclic convolution of the sequence (f(j)wj2/2) with the sequence

(w‘j2/2) , and may be performed using a cyclic convolution of any length M > 2N.
This gives us the bound

T(N)< 2 -T(M)+ M+ N — 1. (3.14)

Choosing M to be the smallest power of 2 greater than 2N immediately gives an
O(N log N) algorithm, though better choices are possible. This method is com-
monly known as the chirp-z transform.

We have seen three distinct methods for computing Fourier transforms on cyclic
groups. This raises the question: Which combination of methods is best for a
given group Z/NZ? Diaconis [30] gives a analysis of the average running times of
algorithms based on each of the methods. Baum, Clausen, and Tietz [10] take a
careful look at the choice of the number M occurring in the chirp-z approach, and
prove a good bound valid for any cyclic group. Combining this with the result on
the Fourier transform of a direct product of groups (see Section 3.5), they obtain
the following theorem.

Theorem 3.33 (Baum, Clausen, Tietz [10]). The Fourier transform of a function
on any finite abelian group G may be compuied in less than 8|G|log |G| scalar
operations.

3.5. Tensor Products and Group Extensions. We have already seen that we
can relate the Fourier transform on a finite group G to Fourier transforms on a
subgroup, K. If the subgroup is normal, then it is natural to ask whether we can
also use Fourier transforms on the quotient group, G/K to give more efficient algo-
rithms. One trouble with this idea is that there is no obvious way of constructing
a representation on G/K from a representation on (G. However we can take the
tensor product of a representation of G/N with a representation of G to get a new
representation on (. This suggests an approach to the computation of Fourier
transforms based on factorization in the space of representations rather than fac-
torization of group elements. We have already seen such methods work in Yates’
algorithm for the Walsh-Hadamard transform.

The works of Beth on solvable groups [12], Clausen and Baum [19] on solvable
and supersolvable [7] groups and Rockmore on abelian group extensions [83] are
based on the idea of factoring both the group elements and the representations. In
this respect, their algorithms differ from a pure separation of variables algorithm.
These methods are all based on versions of the following general approach.
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Assume G is a finite group, N is a subgroup of GG, Y is a subset of G, and R
is a set of matrix representations of G. Then let My (Y,R) denote the minimum
number of operations required to compute the matrix products p(y) - F(y, p), for
ally € Y and p € R, where the matrices F(y, p) are in the span of p(N). Define

1
Theorem 3.34. Assume G is a finite group, and N is a normal subgroup of G.
Let S be any set of representations of G/N, and let R be a set of representations of
G adapted to G and N. Let Y be a complete set of coset representatives for G/N.
Then

1
PER

Proof. Assume f is a complex function on GG. Let ¢ be a representation in & and
let p be a representation in R. For each y € Y, we define a function on N, by

Jy(n) = f(yn) for any n € N.
floo =3 o e [pufs(pI V)

yey

The algorithm now proceeds in three stages. First we compute all the Fourier
transforms of the functions f, on N, at the set of representations Ry, and use
these to build the transforms f(plN) This takes |G|tn(Ry) scalar operations.

In the second stage, we compute the matrix products p(y) fy (plN)forally e Y
and p € R. This requires |G| my (Y, R) scalar operations, by definition.

Finally we note that the remaining sum of tensor products, can be viewed as a
collection of EpER d% scalar Fourier transforms on G/N, at each of the representa-
tions in §. These transforms clearly take a total of (3° d2)-(|G|/ IN1) - ta/n(S)
scalar operations. O

Applying Theorem 3.34 to a direct product of groups H x K, immediately gives
the usual result [19, 23, 12, 68] for the complexity of the Fourier transform on a
group product. Using sets of matrix representations adapted to both H and K
simultaneously, we have tgyx <ty +1tk.

3.5.1. Abelian group extensions and solvable groups. We now describe how Theorem
3.34 can be applied to an abelian group extension.

Assume G is a finite group, and N is a normal subgroup of G such that G/N
is abelian. Then the irreducible representations of G/N are irreducible and form
a group which acts on the irreducible representations of G via the tensor product.
If we let Ro/ke an N-adapted set of representatives for the orbits under this ac-
tion, then G/N ® R contains a complete set of irreducible representations for G.
Applying Theorem 3.34 to this set of representations gives a method of computing
Fourier transforms on G.

Beth, in his work on solvable groups [12] (see also [19]), and Rockmore, in his
work on abelian group extensions [83], use two additional ideas in conjunction with
the method of Theorem 3.34:

1. The action of (}//7\7 on equivalence classes of irreducible representations of G is
not, in general, free. To make efficient use of Theorem 3.34, we must apply it to
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the representations orbit by orbit. For each orbit generated by a representation p
in R, there is a subgroup H, containing N, such that any representation in the
orbit may be obtained by extending a representation of N to H, and then inducing
up to G. We use the separation of variables technique to reduce the computation
to a collection of Fourier transforms at representations of H, followed by a sum
over coset representatives of G/H, of matrix products involving these transforms.
Let R, denote the set of representations of H, that occur in this procedure. Then

H/p/\N acts on R, via tensor products and this action is free. Therefore, we may
use Theorem 3.34 to calculate the transforms on H, at the representations of R,
efficiently.

2. Recall that a matrix is called monomial if it has at most one nonzero entry in
each row or column. A matrix is called block monomial if it is a block matrix,
with at most one nonzero block intersecting each row or column.

Lemma 3.35. Any irreducible representation p of a finite group G which is in-
duced from a representation on a normal subgroup H and which s also adapted to
that subgroup, must have block monomial form, according to blocks occurring in its
restriction to H. In addition, as g ranges over a set of coset representatives for
G/H, the nonzero blocks in the different matrices p(g) never coincide.

We now apply Lemma 3.35 to the current situation. The representation p is
induced from pg,, so we require it to be adapted to H,. In this case, the repre-
sentation matrices p(g) for ¢ € G are d, x d, block matrices with blocks of size
d,/[G : Hp], and at most one block intersects each row or column of p(g). Mul-
tiplication of a block monomial matrix by a block diagonal matrix can be done
much faster than the multiplication of two arbitrary matrices. This can be used
to speed up the matrix multiplications that come from the use of separation of
variables. Also note that summation of block monomial matrices of this form over
coset representatives of G/H, does not require any arithmetic operations.

Putting these ideas together gives the following Theorem.

Theorem 3.36. Assume G s a finite group, and N s a normal subgroup of G
such that G/N 1is abelian. Let R be a complete set of representatives for the orbits

ofG//7\7 acting on irreducible representations of G via tensor products. Let R be
a complete set of irreducible matriz representations of G constructed from those

in Ro by taking tensor products with representations in G/N. Assume that Rq is
adapted to N, and each p € Ry is adapted to H,. Then

|Hp| |Hp|
ta(R) <tn(Rn)+ th, /N + =
|G| E |G| ot |G| Z |G|
<in(Ry) + f{lel%x{tﬂp/N(Hp/N)} +2|N|
If G/N 1is cyclic of prime order, then

ta(R) < tn(Ry)+tan(G/N) + |N|?

Remark 3.37. There are several variations of this result that may be obtained by
performing the matrix multiplications before the transforms on H,/N, or by ap-
plying Theorem 3.34 to a different subgroup altogether.



GENERALIZED FFTS 31

One important way in which Theorem 3.36 differs from other results in this paper
is that it assumes adaptability of different representations to subgroups that may
not form a chain. However, if G/N is cyclic of prime order, then the subgroups
H, must either be G or N. It follows that we may get a result for representations
adapted to a composition series for any solvable group by applying this result
recursively to cyclic extensions of prime index.

Theorem 3.38 (Beth, Clausen). Assume G, > --- > Gg is a composition series
of the finite solvable group, G. Then the number of scalar operations required to
compute the Fourier transform of a function on G at a complete chain-adapted set
of irreducible representations of G is no more than

7
2\/ [Gn : Gn—l]

3.5.2. Supersolvable groups. Theorems 3.36 and 3.38 depend on the use of repre-
sentations whose matrices are block monomial. Baum [7] has shown that for a

IGI2 + 8]G]log G.

large class of groups, the supersolvable groups, the representation matrices in a
basis adapted to a suitable chain of subgroups are actually monomial. Putting this
together with Theorem 3.36 gives a fast transform in O(]G|log |G|) operations, on
any supersolvable group, G.

Definition 3.39. A chief series for the group G is a chain of subgroups,
G=G,> --->Gy=1

of GG, such that each G; is a normal subgroup of GG, and G;_; is maximal among
normal subgroups of G properly contained in G;. A supersolvable group is a group
with a chief series whose successive quotients G;/G;_1 are cyclic of prime order.

Lemma 3.40 (Baum). Assume G is a supersolvable group, and p is a representa-
tion of G adapted to a chief series for G. Then for any g € G, the representation
matriz p(g) is monomial.

This result shows us that if we apply the algorithms of Theorem 3.36 to a repre-
sentations of a supersolvable group, adapted to a chief series, then the only matrix
multiplications that occur have one of the factors monomial. Baum used this ob-
servation to derive the following theorem.

Theorem 3.41 (Baum). Assume G, > --- > Gq is a chief series of the finite su-
persolvable group, G. Then the number of scalar operations required to compute the
Fourier transform of a function on G at a complete chain-adapted set of irreducible
representations of G 1s no more than

(8.5)|G|log|G]|.

Remark 3.42. The algorithms we have seen for computing Fourier transforms of
functions on finite groups, usually require prior knowledge of the representation
matrices on a set of generators for that group. In general, constructing these
matrices is a difficult problem, though a general purpose algorithm for doing this
in polynomial has been developed by Babai and Rényai [5].

In the paper [8], Baum and Clausen show that for supersolvable groups, this
problem may be efficiently solved. More specifically, given a supersolvable group
specified by a power-commutator presentation, they show how to construct the
representation matrices, for a generating set, at a complete set of representations
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adapted to a chief series. Their algorithm is extremely efficient. They show that
it only requires 14 |G|log |G| + 5 |G| “basic” operations, where a basic operation is
either an arithmetic operation in a certain cyclic group, a multiplication of permu-
tations in a symmetric group, or copying an entry of a monomial matrix.

4. FFTs FOR cOMPACT LIE GROUPS

The generalizations of the fast Fourier transforms that we have pursued so far
view the Fourier transform algorithms of Yates and Cooley as finite group phe-
nomena. However, most Fourier analysis used in practice comes from continuous
spaces. That is, the natural phenomena under study are continuous, but finite
discretization is necessary to perform calculations.

The classical example is the case of the circle. This has already been discussed in
some detail in Section 2.2. Recall that in that section, the Cooley-Tukey FFT was
cast as both an algorithm for finite groups as well as one for efficiently computing
the Fourier transform of a so-called bandlimited function on the continuous compact
abelian group of the circle. It is the latter formulation which is of interest for this
section.

Stated in this way, it is natural to ask if such an algorithm might generalize to
nonabelian continuous compact groups. The first real breakthrough in this direction
occurred in 1989 and was due to Driscoll and Healy [33]. Motivated by potential
applications in a variety of areas, including computer vision and meteorology, they
described an efficient exact algorithm for computing the Fourier transform of a
bandlimited function defined on the two-sphere. Previous to their work all other
efficient algorithms developed (also in the context of meteorological applications)
were only approximate in nature [75, 2].

To state things a bit more precisely, recall that any integrable function on the
two-sphere has an expansion (its Fourier expansion) in terms of spherical harmonics.
The spherical harmonics are to the two-sphere as the complex exponentials are
to the circle — for each integer [ > 0, the spherical harmonics of order [ span a
group-invariant irreducible subspace of functions, the collection of which describe
a basis for the integrable functions on the two-sphere. In this case, the group is
the (noncommutative) matrix group SO(3). A bandlimited function of bandlimit
b is simply any function in the span of the harmonics of order less than b, for some
b > 0, in which case it has at most b7 Fourier coefficients. Driscoll and Healy
produced an algorithm which in exact arithmetic, computes exactly the Fourier
coefficients of a bandlimited function of bandlimit b from a collection of 262 samples
in O(b? log2 b) operations. This is in contrast to the b* operations that a direct
computation would require and the b3 operations that a separation of variables
approach requires. The key algorithmic advance in Driscoll and Healy’s work is a
fast algorithm for computing associated Legendre transforms, for which they give
an O(b log? b) algorithm, versus the b? algorithm that a direct computation takes.
The a priori error analysis in [33] as well as subsequent numerical experiments
and algorithmic improvements [49] strongly suggest the possibility of effective and
reliable implementation of this algorithm. The advent of such an algorithm has
made possible the use of spectral methods for solving PDEs in spherical geometry,
a technique which was often avoided due to the expense of direct computation of
Legendre transforms [84].
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Fast Fourier transforms on more general compact groups are a very natural set-
ting for the separation of variables technique. For the classical groups, the factor-
ization of group elements using generalized Euler angles gives a coordinate system
which readily suggests the separation of variables technique, and the idea of using
Gel’fand-Tsetlin bases, Schur’s Lemma, and commutativity to obtain representa-
tion matrices of a special structure has a long history in this context. Indeed,
Gel’fand-Tsetlin bases, and adapted representations were originally invented for
the calculation of matrix coefficients, using these methods [43]. Since then there
has been a tremendous amount of work done, much of it centered around N. J.
Vilenkin and A. U. Klimyk, finding explicit expressions for the matrix coefficients
[42, 43, 58, 60, 61, 91]. Thus most of the ideas needed to develop fast transforms
on compact Lie groups and their homogeneous spaces have existed for a long time.
The main new idea, as for the sphere, has been the introduction of fast polynomial
transforms.

One nice feature of the separation of variables technique for compact groups is
that any abstract results formulated in this setting also apply to finite groups. In
this way it can be shown that an abstract formulation of the Euler angle decom-
position for SO(n) can be used to derive Clausen’s algorithm for the symmetric
group, and at the same time we get the new FFTs for the general linear group that
we discussed in the previous section. On the other hand, the higher dimensional
real, complex and quaternionic spheres may be treated in a fashion almost identical
to the Driscoll-Healy treatment of S2. Thus the compact Lie group case provides
a bridge between the finite group and fast polynomial transforms. We now turn to
a brief survey of these questions following the lines of [65, 66, 64].

4.1. Example: Fast Fourier analysis on the rotation group. The Fourier
transform on SO(3) provides a good paradigm for the use separation of variables
techniques on both compact Lie groups and finite groups. It is one of the few group
examples where the techniques based on factorization of group elements may be
supplemented by the fast polynomial transform techniques of Driscoll and Healy
to produce an even faster transform. Other cases where this occurs are usually
homogeneous spaces.

4.1.1. The Fourier transform on the rotation group. As usual, we start by factoring
elements of SO(3). Define matrices,

cosf) sinf 0 1 0 0
ro(6) = —sinfl cosf 0 |, rg(0) =1 0 cosf sind
0 0 1 0 —sinf cosf (4.1)

Then any element, g € SO(3) may be expressed uniquely in the form

g = ra(pa)ra(0)ra(er) (4.2)

for 1,2 € [0,27) and 6 € (0,7) or 1 = 92 = 0 and # € {0,x}. This defines a
coordinate system on a dense open subset of the rotation group, and the coordinates,
©a, 0, 1, of any rotation are called its Euler angles.

Remark 4.1. The set of group elements {r3(#)|6 € [0, 7]} is actually a set of double
coset representatives for SO(3) relative to the subgroup SO(2), so the factorization
(4.2) is a continuous analogue of the factorization used in the proof of Theorem
3.28. Likewise, the method we shall use to compute Fourier transforms on SO(3)
is a continuous analogue of the methods used in Theorem 3.28.
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It is well-known (see e.g. [91]) that the representations of SO(3) are indexed
by the nonnegative integers, such that that the I*" representation V; has dimension
2l+1. We index the matrix coefficients of the representation V; by a pair of integers,
my, my satisfying |m1|,|ms| < I. Then, in a suitable basis, the matrix coefficients
of V; may be expressed as functions of the Euler angles of the form

Trlnl’m2(9’ ©1, 302) — Prlnl,m2 (9)6im1‘01€im2LP2 (43)
where P,ﬂlly,m 1s written in terms of Jacobi polynomials as
[ —m)l(l 17
Prlnl,mg(g) _ (I =m)!(I4my)

(l — mQ)'(l + mz)'

)y

6 6 mi—mo,mi+mo
X (sin 3 cos §)m1+m2P,(_n;1 2mit )(cos 6)
Both the product form of (4.3) and the way the indices are grouped among the
three factors follow directly from the use of a Gel’fand-Tsetlin basis, i.e. a basis
that respects the decomposition of the restriction of V; to the subgroup SO(2). For

a proof of this formula, see [91] or [60].

Definition 4.2 (Fourier transform on SO(3)). Assume f is a continuous complex-
valued function on SO(3). Then the Fourier transform of f is the collection of

numbers f(W)(ml,mg) defined by

A 1 ; .
f(‘/-’)ml,mz = _2/ f(§02707 wl)PrInl,mz(g)el(MItpl+m2@2) sin HdsoldSDQda
87 S2 (44)

By the Peter-Weyl theorem for the group SO(3), the collection of matrix coeffi-
cients (4.3) forms an orthogonal basis for the space of square integrable functions
on SO(3). If f is a continuous function on SO(3), then (2/+ l)f?(Vl)_mh_m2 is the

. l . . .
coefficient of the Ty, ., in this expansion.

4.1.2. Sampling on the rotation group. In order to make sense of the problem of
computing the Fourier transform of a function on SO(3), we still need to relate
this problem to one involving finite sums. In practice this means we first need to
sample the function whose Fourier transform we wish to compute, at a finite set of
points X, and then approximate the Fourier transform by sums of the form

Y w(@)f(2)Th, m, () (4.5)

where w(z) is a weighting function. To make effective use of the factorization (4.2),
we shall assume that the set X is a grid in the coordinate system determined by this
factorization. For the purposes of the current exposition we shall use the following
sets X3, defined for any positive integer b by

Xy = {ra(&3)rs(0%)ra(&5)]0 < i, ja, k < 20}
where

j . (]{7‘1‘%)71'
d 0% = —=—.
26+ 1 an 26+ 1

In general, the sum (4.5) does not compute the Fourier transform of the function
f, but instead, computes the Fourier transform of a measure constructed from f.

J
1

Pl =gy =
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To ensure that we can still get the Fourier transform of f from these sums, we need
to place some conditions on f.

Definition 4.3 (Band-limited functions on SO(3)). A continuous function f on
SO(3) is band-limited with band-limit b if fﬁ(Vl)mlymz =0foralll>b.

For functions of band-limit b, we can choose a weight function for the set X
such that (4.5) exactly computes the Fourier transform of a band-limited function
of band-limit b, when ! <. For this, let wy(k), 0 < k < 2b, be the unique solution
to the system of linear equations

2b
Ewb(k) - Pp(cos 6’“) = bom for 0 < m < b, (4.6)
k=0
where P, is the Legendre polynomial of degree m on [—1, 1]. The weighting function
we will use for X is defined by w(ja, k, j1) = (1/(2b+ 1)) wy (k).
Remark 4.4. The Legendre polynomials which appear in equation (4.6) are the
spherical functions for the double coset space SO(2)\SO(3)/SO(2). The construc-
tion of the weight function wy by using the zonal spherical functions is generalized

in Lemma 4.14.

Theorem 4.5. Assume f is a band-limited function of band-limitb. Then forl <b
1 28
F(V)ms ms = oy k) P} 6"
fWmma = Gy kZ_gw( )Py ma (0%) %

2b . 2b .
[t [ et s o)

j2=0 j1=0

(4.7)

Proof. The rule for tensoring two representation of SO(3) is the famous Clebsch-
Gordan formula (see e.g. [60])

1412
v,evi,= & v
I=[l;—12]

From this it follows that the product of two matrix coefficients T,I,;hm2 ~T,lfhn2 may
be written as a linear combination of matrix coefficients of representations V; with
| =] <1<l +1s.

Now assume f is a band-limited function of band-limit ¥ and I < b. Then the
definition of the Fourier transform (4.4) may be expanded as the integral of linear
combination of products of matrix coefficients coming from representations Vi, , Vi,
with {1,1s < b. As just noted, the Clebsch-Gordan formula implies that this may be
written as the integral of a linear combination of matrix coefficients coming from
representation Vs, with s < 2b. Therefore it suffices to show that the weighted sums

defined by X3 and w(ja, k, j1) integrate exactly any matrix coefficient coming from
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a representation Vi with s < 2b. This is easy, as for |mq|, |m1| < s < 2b,

2b
! i(mipt +mo J2
TP L B Ph (P
j1,j2,k=0

= 80,m, 60, mQEw )PL ma (0%)

= 80,m, b0, mQZwb (k)5 o(6%) = 80,m, 80,ms60

O

4.1.3. The algorithm for SO(3). Assume f is a band-limited function of band-limit
b on SO(3). Then the expression (4.7) is in a perfect form for using the separation
of variables idea. The method we use to compute ]E(Vz)mlym2 1s the obvious one:
we sum on ji first, and then on j; and k in turn. In other words we compute the
following quantities, for 0 < jo, k < 2b and |mq|, |ma| <1 < b.

2b
1 . 1 H
Fl(jZak;ml): PYE Zelmlwl f(Soz :gkasojll) (48)
20+ 1 foper
1 2 ,
Fy(ksmy, ma) = 2%+ 1 > €295 By, kym) (4.9)
j2=0
FV)my o Zwb (k)PL,, (0% ) Fa(k;my, my) (4.10)

If we calculate the sums (4.8) (4.9) (4.10) in a naive manner then the whole cal-
culation takes (5b + 3)(2b + 1)? scalar operations. This is the complexity we get
from a plain application of the separation of variables technique, and corresponds
exactly to the result of Theorem 3.28.

To obtain a more efficient algorithm, we must apply fast transform techniques to
the sums (4.8), (4.9), and (4.10). The first two have the form of Fourier transforms
on Z/(2b 4+ 1)Z, and so may be efficiently computed by variants of the Cooley-
Tukey method. Doing this for all of the sums involved would then require at
most O(b?logbh) operations. That leaves the final sum (4.10). For this, we must
use the fact that for fixed mq, msy, the functions P;;1 ma (cos 0) satisfy a three-term
recurrence relation on the index [, thereby putting us in a situation in which the fast
polynomial transform techniques of Driscoll and Healy [33] and their subsequent
generalization [34] apply. These algorithms show that for fixed my, ms, we may
compute the sums (4.10) for all 0 < I < 2b in O(b(logb)?) scalar operations. Thus
the total number of operations required to compute all the necessary sums of the
form (4.10) is O(b3(log b)?). Putting this together proves the next theorem.

Theorem 4.6. The Fourier transform of a band-limited function, f, on SO(3) with
band-limit b may be computed in O(b>(logb)?) scalar operations, given the function
values of f on the set Xj.

4.2. The Fourier transform on a compact group. Many of the arguments
and techniques applied in the case of the rotation group and the circle can be
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generalized to give an algorithm to compute the Fourier transform of a continuous
function defined on any compact group; the definition is a simple extension of
that for finite groups. We need to treat the Fourier transforms of both continuous
functions and functions sampled on finite subsets of a compact group in a uniform
manner. The correct way to do this is via the Fourier transform of a measure on
the group.

For the remainder of Section 4 it is convenient for us to fix, for once and for all,
a complete set of inequivalent irreducible matrix representations of GG, which we
shall call R. The Fourier transform will be defined as a map from measures on G

to vectors in the product space F(R) = HpeR Mg, (C).

Definition 4.7 (Fourier transform on a compact group). Assume G is a compact
group, p is a regular bounded complex Borel measure on G.

1. If p is any (continuous) finite dimensional matrix representation of G, then
the Fourier transform of y at p is

i) = [ payin(e) (4.11)
2. The Fourier transform of y is the vector in F(R) given by

i =TT ie)- (4.12)

PER

Le., the element of F(R) whose p coordinate is ji(p).
3. Let R’ be any subset of R. Then the Fourier transform of g on R’ is the vector
in F(R) whose p coordinate is f(p) when pis in R’ and zero otherwise.

Two specific instances of this definition will be of particular concern to us. The
first is the Fourier transform of a continuous function f. In this case we first
multiply f by the Haar measure of unit mass on G, which we call p¢g, and then
take the Fourier transform of the product f-pug. The Fourier transform of f at the
representation p is then f(p) = Jo f(x)p(x)dpu(z), and the Fourier transform on R
or a subset of R is defined accordingly.

The second case of interest occurs when p is a finitely supported measure. In
this case, there is a finite subset X, of (G, and a complex valued function w, on X,
such that p = erX w(z)by, where 8, is the Dirac delta distribution at z. In this
case the Fourier transform of y at p is a finite sum,

ilp) = 3 wia)p(e). (4.13)

rzeX

4.3. Sampling. Asin Section 4.1.2 we now need to relate the Fourier transform of
a measure constructed from f to the Fourier coefficients of f. If we wish to compute
the Fourier transform of f, then we must usually compute an infinite number of
integrals on the group G. In practice, even on the fastest computers, we can only
compute a finite number of integrals in a finite time, and for numerical computation
to be possible, we can only compute finite sums approximating these integrals. In
other words, the only information we can hope to compute is the Fourier transform
of a finite measure related to f only a finite set of irreducible representations of
G. The problem of relating the finite information we can compute to the Fourier
transform we want to know, is the subject of sampling theory.
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There is a class of continuous functions whose Fourier transforms can be com-
puted given only a finite number of function values. These are the functions on G
whose expansion in matrix coefficients has only a finite number of nonzero terms.
Such functions are called band-limited functions on GG. For non-band-limited func-
tions on (G, we may in general only approximate the Fourier transform, and the
accuracy of the approximation depends both on the number of function values
given and how close the function is to being band-limited. To make this precise,
we need to refine the notion of band-limited and define for each positive integer, b,
a space of “functions with band-limit 6”.

Definition 4.8 (Band-limits for compact groups). A system of band-limits on
compact group G, is a choice for each non-negative integer b, of a finite set of
irreducible representations, Ry, contained in R, such that
1. szo R =R
2. If b1 S bg, then Rbl g Rb2.
3. If by and by are any non-negative integers, then Ry, @ Ry, C spany Ry, +5,-
Ie., the tensor product of a representation in R, with a representation in
R, 1s a sum of representations in Ry, 45,

We say that a function on G is band-limited with band-limit b, if it is a linear
combination of matrix coefficients of representations in R. A function on G is
band-limited if it is band-limited with band-limit b for some nonzero integer b.

Remark 4.9. The definition of band-limited in Definition 4.8 is a special case of a
much more general notion. The concept of band-limit may be formulated in the
context of any filtered algebra. Even more generally, we may speak of band-limited
elements of a filtered module over a filtered algebras (cf. [66]). This is useful for the
development of a sampling theory for tensor fields, or sections of vector bundles.

Example 4.10. The irreducible representations of S' are indexed by integers, j.
If we let Ry be the set of irreducible representations with |j| < b, then the collection
of sets Ry is a system of band-limits on S*.

On the group SO(3), we let Ry = {V; : 1 < b}. Then the collection of sets Ry is
a system of band-limits on SO(3).

More generally, if we pick a set of irreducible representations of a compact Lie
group which generates the representation ring and contains the trivial representa-
tion, we may let Rj be the set of representations occuring in tensor products of b
representations from this set. Then the sets Ry form a system of band-limits on
the given compact Lie group.

The sampling lemma for band-limited functions may now be stated as follows.

Lemma 4.11 (Band-limited sampling). Assume f is a band-limited function of
band-limit b and p is a regular bounded complex measure on G whose Fourter trans-
form at any nontrivial representation in Raop ts 0 and whose Fourter transform at
the trivial representation is 1. Then for any representation p in Ry,

F-i(p) = f(p).

Proof. Consider the product of f with any term in the Fourier expansion of u cor-
responding to a representation not in Ryp. This product must be in the orthogonal
complement of the space of functions with band-limit . So, if p is in Rj, then

Fonp) = F-1(p). =
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The relevant case of this lemmais when u = E:L‘EX w(z)éy is a finitely supported
measure. In this case the lemma says that

Flp) =Y f@)w(z)p(x)
reX
for any p in Rj. The measure y is then called a sampling distribution, and the
function w(z) is the associated weight function.

It is always possible to find finitely supported measure that satisfy the conditions
of Lemma 4.11. For this to be useful, however, the number of points in the support
of this measure must not be too large in comparison with the dimension of the space
of functions of band-limit . Another restriction on the set X is that we want to
be able to construct a fast transform for functions sampled on this set. In Section
4.4.1 we show that, for the classical groups, it is possible to find sets of points that
satisfy all these restrictions at once.

4.3.1. Functions that are not band-limited. When the function f appearing in Lemma
4.11 1s not band-limited, we may still ask if the Fourier transform of f -y is a reason-
able approximation to the Fourier transform of f. We now give a brief discussion
of this question. The ideas introduced here are not required elsewhere in the paper.

If 1 is a measure on (G, then we may construct a function of band-limit b from p
by truncating the Fourier expansion of p to include only those representations from
Ry. Let us call the projection operator corresponding to this process Py. Let || || 4,
denote the norm of absolute summability on the space of absolutely summable
functions on G (see [52] Section 34.4). Then ||Py(f - — f - pg)||a, measures how
close the Fourier transform of u - f is to that of f, for those representations in R;.
To bound this quantity properly, we now need to be a little more selective in the
choice of the sets Ryj.

Assume that G is a connected compact Lie group. Then the set of irreducible
representations may be identified with the set of all dominant analytically integral
weights in the dual of its Cartan subalgebra. Now choose a norm ||-||, defined on the
dual of the Cartan subalgebra, such that || -|| is invariant under the taking of duals,
and ||a]] < ||B]| + ||7]] whenever «, 3, correspond to irreducible representations of
G such that « is a direct summand of # ® . Let Ry be the set of those irreducible
representations with norm less than or equal to . Then the collection of sets Ry is
a system of band-limits on . This system of band-limits is very similar to those
constructed in Example 4.10.

For any system of band-limits constructed from a norm on the Cartan subalgebra,
as above, we have the following theorem. To state it properly, we define the norm,
| - ||4,,, which is finite on a subspace of the continuous functions, by

1Alan =[O+ 32 el 15l

PER\{1}
where || ||,,1 is the von Neumann norm on the space of d, x d, matrices. (The book
[52] develops the general properties of these types of norms.)

Theorem 4.12 ([66] Theorem 2.11). Assume f is a continuous function on G,
and p 1s a reqular bounded complex measure whose Fourier transform at any non-
trivial representation in Rqoyp ts 0 and whose Fourier transform at the trivial rep-
resentation 1s 1. Let m be and nonnegative integer. Then

IPs(f 1= f - ma)llag € Kab®™m Sk Ca=m || f — Pofla,,
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where || - ||1 is the total variation norm, and rank,s G denotes the semisimple rank

of G.

Theorem 4.12 may be improved in several different ways. The norms used on
the spaces of measures and functions may be generalized. The constants K¢ can
be determined for specific groups, and the factor Kgbdim GHrankss Gg=m apnearing
in the bound may be improved. The result may also be formulated for sampling
using distributions rather than measures, and a version of this result also holds
for sections of vector bundles ([66] Theorem 3.7). The work of Gaudry and Pini
[40, 76] may be used to relate ||f — Paf||4,, to norms based on the differentiability
properties of functions.

4.4. The classical compact Lie groups. We now consider four series of con-
nected compact Lie groups. The special orthogonal groups, SO(n), the unitary
groups, U(n), the special unitary groups, SU(n), and finally the symplectic groups
Sp(n). Each of these may be realized as a group of n X n matrices. In particular,
we define Sp(n) to be the set of n x n quaternionic matrices that are unitary with
respect to a quaternionic inner product, 1.e. A*A = I. We shall consider these
groups of matrices to be embedded in each other in the obvious ways. For example
SO(n) CU(n) CU(n+1).

Many definitions and simple lemmas that we stated for finite groups apply to
compact groups with very little or no change. Rather than restate them in their
entirety, let us simply note the minor changes required to accomodate the more
general situation.

e The definition of subgroup-adapted sets of representations (Definition 3.7)
makes sense for finite sets of matrix representations of a compact group, G,
and a closed subgroup H.

e Lemma 3.9 (Schur’s Lemma) holds for G' a compact group, and K, H closed
subgroups of G.

e The notion of maximum multiplicity M(G, H) makes sense for a compact
group G and a closed subgroup H.

e The separation of variables equations (3.3) and (3.4) apply to compact groups,
provided the function, f, is replaced by a finitely supported measure, the ele-
ments g, which we are factoring, range over the finite support of this measure,
and the representations we use are all finite-dimensional. In this way we can
formulate the separation of variables technique on any group, compact or not.

With these definitions and results we can describe fast transforms on the clas-
sical compact groups in a way very similar to our discussion of SO(3). As in the
discussion of SO(3), we start by factoring group elements.

4.4.1. Generalized Fuler angles. The Euler angle decomposition of an element in
the rotation group has a natural generalization to the classical compact Lie groups.
For any positive integer, n, and real number f, we define matrices r,(0), ¢,(6),
qn(0), and up,(0) which generate these groups. Let

In—2

rn(8) = cosf) sinf

—sinf  cosf
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where the rotation block appears in columns n — 1,n. Let t,(f) be the diagonal
matrix with ones on the diagonal except for e in the n'P diagonal position. Let
qn(0) = 11(=0) .. .t (—tnq1(nb). Finally, let u,(0) be the diagonal matrix with
ones on the diagonal except for ¢/? in the n*™ diagonal position, where j is a unit
quaternion.

Lemma 4.13 (Generalized Euler angles). Let 9450(n); 9U(n), 95U(n), ad gsp(n) be
elements of the groups SO(n), U(n), SU(n), and Sp(n) respectively. Then these
group elements have factorizations of the form

gso(n) = [ra(0%) - -ra(O3)] - - [7“2(93)7’3(33)] 'T2(9§)
gu(ny = [L(@) - a1 (@n_1)ra(05) - ra(07) - talen)] -

[t ra(02)ta(93)] - ta(e1)

9su(n) = [01(27) - an-1(Ph_1)r2(05) - ma(6) - an-1(#})] -
o) r2(03) a1 (93)]

9spn) = [(t1 (@7 D (Y7 )t (05 1 )ra(63)) - -

(tn-1(27 )1 (Y )1 (28 )T (0)) - (@1 ) un () - a5 )] -

R [tl(30%,1)“1(7/)%)11(89%,1)]

For a proof of Lemma 4.13 see [60] or [65]. The sets over which the parameters
9]’»“, go}“, 1/)]’“, gogyj should range can easily be determined from the interpretation of the
factors in these expressions as double coset representatives. For example, if k& > 3
then r1([0, 7]) is a set of double coset representatives for SO(k) relative to SO(k—1).
Therefore 07 should range over the set [0, 7], when k > 3. Similarly, r,([0, 7]) is a
set of double coset representatives for U(n) relative to U(n—1)xU(1), and u,([0, T])
is a set of double coset representatives for Sp(n) relative to Sp(n — 1) x Sp(1).

As in the case of the rotation group, we use the generalized Euler angle factor-
ization to specify the sets we shall use for sampling. In each case we pick a set
X3 which is a grid in the coordinate systems determined by the factorizations of
Lemma4.13, with only O(b) points in each dimension. To find suitable weight func-
tions wy, and hence suitable measures p; for the band-limited sampling lemma to
apply, it suffices to find quadrature rules which exactly integrate spherical function
on the double coset spaces related to the factorizations. This method is most easily
stated using the convolution of measures, as in the next lemma.

Lemma 4.14. Assume G is a compact group K is a closed subgroup of G, and R’
s a set of irreducible representations of G. Assume that x s a measure supported on
K, such that the Fourier transform of x—pux on R’ is zero, and v is a measure on G
such that the integral of v— pug against any zonal spherical function on G relative to
K for a representation in R’ is zero. Let p = x*v*x. Then the Fourier transform
of p at any nontrivial representation in R’ is zero, and the Fourier transform of p
at the trivial representation is 1.

4.4.2. Fast transforms. Two things remain to be done before we can state a result
about the efficient computation of Fourier transforms on the classical compact Lie
groups. We must define a system of band-limits on each of the classical groups,
and we must specify subgroup chains for our representations to be adapted to.

A specific choice of a system of band-limits can be obtained by writing the highest
weights of representations in a standard coordinate system. Representations of the
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special orthogonal, unitary, special unitary or symplectic groups may be indexed by
r-tuples of integers satisfying certain inequalities depending on the group, where r
is the rank (see e.g. [60]). For example, the representations of SO(2r) are indexed
by integers my, ..., m,, which satisfy

le"'Zmr—12|mr|~

For any of the series of groups under consideration, we define a system of band-
limits by letting Ry be the set of those representations for which all integers, m; in
the corresponding r-tuple satisfy |m;| < b. When the group is SO(2r), this means
simply that R is the set of all representations with m; < b.

Finally, we specify the subgroup chains which our representations must be adapted
to. These are:

SO(n) > SO(n — 1) > ---> SO(2), (4.14)
U(n) > Up_1 x Uy > -+ > U(1), (4.15)
SU(TL)>S(UH_1 XU1)>'~~>S(U1 XUl) (416)

Sp(n) > Sp(n — 1) x Sp(1) > Sp(n — 1) x U(1) > --- > Sp(1) > U(1).
(4.17)

Now we have all pieces needed to apply the separation of variables techniques
to these groups. We may apply both the matrix and scalar methods, but, as in the
case of finite groups, the scalar method produces better results. The next theorem
uses the scalar method.

Theorem 4.15. [[64] Theorem 5.1] Let K, be one of the groups, SO(n), U(n),
SU(n), or Sp(n). Then the Fourier transform of a band-limited function f on
K, with band-limit b may be computed at a set of representations adapted to the
subgroup chain (4.14)-(4.17) for K, in O(b3™ Kntv(Kn)y scalar operations, given
the function values of f on the set Xy . The exponent y(K,,) is given in the following
table.

K, |SO(n) U(n) SU(n) Sp(n)
Y(Kn) | [53] n-1 n 3n

The proof of Theorem 4.15 follows the SO(3) case very closely. Using Schur’s
Lemma and the factorization of elements in X3 into Euler angles, we obtain an
expression for the Fourier transform, in coordinates, as an iterated sum of prod-
ucts. We then calculate the sums corresponding to different factors one after the
other. To determine which matrix elements occur multiplied by each other in these
expressions, we index the rows and columns of our representations by paths in a
Bratteli diagram, and use the diagrammatic methods of Sections 3.3.1 and 3.3.2.
For a proof, see [64].

The matrix elements of SO(n) in a Gel’fand-Tsetlin basis were first determined
in [61]. A general method of finding expressions for matrix elements is presented,
and explicit expressions for the unitary groups may be found in [60].

4.4.3. Relationship to the finite case. The fast Fourier transform on SO(n) has an
interesting relation to some finite Fourier transforms. The fast transform on this
group depends on two properties: The form of factorization into generalized Euler
angles, and the structure of the representation matrices of the elements r,(#). Both
of these may be deduced from the following definition.
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Definition 4.16 (Two-step commuting chain). A two-step commuting chain
for a compact group G, is a chain of closed subgroups,

G=K,>Kn_1> - >Ko=1 (4.18)

such that there exist subsets Aq,..., A, with the following properties:
(1) A; C K.
(2) Ki=Ki—1-4; - K;_1.
(3) The elements of A; centralize K;_s.

Lemma 4.17. Assume G has a two-step commuting chain. Then
G= (A1 Ap) (A1 Ap_y) - Ay

Lemma 4.17 says that any element of G may be factored using elements from
the sets A;. On the other hand, following Section 3.3, properties (4.16) and (4.16)
in the definition of a two-step commuting chain indicate that the nonzero entries
of adapted representation matrices at elements coming from the sets A; may be
indexed by pairs of paths of length 2 in the Bratteli diagram of the chain (4.18).
Thus, the scalar and matrix separation of variables algorithm on SO(n) may be
formulated in any group with a two-step commuting chain.

There are many groups with two-step commuting chains. The classical compact
groups, SO(n), U(n), SU(n), and Sp(n), all have obvious two-step commuting
chains. It is particularly interesting that there are finite groups which have two-
step commuting chains. Indeed, the chains of finite groups

Sp>Sp_1>-->51=1
GL,>GL,_1>...GL >1

are both examples of two-step commuting chains which, as Section 3.1 shows, lead
to fast Fourier transform algorithms.

4.4.4. Multimatriz algebras and separation of variables. The ideas used in sepa-
ration of variables algorithms may be formulated for an arbitrary multi-matrix
algebra, 2.e., a direct product of matrix algebras. We may still factor elements, and
the structure of matrices may still be described using paths in Bratteli diagrams,
so all the basic ingredients for this algorithm are there.

The results we have developed for finite groups and compact groups are both
special cases of a separation of variables algorithm on a finite multi-matrix algebra.
In the finite group case, the group algebra is semi-simple and hence isomorphic
to a multi-matrix algebra. In the compact group case, we must work with a finite
dimensional quotient of the group algebra by an ideal. The sampling theorems then
tell us how to relate these computations to Fourier transforms of functions. From
this point of view, the compact group and finite group algorithms are part of the
same phenomenon.

In the compact group case, we chose only one of many possible ways of completing
a direct sum of matrix algebras. By considering different completions we may
describe fast methods for computing sums of products in algebras of distributions;
once we have used sampling theory to divide by an ideal the algorithms are the
same as before.

So far we have considered sampling to be equivalent to multiplying a function
by a measure that approximates Haar measure. We may also sample a function by
multiplying by a finitely supported distribution. By computing with this product,
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we may compute Fourier transforms of functions given values of their derivatives,
as well as function values. We may also consider distributions that are left invariant
under the action of some subgroup. This is equivalent to computing the Fourier
transform of distributions on a homogeneous space of the group.

4.5. Homogeneous spaces. As in the finite case (cf. Section 3.1.5) the homoge-
neous spaces of compact Lie groups provide examples particularly amenable to the
separation of variables technique. As a function on a homogeneous space G/K may
be viewed as a right- K-invariant function on the group G, all the sampling theory
developed for groups is readily transferred to the new setting. The idea of factoring
group elements is translated to factorization of coset representatives for G/K, but
as many of our choices of factorization came from coset representatives in the first
place, this i1s not usually a big change.

Not all of the Fourier coefficients of a right- K-invariant function are relevant.
In fact only certain Fourier coefficients may be nonzero. The matrix coefficients
corresponding to the possible nonzero Fourier coefficients are precisely the matrix
coefficients that are themselves right- K-invariant, and hence may be interpreted as
functions on GG/ K. These functions are called the associated spherical functions on
G/K, and the Fourier transform of a function on G/K.

4.5.1. Rank one homogeneous spaces. In one important class of examples, the clas-
sical rank one homogeneous spaces, the associated spherical functions factor com-
pletely into products of orthogonal polynomials and complex exponentials.

For example, the associated spherical functions for S"~! = SO(n)/SO(n — 1)
may be written, in spherical polar coordinates, and in an appropriate basis, as

An ]___[C 3 +|mg ll(COSHJ')SiHmj_l(Qj) '6im292

mj—|m;_

where A}; is a constant depending on n and the integers m;. In these cases,
the technique of summing one coordinate at a time may be supplemented by the
algorithms of Driscoll and Healy to produce an even more efficient algorithm for
computing the transform. It follows that we may expand a band-limited function of
band-limit b on S"~! in a basis of associated spherical functions in O(b"~!(logb)?)
scalar operations.

The algorithms of Driscoll and Healy were originally developed to treat such
a case: the spherical harmonics are precisely the associated spherical functions
for S? = SO(3)/SO(2). Further examples of this method applied to rank one
homogeneous spaces may be found in [65, 64].

4.5.2. The expansion of tensor fields. The definition of Fourier transform may be
extended to treat the expansion of sections of a homogenous vector bundle in terms
of basis sections coming from the decomposition of sections of that bundle under the
action of a compact group. As with the case of homogeneous spaces, the sampling
theory for compact groups may be adapted to this situation, and it therefore makes
sense to ask for efficient algorithms for computing the expansion of a band-limited
section in basis sections.

An example of this would be the expansion of tensor fields on S? in terms of
tensor spherical harmonics. The tensor harmonics that are sections of irreducible
vector bundles over S? are called the monopole tensor harmonics. The monopole
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tensor harmonics on the irreducible bundle of degree n may be written in appropri-
ate bases away from the poles, as linear combinations of scalar spherical harmonics
times 1/(sin 8)I?l. This observation quickly reduces the problem of finding a fast
tensor harmonic transform to the well-known scalar case treated by Driscoll and
Healy. For a more detailed treatment of the tensor transform, see [65, 48].

5. FAST DISCRETE POLYNOMIAL TRANSFORMS

The techniques we have described in Sections 3 and 4 reduce the computation
of Fourier transforms on groups to sums involving matrix coefficients, taken over
fixed subsets of the group. Many well-known special functions arise in this way, as
matrix coefficients considered on a subset of a group, so it is sometimes possible
to use the special function properties, recurrences etc., of the matrix coefficients
to help compute the new sums efficiently. For example, we have seen that for
the n-sphere, the Gegenbauer polynomials arise. In this case a pure separation of
variables approach to computing the transform of a band-limited function takes
O(b"*+1) operations, whereas an approach that uses fast Gegenbauer transforms
takes O(b™(logb)?) operations. Here we summarize some of the recent work [33, 34,
73] on fast discrete polynomial transforms, especially as related to these new fast
algorithms for discrete orthogonal polynomial transforms.

The general framework is as follows. Let { Py, ..., Pxy_1} denote a set of linearly
independent polynomials with complex coefficients. Let {zg,...,zn_1} C C be any
set of N distinct points, called sample points. If f = (fo,..., fzv—1) is any data
vector, then the discrete polynomial transform of f, the set is defined as the
collection of sums, {f(Po), o f(PN_l)}, where

f(B) = Y BByl 6.1

The function w is some associated weight function, which we will usually take to
be identically 1. It is easy to see that a general discrete polynomial transform may
be written as a matrix-vector product, so direct computation requires on the order
of N2 operations.

Remark 5.1. There are at least four distinct transforms that may be associated
with a linearly independent sequence of polynomials and a set of points.

(1) Given the coefficients of a polynomial f in the basis { Py}, evaluate f at the
points {z; }.

(2) Given a sequence of function values f; = f(z;), of a polynomial f, compute
the coefficients of the expansion of f in the basis {P}. This transform is
inverse to the evaluation transform (1).

(3) The transpose of (1). This transform is equivalent to (5.1) in the case where
the weight function w is identically 1.

(4) The transpose of (2).

The discrete polynomial transform may be related to either transform (3) or in
certain cases to (2). On the other hand, it is clear that by multiplying a data
vector by the weight function we can reduce a discrete polynomial transform to the
transposed evaluation (3).

Example 5.2 (Discrete monomial transforms). When the Pj(z) = z* is the mono-
mial of degree k, we obtain a discrete monomial transform for which an O(N log? N)
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algorithm exists (see Section 5.2). If the sample points all lie on the unit circle, then
with an appropriate weight function the discrete monomial transform is a Fourier
transform on the circle. If, in addition, the sample points are the roots of unity
then we obtain the discrete Fourier transform.

Example 5.3 (Discrete cosine transform). The Chebyshev polynomialsof the first
kind are the sequence of orthogonal polynomials defined recursively by Ty(z) =
22Ty-1(2) — Ty—2(2), with the initial conditions Ty = 1, Ty = z. The discrete
cosine transform (DCT) is the discrete polynomial transform for the Chebyshev
polynomials, with weight function 1, and sample points z; = cos™! (7(2j + 1)/2N).
This transform may be computed in O(N log N) operations using an FFT [1], or by
the extremely efficient DCT algorithm of Steidl and Tasche [86], which takes a mere
(3/2)Nlog N — N + 1 real scalar operations when N is a power of 2 and the input
vector 1s real. The sample points we have used here are called the Chebyshev
points and are the roots of Ty .

Example 5.4 (Discrete orthogonal polynomial transforms). We have already seen
that the Fourier transforms on the k-sphere may be computed using discrete polyno-
mial transforms at the Gegenbauer polynomials. In this case, the set of polynomials
is orthogonal with respect to a measure on the unit interval, and as is discussed in
the next section, O(N log? N) algorithms exist [33, 34].

Example 5.5 (Discrete spherical transforms). The spherical functions of distance
transitive graphs may be written in terms of orthogonal polynomials (see [85, 35]).
The paper [34] develops an algorithm for computing the spherical transform on
these spaces.

5.1. Fast discrete orthogonal polynomial transforms. In [34] an algorithm
is given which computes general discrete orthogonal polynomial transforms
in O(N(log N)?) operations. By this we mean a discrete polynomial transform in
which the P are a set of orthogonal polynomials with deg P, = k. The algorithm
relies on the three-term recurrences satisfied by any orthogonal polynomial system,
and therefore may be used for computing transforms over any set of spanning
functions which satisfy such a recurrence. Related techniques have already found
a number of applications attacking computational bottlenecks in problems in areas
such as medical imaging, geophysics and matched filter design [34, 72, 49, 48]. This
general approach grew out of the fast Legendre transform algorithms in [33] (esp.
Section 5).
The main result of [34] is the following theorem.

Theorem 5.6. Let N = 2" and let Pi(z), | = 0,...,N — 1 comprise a family
of functions defined at the positive integers x = 0,1,..., N — 1 and satisfying a
three-term recurrence there:

P]+1((L‘) = ((l[(E—i—b[)P](éL‘)—}-C]P]_l(CL‘), (52)

with wnitial conditions Py = 1, P_1 = 0. Then the discrete polynomial transforms

{£(0),..., f(N = 1)} for f = (fo,..., fa_1) defined by
N-1
(=" fiPG)w;
j=0

where w is a weight function, can be computed in O(N(log N)?) operations.
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Rather than prove this general theorem, let us sketch the proof of a special case.

Lemma 5.7. Assume N = 2" and {P,, ... Pn—_1} is a set of real orthogonal polyno-

muals. Then for any sequence of real numbers, fo, ..., fn—1, the discrete orthogonal
polynomaal transform defined by the sums
N—1 .
a1 _,m(2j+ 1)
=+ JZO £ P (cos (—55—) (5.3)

may be calculated in less than

1
%N(log2 N)? + 7N log N + gN -7

real scalar operations.

The frst stage in the proof of this lemma is to rewrite the sums (5.3), using
discrete cosine transforms. To do this, we define the truncation operators 7,
which map polynomials of any degree to polynomials of degree strictly less than n.
If f =3 45obeTk is a polynomial, of any degree, written in the basis of Chebyshev

polynomials, then let
n—1

T.f = Z by Ty,
k=0
In other words, 7, f is obtained from f by throwing away terms of degree n or
higher in the expansion of f in Chebyshev polynomials.
Now let f be the polynomial of degree N — 1 uniquely determined by the re-

quirement that
(ot (CELED)) < 5, (5.4)

1.e., by its function values at a set of Chebyshev points. Then the discrete orthog-
onal polynomial transform of the sequence {f;}, may be written as

f)y="1(f h)
Proof of Lemma 5.7. We start with the polynomial f of degree N — 1 determined
by equation 5.4. As this polynomial is determined by its function values at a set of
Chebyshev points, we agree that any calculations involving this polynomial should
start with these function values as input data. Note that with f in this represen-
tation, the truncation operators 7,, may be applied in O(N log N) operations using
a fast DCT.

The algorithm works by computing intermediate polynomials ZIK =Tk (f - P),
of degree at most { — 1, for various values of [ and K. Without loss of generality, we
assume that Py = 1, so in this notation f(l) = 7! We use two basic facts to derive
recurrence relations between the Zf<. First, by iterating the three-term recurrence
relation for the polynomials P;, we obtain the recurrence

Piym = Qum - Pr+ RimPia (5.5)

where @1, and R, are polynomials of degrees m and m — 1 respectively. Sec-
ondly, the truncation operators satisfy the following “aliasing” property. If h i1s any
polynomial and @) is a polynomial with degree deg Q < m < K, then

TK—m(h ' Q) = TK—M[(TKf) : Q] (5~6)
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Using equations (5.5) and (5.6), it is trivial to derive the following recurrences for
the Z[<.

ZII-(}-r_nm = TK—m[ZIK 'Ql,m + leil : Rl,m] (57)
ZII-(}-;’LTI = TK—m—l[ZIK : Ql,m + leil : Rl,m] (58)

The algorithm proceeds in r + 1 = log, N + 1 stages as follows.

Stage 0. We start at stage 0 by using the formulas Z) = Ty f = f and Z{¥ =
TIn(f - P1) to find the polynomials Z} and Z} at the Chebyshev points for T .

Stage 1. At stage 1, we find the polynomials Zév/z, Ziv/z and Zﬁ//s,Zﬁ//;_l. We
do this using the relations Z(J)V/2 = TN/zZéV, Z{V/z = TN/ZZ{V, and the following
recurrences obtained from (5.7) and (5.8)

Zﬁ//22+1 = Tnsa2[Z27 - Qi ny2 + 28 - R nyo)

Zﬁ//s = 7—N/z[ZlN “Q1,nj2-1 + Zév "Ry ny2-1]

The multiplications may be performed using function values at the Chebyshev
points for T.

Stage k > 1. At stage £ > 1 of the algorithm we find the polynomials ZIN/Qk7
ZN2 for 1= p(N/2%) +1,0 <p < 2F, ie.,

k k k
Z(J)\f/2 7Zi\7/2 N2

k
e N/

N/2*
N/2F 417 Z

k
N—N/2’°’ZN/2

N—N/2k41"

These polynomials are determined by finding their values at the N/2* Chebyshev

- . . - N/2% N/2k=t
points for T/« When p is even we simply use the relations 7, =Tnyjox 2

and ZM2" = Ty 2N
k
When p = 2¢ + 1 is odd we find Z;)VJ\/7/22"+1
k
K = N/2¥=1 1 = ¢N/2¥=' 41, m = N/2F, and we find ZIJ)VJ\/,/22k from recurrence
(5.8) by substituting K = N/28~1 | = ¢N/2¥~1 + 1, m = N/2%¥ — 1. In each case
we may perform the polynomial multiplications by multiplying function values and
we may apply the truncation operators using DCTs.

from recurrence (5.7) by substituting

Stage r. At the final stage, r, we compute the polynomials Z} for O <1 < N.
These polynomials are constant, and f(I) = 7.

If we are careful about the data we store at each stage, then at every stage,
except stage 0, we use 2¥ DCTs, 2* inverse DCTs, and an additional 4N real scalar
operations. Adding up all the operations gives the result. O

Figure 10 illustrates the organization of the computation. We have only been able
to give the briefest summary of this algorithm. The interested reader is strongly
advised to refer to [33, 34, 49], for a more detailed discussion of the algorithm, and
particularly to [72, 73] for a discussion of stability issues. [67] contains an axiomatic
derivation.

With the exception of the zeroth and last stages, the algorithm proceeds by
divide and conquer; the k-th stage looks like 2 copies of the (k — 1)-th stage. The
algorithm may also be formulated as a factorization of the matrix [Pi(z;)], where
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stage 0

stage 1

stage 2

stage 3

FiGURE 10. Depiction of the computation of Z,K for N = 16.

z; are the Chebyshev points, into a product of block matrices with Toeplitz blocks
of geometrically decreasing size.

The main step in reducing Theorem 5.6 to Lemma 5.7 is a fast monomial
transform. We discuss this briefly in the following section.

5.2. Fast monomial transforms. The case of monomial transforms, z.e., that in
which Pj(z) = 27, is itself quite important and interesting. As noted above, for
appropriate evaluation points this formulation produces both the DFT and DCT.
Another important set of evaluation points are an arbitrary set of points on the
unit circle in which case so-called “non-uniform” DFTs can be obtained. Such
transforms have important applications in medical imaging (see eg. [94]).

For sample points {zo, . .., z,—1} and initial data { f(0), ..., f(n—1)}, the discrete
monomial transform is the computation of the sums

G = 3 ko] (5.9)

or equivalently the computation of the matrix-vector product

1 1 e £(0)

Zo Z1 Zn—1 f(l)

R EERR e (5.10)
gt gt gt ) -

The fast algorithms of [34, 73] are derived by consideration of the transposed
computation, which is simply the evaluation of the polynomial f(0) + f(1)z +
f(2)22 + - + f(n — D)z"~ ! at the points {z0,...,2n_1}. By formulating an
O(nlog® n) algorithm of Borodin and Munro [14] as a factorization of the Van-
dermonde matrix (the transpose of the matrix in (5.10)) an algorithm of equal
complexity is obtained for the discrete monomial transform. The paper [73] also
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addresses stability issues. In the case of nonuniform DFTs, approximate algorithms
using fast multipole expansions have also been explored [36, 37].

6. OPEN QUESTIONS AND FURTHER RESEARCH DIRECTIONS

We hope that the preceding discussions have supported the claim that “Gener-
alized FFTs” is an exciting interdiscplinary research area. Many open questions
and potential research directions still remain. We close with a list of some of these,
given in no particular order of preference.

1. Classification of finite groups by complexity. Is there a universal constant
¢ such that all finite groups have O(Glog® G) complexity? Is ¢ = 17 Within this
problem, there are the specific subproblems of finding other families of groups that
achieve this upper bound. This would include improving the upper bounds for the
various matrix groups over finite fields and Lie groups of finite type, cf. [68, 69, 62])
as well as solvable groups [12].

2. Improve the general upper bound for finite groups. Can the general
upper bound for the complexity of a finite group be improved? To date, it is known
that all groups have complexity bounded |G|!**. This is due to M. Clausen (see
[16]). Perhaps the centralizer techniques of [70, 68, 69] will prove useful.

3. Use of group extensions. The goal here would be to relate, for G N, the
complexity of G, to the complexity of N and G/N for arbitrary G/N. As stated
in Section 3.5, to date, only the case of G/N abelian has been analyzed [83], as
well as those semidirect products that arise as wreath products [81]. Tnvestigating
arbitrary semidirect products might be a good place to start.

4. Generalization of the chirp-z transform. Most of the FFTs for finite groups
use in one way or another, the restriction of representations from group to subgroup.
We saw in Section 3.4, that the method of Rader and the chirp-z transform provide
ways of relating Fourier analysis on Z/pZ to that of Z/pZ* = Z/(p— 1)Z or
a higher order cyclic group Z/MZ, through convolution. This seems to relate
the representation theory of groups that have no group-subgroup relationship. It
would be of great interest to find a more general formulation of this, i.e. a chirp-z
for nonabelian groups.

5. Using the Clebsch-Gordan formula. The Clebsch-Gordan formula appears,
somewhat disguised, in the algorithms for solvable groups as well as the Driscoll-
Healy algorithm and the fast discrete orthogonal polynomial transforms (where it
may be used to derive the three-term recurrence relations). Is it possible to use
this formula more completely, possibly achieving an O(N log N) algorithm?

6. Monomial representations. Can Baum’s method for supersolvable groups
work for other solvable groups? This is already known for extensions of abelian
groups with supersolvable factor group [19]. A good place to start would be to look
at other M-groups which are not supersolvable.

7. Generating irreducible matrix coefficients. Any implementation of an
FFT would require the ability to actually generate a collection of irreducible matrix
coefficients, possibly with some extra structure (e.g., adaptedness). While general
results exist in this direction (cf. [5]), it would be of interest to find other classes of
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groups which have finely tuned algorithms for this task, as do the solvable groups
[8].

8. Stability. Error analyses of abelian FFTs abound, mainly due to the widespread
use of these algorithms in so many important applications (see e.g. [17, 79]). The
audience and usefulness of generalized FFTs is growing and analogous analyses for
FFTs for arbitrary or specific classes of groups might be a worthwhile topic to
pursue.

9. Fast algorithms for higher-dimensional recurrences. The key to the
fast discrete polynomial transforms is the use of the three-term recurrence [33, 34].
Can methods like these work for higher-dimensional recurrences? (E.g., the two-
dimensional recurrences for spherical functions on rank 2 homogeneous spaces). In
the same spirit, it should be noted that the O(nlog2 n) FFT for the two-sphere
[33] uses only the recurrence in the order parameter for the associated Legendre
functions. Perhaps in combination with other recurrences that involve the degree
parameter, this complexity could be reduced to O(nlogn).

10. Minimal sampling. How can we find sampling distributions for band-limited
functions of a fixed band-limit with a minimal number of points? This problem
seems to have a more algebro-geometric flavour (see [71]).

11. General sample points. Can we find fast transforms on compact groups that
use more general sampling points? A solution to this problem would be particularly
useful on the sphere. There is already some progress in this direction, as the
separation of variables technique does not strictly require a grid of points to work,
but only the condition that the projection of the set of sample points onto the first
few Euler angles (with respect to some fixed ordering of these coordinates) does not
contain too many points. However it is not clear whether the sample sets we can
treat in this way are general enough to construct minimal or near minimal sample
distributions.

12. Transforms on noncompact groups. Is it possible to develop algorithms
for computing Fourier expansions on noncompact Lie groups or their homogeneous
spaces? This would require a sensible sampling theory for these groups. One
application of this might be to analyse sets of covariance matrices using harmonic
analysis on the space of positive definite matrices. Another example of interest is
the motion group, for which there would be many possible applications to filter
design and pattern recognition.

13. Applications. Generalized FFTs are slowly finding areas of application. The
paper [80] attempts to survey some of these. Just to indicate a few directions of
work, FFTs for finite groups have found uses in data analysis (see e.g., [28, 29]),
finite element methods [39] and filter design [57, 53, 54]. The FFT on the two-sphere
has potential applications in global circulation modeling [48], control theory [46,
47] and computer vision [56]. Both investigating these current applications more
thoroughly, as well as finding new uses, seem to be worthwhile research directions.

14. Parallelizability. The divide and conquer nature of several of the techniques
explained here (eg. separation of variables, discrete orthogonal polynomial trans-
forms) strongly suggest the possibility of effective parallel implementation. For
finite groups, the recent thesis of L. Stiller [87] takes an excellent first step in this



52

DAVID K. MASLEN AND DANIEL N. ROCKMORE

direction, developing parallel algorithms based on [70]. These algorithms were mo-
tivated by their potential use in certain large-scale linear algebra problems. The

possible uses of the FFT on the 2-sphere similarly suggest that parallel versions of

the compact group FFTs would be of interest. To date only the preliminary work
[50] exists.
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