
The Influence of Microprocessor Instructions on the
Energy Consumption of Wireless Sensor Networks

Nicholas D. Lane and Andrew T. Campbell
Computer Science Department, Dartmouth College

Hanover, New Hampshire, USA
niclane,campbell@cs.dartmouth.edu

Abstract— The field of low power compilation could be applied
to sensor networks to yield significant savings for the sensing,
computation, and communications processes in sensor networks.
Such savings could come via simple low power savings flags
for future compilers used by sensor network developers. In this
paper, we instrument the Moteiv Tmote Sky as a representative
sensor, and conduct a set of experiments to study the impact
of instruction types, circuit state effects, instruction operand
ordering, memory addressing modes, and existing GCC compiler
optimization flags on energy consumption. We apply a simple
instruction exchange technique to an existing sensor application
for a modest gain in energy savings.

I. INTRODUCTION

Energy conservation has been a driving factor in the design
of new hardware and software for wireless sensor networks
over the last several years. Many energy efficient systems
have been proposed by the community, spanning architectures
[2], operating systems [3], sensor usage [11], and algorithm
and protocol design [16] [5] [4]. One technique not applied
to sensor networks to date, which might deliver more energy
efficiency savings across the board, is low power compilation.
Researchers in the low power compilation community have
developed a number of techniques [19] [20] [9] that can
optimize the compilation process for energy consumption
when targeting specific systems design. These researchers ob-
served that the standard optimization techniques and heuristics
offered by today’s compilers do not result in binaries that are
optimized for energy efficiency. Rather, compilers are designed
to optimize the binary for execution performance and to a
lesser degree binary size. While there has been work on low
power compilation we are not aware of it being applied to
sensor networks. The simple question that we start to answer
in this paper is can we leverage or adapt the body of work
in the field of low power compilation and apply it to sensor
networks to gain additional energy savings?

Existing low power compilation techniques are based on
an understanding of the relationship between the execution of
computational workloads on a specific targeted processor and
the associated energy consumption observed. The contribution
of our paper only represents a first step at studying this
relationship when considering the Tmote Sky [14] sensor
device. We conduct a number of experiments using the Tmote
Sky in order to characterize this relationship. We conjecture
that our results and findings can assist in the future designs of

compilers that can specifically exploit sensor hardware design
and application workload to reduce the energy consumption.
For example, one very simple optimization, derived experi-
mentally, results in a modest but measurable reduction in an
existing sensor network application’s energy consumption of
4.3%. We conjecture more work on low power compilation
techniques can lead to more significant savings, but may
require accepting tradeoffs. We discuss these tradeoffs and use
the results from a set of experiments to argue for more work
in the area of low power compilation for sensor networks.

The structure of the paper is as follows. Section II discusses
existing techniques and related work in the field of low power
compilation. Following this in Section III, we describe a
set of experiments and results that characterize the energy
consumption for different workloads for the Tmote Sky. The
results from these experiments lead to a number of possible
optimization scenarios and recommendations for low power
compilation in sensor networks that we discuss in Section IV.
We present some concluding comments in Section V.

II. PRIOR WORK ON LOW POWER COMPILATION

A number of papers have considered the concept of low
power compilation typically considering more capable devices
such as desktop class processors [20] or even more sophisti-
cated processors [21]. Perhaps more related to sensor hardware
is work that has considered digital signal processors (DSPs),
and forms of mobile and embedded computing [20]. The
authors of [20] observe that the energy consumption of the
multiplication instruction can be lowered by 30% simply by
switching the order of the input operands under certain circum-
stances. The authors in [20] study other forms of instruction-
level power optimizations across a group of processors finding
that some processors are responsive to the rescheduling of
instructions while others did not show much advantage. For
example, the Fujitsu DSP [20] under study achieves reductions
that range between 7.4% and 24.0% based on the specific
workload. These were the largest energy reductions seen in the
group of processors considered. In contrast, the Intel 486DX2
experiences the smallest levels of energy reduction in response
to the techniques tested. Results of low power optimizations
for DSPs suggest that simple hardware, such as that found
in sensor hardware design, might be responsive to simple
techniques such as instruction rescheduling to gain energy
savings.



On the other hand, more sophisticated techniques discussed
in the low power compilation literature are not appropriate at
this time, given the state of sensor hardware. For example,
in [7] the authors examine the relationship between energy
consumption and standard compiler loop based optimizations
such as scalar expansion, loop fission, loop unrolling and
forms of linear loop transformations. Assumptions made by
the low power compilation community such as the presence
of caches, deep pipelines and multiple functional units are
simply not present in current sensor device hardware, such as
the MSP430 processor used in the Tmote Sky.

III. EXPERIMENTAL ANALYSIS

Toward providing low power compilation for the Tmote Sky
sensor device, our goal is to start to quantify the relationship
between workloads executed on the sensor and the resulting
energy consumption. We are interested in ascertaining the
difference between energy consumed while the processor is
executing different workloads to help determine (i) the extent
of energy consumption savings possible using compiler based
techniques and (ii) the types of optimizations that will increase
or decrease energy consumption. We first discuss the experi-
mental setup and then the experimental observations. At this
stage, it is not clear whether these results would be generally
applicable to other sensor hardware without repeating the
analysis discussed below.

A. Experimental Testbed

For our experiments we use the Moteiv Tmote Sky sensor
[14]. This device includes 10KB of RAM, 48KB of ROM,
1 MB of flash storage, and uses a variant of the MSP430 [6]
processor manufactured by Texas Instruments. The MSP430 is
a 16-bit RISC based processor that uses a 3 stage pipeline with
16 general purpose registers. The instruction set comprises 27
instructions with 7 memory addressing modes available [6].

Our experimental setup is as follows. An Agilent E3610A
Power Supply provides power to a circuit comprising the
Tmote Sky and a 101 ohm resistor R. An Agilent 54621D
Mixed Signal Oscilloscope measures the voltage drop across
the resistor R using 10:1 probes. The Tmote Sky is modified
by soldering terminals to the ADC0 and ADC ground connec-
tors that are part of the 10 pin expansion connector [13]. An
additional set of 10:1 probes are connected from these soldered
terminals to the secondary input on the oscilloscope to monitor
voltage changes. We determine the power consumption of
Tmote Sky using time series measurements of the voltage
drop across R together with the supply voltage. To allow the
measurements made during experiments to be correlated to
the execution of instructions in the experiment workload we
follow a similar methodology to that used in [17]. Instructions
to set and clear the ADC0 pin are inserted to mark the
beginning and end of the experiment workload. The power
consumed during the execution of the experiment workload is
then isolated by considering only the voltage dropped across
R in between voltage changes at the ADC0 pin.

For experiments in which we measure a small number of
processor instructions we modify our methodology. In such

cases, we use workloads that perform the same sequences
of processor instructions multiple times within a loop. This
loop body iterates the instructions a number of times to allow
measurements to be made in aggregate, minimizing the effect
of overhead and other variants unrelated to the instruction
sequences themselves. The setting and clearing of voltages
across the two terminals is used but this time to identify the
start end end points of the loop. The energy consumption
of an instruction sequence is determined by comparison to a
baseline measurement made with an empty loop body. The
energy consumption of the empty loop body is subtracted
from the energy consumption of the loop body containing the
workload. This difference is then divided by the quantity of
loop iterations to calculate the cost per sequence.

B. Baseline Observations

We perform experiments that include a number of different
workload types. These experiments study the impact of in-
struction type, circuit state effects, instruction operand order-
ing, memory addressing modes within instruction operands,
different sensor network applications, and GCC compiler
optimization flags.

Two simple techniques used in low power compiler
instruction-level optimization [9] are instruction scheduling
and register assignment. These techniques require few proces-
sor architectural components and are thus appropriate for the
simpler processors found on typical sensors. One factor that
determines the effectiveness of techniques based on register
assignment is the variation in energy consumption observed
when accessing operand values using resisters versus different
forms of memory addressing. The larger the variance in energy
consumption that is observed the higher the potential gains
from register assignment.

Similarly, one factor that determines the effectiveness of
techniques based on instruction scheduling is the logical
configuration of the processor and it’s subsystems. This log-
ical configuration represents the circuit state. Each processor
instruction requires a particular circuit state. Changing from
one state to another has an associated energy cost that depends
on the extent of the required configuration change from one
instruction to the next. The variance in power consumption due
to the circuit state is called the circuit state effect. The larger
the variance in energy consumption as a result of the circuit
state effect the higher potential for instruction scheduling to
be effective.

In what follows, we report on the experimental results
due to instruction type, circuit state, and memory address
mode. Table I reports on the energy consumption variation
for a portion of the instruction set, and Table II reports on
the energy consumption variation due to the memory address
mode of instruction operands. Due to space constraints we
only present a representative selection of the complete set
of results; see [8] for a more comprehensive set of results.
Tables I and II report the energy consumption for individual
instructions using two metrics; these are energy, reported in
nano-joules per instruction and normalized energy, reported
in nops per instruction. A nop (no-operation) instruction



Instruction Energy Normalized Energy
(nJ) (nops)

mov 4.4 1.01
add 4.6 1.05
sub 4.7 1.08
cmp 4.7 1.12
bit 4.7 1.06
xor 4.8 1.08
and 4.8 1.07
bic 4.9 1.09
bis 4.9 1.12

TABLE I
ENERGY CONSUMPTION VARIATION DUE TO INSTRUCTION TYPE

Operand Memory Modes Energy Normalized Energy
(nJ) (nops)

indexed to register 13.2 2.99
register to indexed 17.0 3.87
register to absolute 15.8 3.60
indirect to register 9.0 2.04
immediate to register 9.0 2.06
absolute to register 26.1 5.95
register to indirect 17.5 3.97

TABLE II
ENERGY CONSUMPTION VARIATION DUE TO THE MEMORY ADDRESS

MODE OF OPERAND

performs no actual operation but is used often as a type of
place holder instruction for timing or alignment issues that
occur during instruction execution within a processor. The
normalized energy metric is the ratio of the energy spent
performing a given instruction to the energy spent performing
a nop.

Instruction Type. A measurable variance in the amount
of energy used per instruction type has been observed in
the literature for other hardware (e.g., [19]). We assess the
energy consumption due to the execution of different types
of the MSP430 processor [6] instructions used by the Tmote
Sky. We do this by keeping other factors constant that could
induce variance in the energy consumption, such as the type of
memory address mode used by the operands. Table I reports
measurements made with instructions using only register based
operands. A 10.8% spread of energy consumption due to the
processor instructions is observed.

Circuit State. Next, we test for variance in energy con-
sumption due to a change in circuit state by executing in-
struction pairs, holding the second instruction constant while
varying the first. In limited testing of 20 instruction pairs,
the largest difference in energy consumption attributable to
circuit state change is 0.88nops, while the smallest difference
is 0.18nops. Tabulated results of the tested pairs are not shown
in this paper due to space constraints but can be found in [8].
We are currently testing the remainder of the 272 pairs for
completeness.

Memory Address Mode. The operations that occur as
a result of particular instructions within the MSP430 vary
depending on the memory address mode currently in use. For

instance in “indirect register” addressing mode the operand
specifies a register used as a pointer to a location in memory,
while in “absolute” addressing mode the operand specifies
the memory address directly. A subset of our results for the
mov instruction using different operand addressing modes are
presented in Table II. To evaluate the effect of the memory
address mode we compare the energy consumption of the
mov instruction in different memory address modes. We keep
other factors that could potentially impact the results, such as
the specified memory address, constant. The results indicate
that there is a large variation of energy consumption which is
dependent on the memory addressing mode. In particular, the
mov instruction consumes nearly three times more energy in
the “absolute to register” case than in the “indirect to register”
case.

C. Impact on a Reference Application

To provide a first order assessment of the potential impact of
compiler optimizations for low power operation we examine
an existing sensor network application. Guided by the simple
experimental observations discussed in Section III-B we aim
to find a simple instance where the replacement of a sequence
of instructions results in a reduction in energy consumption of
the application. We examine EccM [12], an implementation
of public key encryption for sensor network communication
that generates keys based on elliptical curve cryptographic
techniques. Using the same experimental setup and method-
ology as in Section III-B we first instrument the code so
we can measure the energy consumption of the generation
of a single key. This instrumented binary is generated with
the GCC compiler flag -O4 which results in the maximum
possible extent of compiler optimizations being performed.
This analysis shows that generation of a 163 bit key requires
approximately 800 mJ of energy.

Next, we profile the key generation process by instrument-
ing appropriate function calls in the application and using
the TOSSIM simulator [10]. This is done in an effort to find
frequently executed code to optimize for low power operation.
We examine the assembly instructions for a frequently execut-
ing loop identified using TOSSIM. Within the loop body we
identify a particular group of instructions with operands using
the indexed memory addressing mode, which includes a base
plus offset memory access component. However for this group
of instructions within the loop the offset is identical. Therefore,
indexed mode is not required and can be replaced with indirect
mode by changing the initialization of the base address to that
of the base address plus the constant memory offset. Such a
replacement choice is motivated by observations discussed in
Section III-B and in particular shown in Table II. With these
changes, the energy consumed during the the generation of a
single key drops by 4.3% for the key generation. While such
a result is inconclusive in determining the utility of low power
compilation it is nonetheless a promising start. Potentially a
series of similar optimizations applied throughout an applica-
tion would provide a more significant energy savings.



IV. TOWARD LOW POWER COMPILATION FOR SENSOR
NETWORKS

The underlying motivation for this work is to develop
compilation tools that produce binaries optimized for low
power consumption in sensor networks. These can increase
energy efficiency through compilation without any change to
the source code or effort by the developer. The existing com-
pilation process of a nesC application involves preprocessing
to enable compilation to be performed by a GCC C cross
compiler. In the standard TinyOS [3] development environ-
ment the MSPGCC cross compiler [1] is used to generate
a binary for the Texas Instruments MSP430 microprocessor
used by the Tmote Sky. The compilation process performs
no optimizations specifically with the purpose of energy
optimization. The optimizations that do occur are principally
focused on optimizing the execution time. These optimizations
are applied without consideration to the specifics of the sensor
device hardware or the nature of sensor networks and their
applications. In the following, we consider some of the key
areas that need to be addressed in future work.

A. Viability of the Approach.

Compilation techniques only directly alter the energy effi-
ciency of the processor. However, the processor is not the only
contributor to energy consumption on a sensor device. Compo-
nents such as the transceiver are only indirectly influenced by
the processor’s execution yet they influence energy efficiency
a great deal. Other components such as the voltage converter
in a Mica2 sensor was observed within the GDI [18] deploy-
ment to strongly influence battery utilization and thus energy
efficiency. Perhaps the most significant contributor to energy
conservation is the influence of higher level software system
components of the sensor such as the specific characteristics of
the operating system and networking protocols. All of these
factors limit the ability for compilation-based techniques to
reduce overall energy consumption. It is therefore necessary
to perform more experiments to determine the extent to
which forms of compilation techniques can reduce energy
consumption, in the context of overall platform operation.

B. Defining Compiler Behavior.

The implications of existing forms of compilation optimiza-
tions on energy conservation need to be also further assessed.
Following this there is a need to develop new optimizations
specifically tailored toward energy savings. Existing low power
compilation literature can assist somewhat in this process.
Beyond developing a set of suitable optimizations to apply,
the next challenge is to define the compiler heuristics that
determine under which conditions such optimizations would
be useful. One element that needs to be incorporated into this
process is the effect of optimizations on battery utilization.
The influence of the battery discharge curve on sensor energy
efficiency is already established. As observed in the GDI
sensor network deployment [18] substantial influence on the
network lifetime can occur due to the difference between
the actual battery discharge as opposed to expected battery

discharge. Instances were observed during the deployment of
as much as 40% of unutilized battery capacity. In [15] the
authors find that a 52% increase in data collection could
be achieved over the deployment lifetime if such battery
effects are considered when selecting transmission power
levels. Similar optimizations that incorporate awareness of
battery discharge curves into low power compilation for sensor
hardware may yield significant savings.

C. Augmenting the Compilation Process.

The optimizations performed by a low power compiler
benefit from knowledge of the system hardware specifications
and application requirements. For such a compiler to be
practical it needs to be able to expose the relevant aspects
of it’s behavior to developers with simple mechanisms (eg.
parameters, configuration files). Developers and not compiler
experts need to be able provide such requirements without
needing to modify internal compiler components.

Application Requirements. Sensor applications may have
performance requirements for the operation of their code.
Compiling for energy efficiency may degrade execution speed
performance since fewer speed optimizations are applied due
to higher energy cost. Providing the application developer the
ability to manage this tradeoff would be of value. A finer
grained approach maybe more appropriate rather than control
via compiler flags that simply alter the degree of low power
optimization performed. An example is providing a means to
indicate (e.g., using preprocessor directives) critical sections
of code that should be optimized for speed rather than energy.

System Hardware Specifications. Knowledge of the char-
acteristics of the hardware platform target is required for
many types of low power compilation techniques. For instance
aggressive register allocation and instruction ordering are the
basis for a number of existing techniques but to be effective
these types of optimizations require specific knowledge of the
target hardware, such as the register counts, clock speeds,
aspects of the architecture design. Typical compilers do not
have this level of awareness.

V. CONCLUSION

In this paper, we proposed applying techniques used in the
area of low power compilation to sensor networks in order to
potentially extend the lifetime of such networks. We studied
the impact of instruction types, circuit state effects, instruction
operand ordering, memory addressing modes and GCC com-
piler optimization flags on energy consumption. We reported
a subset of our findings which we used to identify a simple
instruction level optimization to an existing sensor application.
The application of this optimization resulted in a modest 4.3%
reduction in the power consumption of the application. This
result in itself is inconclusive as to establishing the utility
of this approach but it does suggest further examination is
warranted. While this paper presents more questions than it
answers our main objective is to raise the issue of developing
new low power compiler optimization techniques for sensor
networks.



ACKNOWLEDGMENT

We would like to thank Ronald Peterson, Satish Prabhakaran
and Nihal D’Cunha for their invaluable assistance, particularly
with regard to the experimental design and the interpretation of
results presented. Nicholas Lane is supported by Grant number
2005-DD-BX-1091 awarded by the Bureau of Justice Assis-
tance through the Institute for Security Technology Studies,
Dartmouth College.

REFERENCES

[1] Mspgcc. http://mspgcc.sourceforge.net/, 2006.
[2] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and D. Brooks. An

ultra low power system architecture for sensor network applications.
SIGARCH Comput. Archit. News, 33(2):208–219, 2005.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister.
System architecture directions for networked sensors. In Architectural
Support for Programming Languages and Operating Systems, pages 93–
104, 2000.

[4] B. Hohlt, L. Doherty, and E. Brewer. Flexible power scheduling for
sensor networks. Information Processing in Sensor Networks (IPSN
04), April 2004.

[5] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. The 2nd ACM Conference
on Embedded Networked Sensor Systems, November 2004.

[6] T. Instruments. Msp430x2xx family user’s guide (rev. b). http://www-
s.ti.com/sc/psheets/slau144b/slau144b.pdf, 2006.

[7] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of
compiler optimizations on system power. In DAC ’00: Proceedings of
the 37th conference on Design automation, pages 304–307, New York,
NY, USA, 2000. ACM Press.

[8] N. D. Lane. Exploiting microprocessor instructions to
manage energy consumption in wireless sensor networks.
http://www.cs.dartmouth.edu/ niclane/pubs/emi2meciwsn.pdf, 2005.

[9] C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai. Compiler optimization
on instruction scheduling for low power. In ISSS ’00: Proceedings of
the 13th international symposium on System synthesis, pages 55–60,
Washington, DC, USA, 2000. IEEE Computer Society.

[10] P. Levis. Tossim: Accurate and scalable simulation of entire tinyos
applications. In Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys 2003), November 2003., 2003.

[11] H. Liu, A. Chandra, and J. Srivastava. dsense: Data-driven
stochastic energy management for wireless sensor platforms.
http://www.cs.umn.edu/tech reports upload/tr2005/05-018.pdf, 2005.

[12] D. Malan, M. Welsh, and M. Smith. A public-key infrastructure for key
distribution in tinyos based on elliptic curve cryptography. In SenSys
’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, New York, NY, USA, 2004. ACM Press.

[13] Moteiv. Tmote sky datasheet. http://www.moteiv.com/products/docs/tmote-
sky-datasheet.pdf, 2005.

[14] Moteiv. Tmote sky. http://www.moteiv.com/products-tmotesky.php,
2006.

[15] C. Park, K. Lahiri, and A. Raghunathan. Battery Discharge Character-
istics of Wireless Sensor Nodes: An Experimental Analysis. In SECON
’05: Proceedings of the Second Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks,
September 2005.

[16] J. Polastre and D. Culler. Versatile low power media access for wireless
sensor networks. The Second ACM Conference on Embedded Networked
Sensor Systems, November 2004.

[17] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh.
Simulating the power consumption of large-scale sensor network appli-
cations. In SenSys ’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages 188–200, New York, NY,
USA, 2004. ACM Press.

[18] R. Szewczyk, J. Polastre, A. Mainwaing, and D. Culler. Lessons from
a sensor network expedition. European Workshop on Sensor Networks
(EWSN), January 2004.

[19] V. Tiwari, S. Malik, and A. Wolfe. Compilation techniques for low
energy: An overview. In Proc. of Symp. Low-Power Electronics, 1994.,
1994.

[20] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee. Instruction level
power analysis and optimization of software. J. VLSI Signal Process.
Syst., 13(2-3):223–238, 1996.

[21] M. Valluri, L. John, and H. Hanson. Exploiting compiler-generated
schedules for energy savings in high-performance processors. In ISLPED
’03: Proceedings of the 2003 international symposium on Low power
electronics and design, pages 414–419, New York, NY, USA, 2003.
ACM Press.


