
MAKING (AND BREAKING)
AN 802.15.4 WIRELESS IDS
RYAN SPEERS, JAVIER VAZQUEZ - RIVER LOOP SECURITY LLC.
SERGEY BRATUS - DARTMOUTH COLLEGE

why care about
802.15.4 and ZigBee?

interface with the physical
environment

communications technology
gaining adoption across
markets

http://www.zigbee.org/Standards/Overview.aspx

why care about
802.15.4 and ZigBee?

interface with the physical
environment

communications technology
gaining adoption across
markets

http://www.zigbee.org/Standards/Overview.aspx

ATTA
CK

SURF
ACES

Wright’s Principle

“Security won’t get better
until tools for practical
exploration of the attack
surface are made available”

 --Joshua Wright, 2011

802.15.4 frame (PHY+LNK)

00 00 00 00 a7 0f 01 08 82 ff ff ff ff ...

Preamble Body

00 00 00 00 a7 .. 00 00 00 00 a7 0f 01 ...

Preamble Sync Body

Sync

Length

how a frame is received

SPI bus
(or similar)

uC

2.4 GHz
(or 868/915/etc MHz)

[t]6679

6427

50
43 6632 75

82

it gets
messy…

it gets
messy…

it gets
messy…

All layers together

topologies

device classes

security suites

daintree.net

“self-configuring, self-healing system of
 redundant, low-cost, very low-power nodes” (zigbee.org)

All layers together

topologies

device classes

security suites

daintree.net

“self-configuring, self-healing system of
 redundant, low-cost, very low-power nodes” (zigbee.org)

past work
Joshua Wright - original KillerBee framework

Travis Goodspeed - local key extraction, PIP, fingerprinting

Ricky Melgares / Ryan - KillerBee 2.x framework, PIP, fingerprinting

support for more devices

geotagging, multiple channel capture

Scapy packet construction / parsing

Sergey, bx Shapiro, David Dowd, Ray Jenkins - fingerprinting

Ben Ramsey, et al - survey of real world network traffic

Kevin Finistere - war walking rig

and more

YOU NEED TO BE ABLE TO SNIFF
BEFORE YOU CAN
MONITOR FOR ATTACKS

the state of
hardware:

existing hardware

Atmel RZUSBTICK

Zena Packet Analyzer

Freakduino Chibi

SDRs: USRP/etc

Sewio Open Sniffer

Tmote Sky/TelosB

the state of
hardware:

existing hardware

Atmel RZUSBTICK

Zena Packet Analyzer

Freakduino Chibi

SDRs: USRP/etc

Sewio Open Sniffer

Tmote Sky/TelosB

ok, what’s new?
hardware:

ApiMote v4 beta

external antenna

CC2420 radio

USB programming

onboard storage

expansion/additional
headers

support for battery or
USB power

CC2420 Radio
IEEE 802.15.4 Compliant

2.4 GHz

PCB
Antenna

SMA
Coax

TI MSP430
Microcontroller

USB 2.0
To UART

Functionality

Flash
(Optional)

GoodFET
Compatible

Header

Expansion
Header

Reset
Switch

User
Switch

Power
Switch

SPI

UART

SPI

ADC

GPIO
UART

SPI

GPIO INTRST

Voltage
Regulation

USB

Battery
Header

APIMOTE V4 BETA
PCB FRONT

NOW WE CAN SNIFF,
LET’S DETECT SOME ATTACKS!

BEEKEEPERWIDS
ARCHITECTURE OVERVIEW OF THE SYSTEM

[t]1383-9513-3032-4837-9938

BEEKEEPERWIDS
ARCHITECTURE OVERVIEW OF DRONE (REMOTE) COMPONENT

Full PCAP
Filtered PCAP
Extracted Attributes

drone demo

drone demo

intro/review of attacks
sniffing

injection (and “packet-
in-packet”)

tampering (“forging”)

jamming

collision (“reflexive
jamming”)

exhaustion

unfairness

greed, homing,
misdirection, black
holes

flooding,
desynchronization

denial of service
with AES-CTR security mode

802.15.4 AES-CTR:

simple ACL entry

encryption

sequential freshness

issue:

doesn’t know if decrypted
payload makes sense

updates frame counter /
external key sequence
counter every time

Silva, Nunes 2006

it allows a one-frame DoS
we’ve previously presented zbForge to easily exploit this condition:

today, let’s try defending against it!

BEEKEEPERWIDS
ARCHITECTURE OVERVIEW OF ZBWIDS (CONTROLLER) COMPONENT

startup

on the drone (or multiple)

zbdrone -run

on the wids controller

zbwids -run

zbwids -monitoralerts

analytic module demo

analytic module demo

network reconnaissance
with beacon requests
legitimately used for network
discovery

broadcast a beacon request
get a beacon frame

analogous to a TCP SYN scan
but, beacon frame also discloses:

PANID
extended PAN ID (typically
coordinator’s extended address)
info about version of network and
security modes

Daintree ZigBee Primer: “Note that MAC association is an unsecured protocol
since all the associated frames are sent in the clear (with no security).”

it’s easy to perform

manual
>> b = Dot15d4()/Dot15d4Cmd()
>> b.cmd_id = “BeaconReq”
>> b.seqnum = 150
>> kb = KillerBee()
>> kb.inject(str(b))

automated
$ zbstumbler

analytic module

analytic module

analytic module

analytic module

analytic module

magic

magic

disassociation frames
802.15.4 (MAC) and ZigBee
(NWK) each have ways to
request a device to leave the
network

IEEE 802.15.4 Command, Dst: NetvoxTe_00:00:00:18:5b, Src: Jennic_00:00:0a:05:27
 Frame Control Field: Command (0xcc63)
 011 = Frame Type: Command (0x0003)
 0... = Security Enabled: False
 0 = Frame Pending: False
 1. = Acknowledge Request: True
 1.. = Intra-PAN: True
 11.. = Destination Addressing Mode: Long/64-bit (0x0003)
 ..00 = Frame Version: 0
 11.. = Source Addressing Mode: Long/64-bit (0x0003)
 Sequence Number: 13
 Destination PAN: 0xd9c6
 Destination: NetvoxTe_00:00:00:18:5b (00:13:7a:00:00:00:18:5b)
 Extended Source: Jennic_00:00:0a:05:27 (00:15:8d:00:00:0a:05:27)
 Command Identifier: Disassociation Notification (0x03)
 Disassociation Notification
 Disassociation Reason: 0x01 (Coordinator requests device to leave)
 FCS: 0xd94b (Correct)
0000 63 cc 0d c6 d9 5b 18 00 00 00 7a 13 00 27 05 0a c....[....z..'..
0010 00 00 8d 15 00 03 01 4b d9 K.

can attack:
using a targeted frame
based on recon
or by flooding the network
with attempts

attack simulation:
zbdisassocation flood
we made a script to produce demo frames:
$ sudo ./zbdisassociationflood -c 15 -p 0xD9C6 --coordinator 00:15:8d:00:00:0a:
05:27 --deviceshort 0x44a7 --device 00:13:7a:00:00:00:18:5b --numloops=5 -q
10 --zblayer

Expecting 0x158d00000a0527 to be the coordinator on network (PAN ID)
0xd9c6, located on channel 15.

The device to disassociate is 0x137a000000185b with short address 0x44a7.

-c is the channel
-p is the PAN ID (get from zbstumbler or any PCAP)
--coordinator is the 64bit address of the coordinator (get from PCAP of a join or from zbstumbler as the
"extended PAN ID" if you get a beacon directly from a coordinator)
--deviceshort is the short address of the endpoint, only used for —zblayer (can come from any PCAP of the
device communicating)
--device is the long address of the endpoint (usually get this from PCAP of the device joining the network)
--zblayer, creates ZigBee NWK layer disassociation frames. else, IEEE 802.15.4 MAC layer frames are sent.

analytic module

analytic module

analytic module

analytic module

magic

magic

SO, DETECTING IS GOOD,
BUT CAN WE EVADE IT?

diving into the PHY layer

how a frame is received

SPI bus
(or similar)

uC

2.4 GHz
(or 868/915/etc MHz)

[t]6679

6427

50
43 6632 75

82

Packet-in-packet

00 00 00 00 a7 0f 01 08 82 ff ff ff ff ...

Preamble Body

00 00 00 00 a7 .. 00 00 00 00 a7 0f 01 ...

Preamble Sync Body

Sync

What if this gets damaged by noise?
What if we purposefully modify this?

Packet-in-packet in Hex

in Section 4.2.

4 Concrete Examples

In this section, we provide implementation details and
tested packets for both the IEEE 802.15.4 protocol and a
common 2-FSK radio. These demonstrate both the prob-
abilistic nature of the attack when used with devices shar-
ing a common Sync, such as 802.15.4, and the reliable
outcome of the attack when applied to protocols with a
varied sync, such as ANT+.

4.1 802.15.4, ZigBee

Outer Hex Inner
Preamble 00 00 00 00
Sync a7
Body 19

01 08 82
ca fe ba be
00 00 00 00 Preamble
a7 Sync
0a 01 08 82 ff ff ff ff c9 d1 Body
15 e8

Figure 3: 802.15.4 PIP

IEEE 802.15.4 is a perfect platform for prototyping
this technique, as it is reasonably standardized5 across
competing protocols and equipment with low-level reg-
ister access is easily obtained. As there are four bits per
symbol, payload data needs to be nibble-aligned. Fur-
thermore, the standard Sync6 value of a7 and the de jure
requirement of the 802.15.4 standard that the packet be
ignored for the length of its body, it is necessary that the
Sync or Body Length of the outer packet be misinter-
preted by the receiver [6, 44]. Since there is no error cor-
rection for these fields, such symbol misinterpretations
happen with sufficient frequency for a successful attack.

For example, 00 00 00 00 a7 0a 01 08 82
ff ff ff ff c9 d1 is a short 802.15.4 packet with
a valid checksum to the broadcast PAN and MAC. In
this case, 00 00 00 00 is the Preamble, a7 is the
Sync, and 0a 01 08 82 ff ff ff ff c9 d1 is
the Body, consisting of fields for Length, Header, PAN,
MAC, and Checksum.

Consider the case of a much longer packet shown in
Figure 3 being received by a radio with a PAN of de ad
and a MAC of be ef. This packet, being addressed to

5Standardization, in this context, should not be confused with inter-
operability.

6IEEE 802.15.4 refers to the Sync as the start-of-frame delimiter
(SFD), but we shall refer to it as the Sync for consistency.

PAN (personal area network) ca fe and MAC ba be,
should be ignored by be ef as the addresses do not
match. Further, be ef should also wait until the du-
ration of the packet has passed before returning to the
listening state in which a Sync might begin a new packet.
That is to say, during proper reception, the following
packet’s Body will not be misinterpreted for being a
complete frame so long as every symbol is correctly ob-
served by the receiver.

In order to inject the inner packet as a raw frame, the
attacker must cause a packet like the one above to be
transmitted multiple times, then bank upon interference
damaging the Sync field of the outer packet. Supposing
that an A-symbol is swapped for an F-symbol in the outer
Sync, it will be seen as f7 and the first valid Sync field
will be seen as the a7within the body of the outer packet.

4.2 nRF24L01+ and 2-FSK

Outer Hex Inner
Preamble 55
Sync 01 02 03 02 01
Body 55 Preamble

12 34 56 Sync
ff ff ff 35 CK1 CK Body
CK CK

Figure 4: nRF24L01+ PIP
1 The symbol “CK” represents a byte of the checksum that

would be correctly calculated over the relevant section of
the packet, as specified by the protocol being used.

The nRF24L01+ is a 2-FSK radio chip from Nordic
Semiconductor used in both the ANT+ standard and
vendor-proprietary protocols, such as those used by Mi-
crosoft, Logitech, and Hewlett-Packard wireless key-
boards and mice. [10] Similar chips in the same family
and competing chips from other vendors use compatible
encoding schemes that vary only by data rate. As both
the ANT+ protocol and the Microsoft 2.4GHz keyboards
use the Sync field as a destination address, exploitation of
a receiver other than the one that a packet is addressed to
can be performed deterministically, with no dependence
upon luck or radio noise.

Consider the PIP in Figure 4.2, in which the Sync field
doubles as a destination address and both protocols are of
fixed length. We will also assume, for the sake of sim-
plicity, that both protocols are running at the same rate,
although the rate corrections described in Section 5 can
be applied whenever the transmitter’s rate is higher than
that of the inner-packet receiver. In this case, the attacker
is broadcasting a packet through Protocol Foo, in which
the Sync is defined to be 01 02 03 02 01. The at-
tacker’s payload is intended for Protocol Bar on the same

Game plan
Modify the sync in the “outer” packet so that we can send
arbitrary symbols (including preambles, SFDs, “inner”
PIP packets, “packet-out-of-packet”, etc.)

Use our Isotope 802.15.4 active fingerprinting to find out
what corruptions work.
http://www.cs.dartmouth.edu/reports/abstracts/TR2014-746/

Profit: capability to send packets that some radios see,
and others don’t!
(Separate from signal strength, range, etc.)

Game plan
Modify the sync in the “outer” packet so that we can send
arbitrary symbols (including preambles, SFDs, “inner”
PIP packets, “packet-out-of-packet”, etc.)

Use our Isotope 802.15.4 active fingerprinting to find out
what corruptions work.
http://www.cs.dartmouth.edu/reports/abstracts/TR2014-746/

Profit: capability to send packets that some radios see,
and others don’t!
(Separate from signal strength, range, etc.)

That’s a 802.15.4 WIDS evasion!

“franconian notch”

“franconian notch”

f f

“franconian notch”

f ff f

“franconian notch”

f ff ff f

“franconian notch”

f ff ff ff f

magic

ApiMote’s CC2420 RF chip was configured to default preamble length
and SFD. Address and checksum verification was disabled.

magic

ApiMote’s CC2420 RF chip was configured to default preamble length
and SFD. Address and checksum verification was disabled.

magic

ApiMote’s CC2420 RF chip was configured to default preamble length
and SFD. Address and checksum verification was disabled.

RZUSBSTICK PCAP
Preamble

00 00 00 00
00 00 ff ff
00 ff ff ff
00 00 00 00
00 00 00 ff
00 00 ff ff
00 ff ff ff
00 00 00 00
00 00 00 ff
00 00 ff ff
00 ff ff ff
00 00 00 00

…

RZUSBSTICK PCAP
Preamble

00 00 00 00
00 00 ff ff
00 ff ff ff
00 00 00 00
00 00 00 ff
00 00 ff ff
00 ff ff ff
00 00 00 00
00 00 00 ff
00 00 ff ff
00 ff ff ff
00 00 00 00

…

RZUSBSTICK PCAP
Preamble

00 00 00 00
00 00 ff ff
00 ff ff ff
00 00 00 00
00 00 00 ff
00 00 ff ff
00 ff ff ff
00 00 00 00
00 00 00 ff
00 00 ff ff
00 ff ff ff
00 00 00 00

…

ApiMote PCAP
Preamble

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

RZUSBSTICK PCAP
Preamble

00 00 00 00
00 00 ff ff
00 ff ff ff
00 00 00 00
00 00 00 ff
00 00 ff ff
00 ff ff ff
00 00 00 00
00 00 00 ff
00 00 ff ff
00 ff ff ff
00 00 00 00

…

ApiMote PCAP
Preamble

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

{RYAN | JAVIER}@RIVERLOOPSECURITY.COM
SERGEY@CS.DARTMOUTH.EDU

PROJECTS

DATE TEAMTROOPERS14

APIMOTE
KILLERBEEWIDS

riverloopsecurity.com/projects.html

{RYAN | JAVIER}@RIVERLOOPSECURITY.COM
SERGEY@CS.DARTMOUTH.EDU

PROJECTS

DATE TEAMTROOPERS14

APIMOTE
KILLERBEEWIDS

riverloopsecurity.com/projects.html

