
DTraceUserGuide

SunMicrosystems, Inc.
4150Network Circle
Santa Clara, CA95054
U.S.A.

Part No: 819–5488–10
May 2006

Copyright 2006 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. All rights reserved.

SunMicrosystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one ormore U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the SunMicrosystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distributionmay includematerials developed by third parties.

Parts of the product may be derived fromBerkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, SunMicrosystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by SunMicrosystems, Inc.

TheOPEN LOOK and Sun™Graphical User Interface was developed by SunMicrosystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license fromXerox to the
Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOKGUIs and otherwise comply with Sun’s written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws andmay be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclearmaritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified onU.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS”ANDALLEXPRESSOR IMPLIEDCONDITIONS, REPRESENTATIONSANDWARRANTIES, INCLUDINGANY
IMPLIEDWARRANTYOFMERCHANTABILITY, FITNESS FORAPARTICULAR PURPOSEORNON-INFRINGEMENT,AREDISCLAIMED, EXCEPTTO
THE EXTENTTHAT SUCHDISCLAIMERSAREHELDTOBE LEGALLY INVALID.

Copyright 2006 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. Tous droits réservés.

SunMicrosystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis et
dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l’Université de Californie. UNIX est unemarque déposée aux
Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, SunMicrosystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont desmarques de fabrique ou desmarques déposées de
SunMicrosystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont desmarques de fabrique ou desmarques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
SunMicrosystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par SunMicrosystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient
une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun quimettent en place l’interface
d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l’objet de cette publication et les informations qu’il contient sont régis par la legislation américaine enmatière de contrôle des exportations et
peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
desmissiles, des armes chimiques ou biologiques ou pour le nucléairemaritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais demanière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine enmatière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LADOCUMENTATIONEST FOURNIE "EN L’ETAT" ET TOUTESAUTRES CONDITIONS, DECLARATIONS ETGARANTIES EXPRESSESOUTACITES
SONT FORMELLEMENTEXCLUES, DANS LAMESUREAUTORISEE PAR LALOIAPPLICABLE, YCOMPRISNOTAMMENTTOUTEGARANTIE
IMPLICITE RELATIVEALAQUALITEMARCHANDE,AL’APTITUDEAUNEUTILISATIONPARTICULIEREOUAL’ABSENCEDECONTREFACON.

060328@14558

Contents

Preface ... 5

1 Introduction .. 9
DTrace Capabilities .. 9
Architecture overview ..10

DTrace Providers ..10
DTrace Probes ...10
DTrace Predicates ... 11
DTraceActions .. 11
D Scripting Language ... 11

2 DTrace Basics ..13
Listing Probes ..13
Specifying Probes in DTrace ..15
Enabling Probes ..16
DTraceAction Basics ..18

Data RecordingActions ...20
DestructiveActions ..22

DTraceAggregations ..24
DTraceAggregation Syntax ...24

3 ScriptingWith the D Language ...27
Writing D Scripts ..27

Executable D Scripts ...27
D Literal Strings ..28
Creating D Scripts That UseArguments ..29

DTrace Built-in Variables ..32

3

4 Using DTrace ...37
PerformanceMonitoring ...37

Examining Performance ProblemsWith The sysinfo Provider ...37
Tracing User Processes ...43

Using the copyin() and copyinstr() Subroutines ...43
Eliminating dtrace Interference ..44
syscall Provider ..45
The ustack()Action ...46
The pid Provider ...47

Anonymous Tracing ...51
Anonymous Enablings ...51
ClaimingAnonymous State ...51
Anonymous Tracing Examples ...52

Speculative Tracing ...54
Speculation Interfaces ..55
Creating a Speculation ...55
Using a Speculation ..55
Committing a Speculation ...56
Discarding a Speculation ...56
Speculation Example ..57

Index ..63

Contents

DTrace User Guide • May 20064

Preface

TheDTrace User Guide is a lightweight introduction to the powerful tracing and analysis tool
DTrace. In this book, you will find a description of DTrace and its capabilities, as well as directions on
how to use DTrace to perform relatively simple and common tasks.

WhoShouldUse This Book
DTrace is a comprehensive dynamic tracing facility that is built into Solaris. You can use the DTrace
facility can be used to examine the behavior of user programs or the behavior of the operating
system. DTrace can be used by system administrators or application developers on live production
systems.

DTrace allows Solaris developers and administrators to:

� Implement custom scripts that use the DTrace facility
� Implement layered tools that use DTrace to retrieve trace data

This book is not a comprehensive guide to DTrace or the D scripting language. Please refer to the
Solaris Dynamic Tracing Guide for in-depth reference information.

BeforeYouReadThis Book
Basic familiarity with a programming language such as C or a scripting language such as awk(1) or
perl(1) will help you learn DTrace and the D programming language faster, but you need not be an
expert in any of these areas. If you have never written a program or script before in any language,
“Related Books” on page 5 provides references to other documents youmight find useful.

RelatedBooks
For an in depth reference to DTrace, see the Solaris Dynamic Tracing Guide. These books and papers
are recommended and related to the tasks that you need to performwith DTrace:

� Kernighan, BrianW. and Ritchie, DennisM. The C Programming Language. Prentice Hall, 1988.
ISBN 0–13–110370–9

� Mauro, Jim andMcDougall, Richard. Solaris Internals: Core Kernel Components. Sun
Microsystems Press, 2001. ISBN 0-13-022496-0

5

� Vahalia, Uresh.UNIX Internals: The New Frontiers. Prentice Hall, 1996. ISBN 0-13-101908-2

Documentation, Support, andTraining
The Sunweb site provides information about the following additional resources:

� Documentation (http://www.sun.com/documentation/)
� Support (http://www.sun.com/support/)
� Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1TypographicConventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in theUser’s Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in CommandExamples
The following table shows the default UNIX® system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

Documentation, Support, and Training

DTrace User Guide • May 20066

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P–2Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Shell Prompts in Command Examples

7

8

Introduction

DTrace is a comprehensive dynamic tracing facility that is built into Solaris. DTrace can be used by
administrators and developers, and can safely be used on live production systems. DTrace enables
you to examine the behavior of user programs as well as the behavior of the operating system. Users
of DTrace can create custom programs with the D scripting language. Custom programs provide the
ability to dynamically instrument the system. Custom programs provide immediate, concise answers
to specific questions about the behavior of particular applications.

DTrace Capabilities
TheDTrace framework provides instrumentation points that are called probes. ADTrace user can use
a probe to record and display relevant information about a kernel or user process. EachDTrace probe
is activated by a specific behavior. This probe activation is referred to as firing. As an example,
consider a probe that fires on entry into an arbitrary kernel function. This example probe can display
the following information:

� Any argument that is passed to the function
� Any global variable in the kernel
� Atimestamp that indicates when the function was called
� Astack trace that indicates the section of code that called the function
� The process that was running at the time the function was called
� The thread that made the function call

When a probe fires, you can specify a particular action for DTrace to take.ADTrace action usually
records an interesting aspect of system behavior, such as a timestamp or a function argument.

Probes are implemented by providers. Aprobe provider is a kernel module that enables a given probe
to fire. For example, the function boundary tracing provider fbt provides entry and return probes
for almost every function in every kernel module.

DTrace has significant datamanagement capabilities. These capabilities enable DTrace users to
prune the data reported by probes, avoiding the overhead involved in generating and then filtering
unwanted data. DTrace also providesmechanisms for tracing during the boot process and for

1C H A P T E R 1

9

retrieving data from a kernel crash dump.All of the instrumentation in DTrace is dynamic. Probes
are enabled discretely at the time that the probes are used, and inactive probes present no
instrumented code.

ADTrace consumer is any process that interacts with the DTrace framework.While dtrace(1M) is
the primary DTrace consumer, other consumers exist. These additional consumersmostly consist of
new versions of existing utilities such as lockstat(1M). The DTrace framework has no limit on the
number of concurrent consumers.

The behavior of DTrace can bemodified with the use of scripts that are written in the D language,
which is structured similarly to C. The D language provides access to kernel C types and kernel static
and kernel global variables. The D language supportsANSI C operators.

Architecture overview
TheDTrace facility consists of the following components:

� User level consumer programs such as dtrace
� Providers, packaged as kernel modules, that provide probes to gather tracing data
� Alibrary interface that consumer programs use to access the DTrace facility through the

dtrace(7D) kernel driver

DTraceProviders
Aprovider represents amethodology for instrumenting the system. Providers make probes available
to the DTrace framework. DTrace sends information to a provider regarding when to enable a probe.
When an enabled probe fires, the provider transfers control to DTrace.

Providers are packaged as a set of kernel modules. Eachmodule performs a particular kind of
instrumentation to create probes.When you use DTrace, each provider has the ability to publish the
probes it can provide to the DTrace framework. You can enable and bind tracing actions to any of the
published probes.

Some providers have the capability to create new probes based on the user’s tracing requests.

DTraceProbes
Aprobe has the following attributes:

� It is made available by a provider
� It identifies themodule and the function that it instruments
� It has a name

These four attributes define a 4–tuple that serves as a unique identifier for each probe, in the format
provider:module:function:name. Each probe also has a unique integer identifier.

Architecture overview

DTrace User Guide • May 200610

DTracePredicates
Predicates are expressions that are enclosed in slashes / /. Predicates are evaluated at probe firing
time to determine whether the associated actions should be executed. Predicates are the primary
conditional construct used for buildingmore complex control flow in a D program. You can omit the
predicate section of the probe clause entirely for any probe. If the predicate section is omitted, the
actions are always executed when the probe fires.

Predicate expressions can use any of the previously describedD operators. Predicate expressions
refer to D data objects such as variables and constants. The predicate expressionmust evaluate to a
value of integer or pointer type.As with all D expressions, a zero value is interpreted as false and any
non-zero value is interpreted as true.

DTraceActions
Actions are user-programmable statements that the DTrace virtual machine executes within the
kernel.Actions have the following properties:

� Actions are taken when a probe fires
� Actions are completely programmable in the D scripting language
� Most actions record a specified system state
� An action can change the state of the system in a precisely described way. Such actions are called

destructive actions. Destructive actions are not allowed by default.
� Many actions use expressions in the D scripting language

DScripting Language
You can invoke the DTrace framework directly from the command line with the dtrace command
for simple functions. To use DTrace to performmore complex functions, write a script in the D
scripting language. Use the -s option to load a specified script for DTrace to use. See Chapter 3 for
information about using the D scripting language.

Architecture overview

Chapter 1 • Introduction 11

12

DTrace Basics

This chapter provides a tour of the DTrace facility and provides examples of several basic tasks.

ListingProbes
You can list all DTrace probes by passing the -l option to the dtrace command:

dtrace -l
ID PROVIDER MODULE FUNCTION NAME

1 dtrace BEGIN

2 dtrace END

3 dtrace ERROR

4 syscall nosys entry

5 syscall nosys return

6 syscall rexit entry

7 syscall rexit return

8 syscall forkall entry

9 syscall forkall return

10 syscall read entry

11 syscall read return

...

To count all the probes that are available on your system, you can type the following command:

dtrace -l | wc -l

The number of probes reported will vary depending on your operating platform and the software
you have installed. Some probes do not list an entry under the MODULE or FUNCTION columns, such as
the BEGIN and END probes in the previous example. Probes with blank entries in these fields do not
correspond to a specifically instrumented program function or location. These probes refer tomore
abstract concepts, such as the end of a tracing request.Aprobe that has amodule and function as part
of its name is called an anchored probe. Aprobe that is not associated with amodule and function is
called an unanchored probe.

You can use additional options to list specific probes, as seen in the following examples.

2C H A P T E R 2

13

EXAMPLE 2–1 Listing Probes by Specific Function

You can list probes that are associated with a specific function by passing that function name to
DTrace with the -f option.

dtrace -l -f cv_wait
ID PROVIDER MODULE FUNCTION NAME

12921 fbt genunix cv_wait entry

12922 fbt genunix cv_wait return

EXAMPLE 2–2 Listing Probes by SpecificModule

You can list probes that are associated with a specificmodule by passing that module name to DTrace
with the -m option.

dtrace -l -m sd
ID PROVIDER MODULE FUNCTION NAME

17147 fbt sd sdopen entry

17148 fbt sd sdopen return

17149 fbt sd sdclose entry

17150 fbt sd sdclose return

17151 fbt sd sdstrategy entry

17152 fbt sd sdstrategy return

...

EXAMPLE 2–3 Listing Probes by SpecificName

You can list probes that have a specific name by passing that name to DTrace with the -n option.

dtrace -l -n BEGIN
ID PROVIDER MODULE FUNCTION NAME

1 dtrace BEGIN

EXAMPLE 2–4 Listing Probes by Provider ofOrigin

You can list probes that are originate from a specific provider by passing the provider name to DTrace
with the -P option.

dtrace -l -P lockstat
ID PROVIDER MODULE FUNCTION NAME

469 lockstat genunix mutex_enter adaptive-acquire

470 lockstat genunix mutex_enter adaptive-block

471 lockstat genunix mutex_enter adaptive-spin

472 lockstat genunix mutex_exit adaptive-release

473 lockstat genunix mutex_destroy adaptive-release

474 lockstat genunix mutex_tryenter adaptive-acquire

...

Listing Probes

DTrace User Guide • May 200614

EXAMPLE 2–5Multiple Providers Supporting a Specific Function orModule

Aspecific function or specificmodule can be supported bymultiple providers, as the following
example shows.

dtrace -l -f read
ID PROVIDER MODULE FUNCTION NAME

10 syscall read entry

11 syscall read return

4036 sysinfo genunix read readch

4040 sysinfo genunix read sysread

7885 fbt genunix read entry

7886 fbt genunix read return

As the previous examples show, the output for a listing of probes displays the following information:

� The probe’s uniquely assigned integer probe ID

Note –The probe ID is only unique within a given release or patch level of the Solaris operating
system.

� The provider name
� Themodule name, if applicable
� The function name, if applicable
� The probe name

SpecifyingProbes inDTrace
You can fully specify a probe by listing each component of the 4–tuple that uniquely identifies that
probe. The format for the probe specification is provider:module:function:name. An empty
component in a probe specificationmatches anything. For example, the specification
fbt::alloc:entry specifies a probe with the following attributes:

� The probemust be from the fbt provider
� The probemay be in anymodule
� The probemust be in the alloc function
� The probemust be named entry

Elements on the left hand side of the 4–tuple are optional. The probe specification ::open:entry is
equivalent to the specification open:entry. Either specification will match probes from all providers
and kernel modules that have a function name of open and are named entry.

dtrace -l -n open:entry
ID PROVIDER MODULE FUNCTION NAME

14 syscall open entry

7386 fbt genunix open entry

Specifying Probes in DTrace

Chapter 2 • DTrace Basics 15

You can also describe probes with a patternmatching syntax that is similar to the syntax that is
described in the File Name Generation section of the sh(1)man page. The syntax supports the
special characters *, ?, [, and]. The probe description syscall::open*:entrymatches both the
open and open64 system calls. The ? character represents any single character in the name. The [and
] characters are used to specify a set of specific characters in the name.

EnablingProbes
You enable probes with the dtrace command by specifying the probes without the -l option.
Without further directions, DTrace performs the default action when the specified probe fires. The
default probe action indicates only that the specified probe has fired and does not record any other
data. The following code example enables every probe in the sdmodule.

EXAMPLE 2–6Enabling Probes byModule

dtrace -m sd
CPU ID FUNCTION:NAME

0 17329 sd_media_watch_cb:entry

0 17330 sd_media_watch_cb:return

0 17167 sdinfo:entry

0 17168 sdinfo:return

0 17151 sdstrategy:entry

0 17152 sdstrategy:return

0 17661 ddi_xbuf_qstrategy:entry

0 17662 ddi_xbuf_qstrategy:return

0 17649 xbuf_iostart:entry

0 17341 sd_xbuf_strategy:entry

0 17385 sd_xbuf_init:entry

0 17386 sd_xbuf_init:return

0 17342 sd_xbuf_strategy:return

0 17177 sd_mapblockaddr_iostart:entry

0 17178 sd_mapblockaddr_iostart:return

0 17179 sd_pm_iostart:entry

0 17365 sd_pm_entry:entry

0 17366 sd_pm_entry:return

0 17180 sd_pm_iostart:return

0 17181 sd_core_iostart:entry

0 17407 sd_add_buf_to_waitq:entry

...

The output in this example shows that the default action displays the CPUwhere the probe fired, the
integer probe ID that is assigned byDTrace, the function where the probe fired, and the probe name.

EXAMPLE 2–7Enabling Probes by Provider

dtrace -P syscall
dtrace: description ’syscall’ matched 452 probes

CPU ID FUNCTION:NAME

Enabling Probes

DTrace User Guide • May 200616

EXAMPLE 2–7Enabling Probes by Provider (Continued)

0 99 ioctl:return

0 98 ioctl:entry

0 99 ioctl:return

0 98 ioctl:entry

0 99 ioctl:return

0 234 sysconfig:entry

0 235 sysconfig:return

0 234 sysconfig:entry

0 235 sysconfig:return

0 168 sigaction:entry

0 169 sigaction:return

0 168 sigaction:entry

0 169 sigaction:return

0 98 ioctl:entry

0 99 ioctl:return

0 234 sysconfig:entry

0 235 sysconfig:return

0 38 brk:entry

0 39 brk:return

...

EXAMPLE 2–8Enabling Probes byName

dtrace -n zfod
dtrace: description ’zfod’ matched 3 probes

CPU ID FUNCTION:NAME

0 4080 anon_zero:zfod

0 4080 anon_zero:zfod

^C

EXAMPLE 2–9Enabling Probes by Fully SpecifiedName

dtrace -n clock:entry
dtrace: description ’clock:entry’ matched 1 probe

CPU ID FUNCTION:NAME

0 4198 clock:entry

^C

Enabling Probes

Chapter 2 • DTrace Basics 17

DTraceActionBasics
Actions enable DTrace to interact with the system outside of the DTrace framework. Themost
common actions record data to a DTrace buffer. Other actions can stop the current process, raise a
specific signal on the current process, or cease tracing.Actions that change the system state are
considered destructive actions. Data recording actions record data to the principal buffer by default.
The principal buffer is present in every DTrace invocation and is always allocated on a per-CPU
basis. Tracing and buffer allocation can be restricted to a single CPU by using the -cpu option. See
Chapter 11, “Buffers and Buffering,” in Solaris Dynamic Tracing Guide for more information about
DTrace buffering.

The examples in this section use D expressions that consist of built-in D variables. Some of themost
commonly usedD variables are listed below:

pid This variable contains the current process ID.

execname This variable contains the current executable name.

timestamp This variable contains the time since boot, expressed in nanoseconds.

curthread This variable contains a pointer to the kthread_t structure that represents the
current thread.

probemod This variable contains themodule name of the current probe.

probefunc This variable contains the function name of the current probe.

probename This variable contains the name of the current probe.

For a complete list of the built-in variables of the D scripting language, see Variables.

The D scripting language also provides built-in functions that perform specific actions. You can find
a complete list of these built-in functions at Chapter 10, “Actions and Subroutines,” in Solaris
Dynamic Tracing Guide. The trace() function records the result of a D expression to the trace buffer,
as in the following examples:

� trace(pid) traces the current process ID
� trace(execname) traces the name of the current executable
� trace(curthread->t_pri) traces the t_pri field of the current thread
� trace(probefunc) traces the function name of the probe

To indicate a particular action you want a probe to take, type the name of the action between {}

characters, as in the following example.

EXAMPLE 2–10 Specifying a Probe’sAction

dtrace -n ’readch {trace(pid)}’
dtrace: description ’readch ’ matched 4 probes

CPU ID FUNCTION:NAME

0 4036 read:readch 2040

0 4036 read:readch 2177

DTrace Action Basics

DTrace User Guide • May 200618

EXAMPLE 2–10 Specifying a Probe’sAction (Continued)

0 4036 read:readch 2177

0 4036 read:readch 2040

0 4036 read:readch 2181

0 4036 read:readch 2181

0 4036 read:readch 7

...

Since the requested action is trace(pid), the process identification number (PID) appears in the last
column of the output.

EXAMPLE 2–11Tracing anExecutableName

dtrace -m ’ufs {trace(execname)}’
dtrace: description ’ufs ’ matched 889 probes

CPU ID FUNCTION:NAME

0 14977 ufs_lookup:entry ls

0 15748 ufs_iaccess:entry ls

0 15749 ufs_iaccess:return ls

0 14978 ufs_lookup:return ls

...

0 15007 ufs_seek:entry utmpd

0 15008 ufs_seek:return utmpd

0 14963 ufs_close:entry utmpd

^C

EXAMPLE 2–12TracingASystemCall’s Time of Entry

dtrace -n ’syscall:::entry {trace(timestamp)}’
dtrace: description ’syscall:::entry ’ matched 226 probes

CPU ID FUNCTION:NAME

0 312 portfs:entry 157088479572713

0 98 ioctl:entry 157088479637542

0 98 ioctl:entry 157088479674339

0 234 sysconfig:entry 157088479767243

...

0 98 ioctl:entry 157088481033225

0 60 fstat:entry 157088481050686

0 60 fstat:entry 157088481074680

^C

EXAMPLE 2–13 SpecifyingMultipleActions

To specifymultiple actions, list the actions separated by the ; character.

DTrace Action Basics

Chapter 2 • DTrace Basics 19

EXAMPLE 2–13 SpecifyingMultipleActions (Continued)

dtrace -n ’zfod {trace(pid);trace(execname)}’
dtrace: description ’zfod ’ matched 3 probes

CPU ID FUNCTION:NAME

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2197 bash

0 4080 anon_zero:zfod 2207 vi

0 4080 anon_zero:zfod 2207 vi

...

DataRecordingActions
The actions in this section record data to the principal buffer by default, but each actionmay also be
used to record data to speculative buffers. See “Speculative Tracing” on page 54 formore details on
speculative buffers.

The trace() function
void trace(expression)

Themost basic action is the trace() action, which takes a D expression as its argument and traces
the result to the directed buffer.

The tracemem() function
void tracemem(address, size_t nbytes)

The tracemem() action copies data from an address inmemory to a buffer . The number of bytes that
this action copies is specified in nbytes. The address that the data is copied from is specified in addr as
a D expression. The buffer that the data is copied to is specified in buf.

The printf() function
void printf(string format, ...)

Like the trace() action, the printf() action traces D expressions. However, the printf() action
lets you control formatting in ways similar to the printf(3C) function. Like the printf function, the
parameters consists of a format string followed by a variable number of arguments. By default, the
arguments are traced to the directed buffer. The arguments are later formatted for output by the
dtrace command according to the specified format string.

DTrace Action Basics

DTrace User Guide • May 200620

Formore information on the printf() action, see Chapter 12, “Output Formatting,” in Solaris
Dynamic Tracing Guide.

The printa() function
void printa(aggregation)
void printa(string format, aggregation)

The printa() action enables you to display and format aggregations. See Chapter 9, “Aggregations,”
in Solaris Dynamic Tracing Guide for more detail on aggregations. If a format value is not provided,
the printa() action only traces a directive to the DTrace consumer. The consumer that receives that
directive processes and displays the aggregation with the default format. See Chapter 12, “Output
Formatting,” in Solaris Dynamic Tracing Guide for amore detailed description of the printa()
format string.

The stack() function
void stack(int nframes)
void stack(void)

The stack() action records a kernel stack trace to the directed buffer. The depth of the kernel stack is
given by the value given in nframes. If no value is given for nframes, the stack action records a
number of stack frames specified by the stackframes option.

The ustack() function
void ustack(int nframes, int strsize)
void ustack(int nframes)
void ustack(void)

The ustack() action records a user stack trace to the directed buffer. The depth of the user stack is
equal to the value specified in nframes. If there is no value for nframes, the ustack action records a
number of stack frames that is specified by the ustackframes option. The ustack() action
determines the address of the calling frames when the probe fires. The ustack() action does not
translate the stack frames into symbols until the DTrace consumer processes the ustack() action at
the user level. If a value for strsize is specified and not zero, the ustack() action allocates the specified
amount of string space and uses it to perform address-to-symbol translation directly from the kernel.

The jstack() function
void jstack(int nframes, int strsize)
void jstack(int nframes)
void jstack(void)

DTrace Action Basics

Chapter 2 • DTrace Basics 21

The jstack() action is an alias for ustack() that uses the value specified by the jstackframes
option for the number of stack frames. The jstack action uses the value specified by the
jstackstrsize option to determine the string space size. The jstacksize action defaults to a
non-zero value.

DestructiveActions
Youmust explicitly enable destructive actions in order to use them. You can enable destructive
actions by using the -w option. If you attempt to use destructive actions in dtracewithout explicitly
enabling them, dtrace fails with amessage similar to the following example:

dtrace: failed to enable ’syscall’: destructive actions not allowed

Formore information onDTrace actions, including destructive actions, see Chapter 10, “Actions
and Subroutines,” in Solaris Dynamic Tracing Guide.

ProcessDestructiveActions
Some actions are destructive only to a particular process. These actions are available to users with the
dtrace_proc or dtrace_user privileges. See Chapter 35, “Security,” in Solaris Dynamic Tracing
Guide for details onDTrace security privileges.

The stop() function

When a probe fires with the stop() action enabled, the process that fired that probe stops upon
leaving the kernel. This process stops in the same way as a process that is stopped by a proc(4) action.

The raise() function
void raise(int signal)

The raise() action sends the specified signal to the currently running process.

The copyout() function
void copyout(void *buf, uintptr_t addr, size_t nbytes)

The copyout() action copies data from a buffer to an address inmemory. The number of bytes that
this action copies is specified in nbytes. The buffer that the data is copied from is specified in buf. The
address that the data is copied to is specified in addr. That address is in the address space of the
process that is associated with the current thread.

The copyoutstr() function
void copyoutstr(string str, uintptr_t addr, size_t maxlen)

DTrace Action Basics

DTrace User Guide • May 200622

The copyoutstr() action copies a string to an address inmemory. The string to copy is specified in
str. The address that the string is copied to is specified in addr. That address is in the address space of
the process that is associated with the current thread.

The system() function
void system(string program, ...)

The system() action causes the program specified by program to be executed by the system as if it
were given to the shell as input.

KernelDestructiveActions
Some destructive actions are destructive to the entire system. Use these actions with caution. These
actions affect every process on the system andmay affect other systems, depending upon the affected
system’s network services.

The breakpoint() function
void breakpoint(void)

The breakpoint() action induces a kernel breakpoint, causing the system to stop and transfer
control to the kernel debugger. The kernel debugger will emit a string that denotes the DTrace probe
that triggered the action.

The panic() function
void panic(void)

When a probe with the panic() action triggers, the kernel panics. This action can force a system
crash dump at a time of interest. You can use this action in conjunction with ring buffering and
postmortem analysis to diagnose a system problem. Formore information, see Chapter 11, “Buffers
and Buffering,” in Solaris Dynamic Tracing Guide and Chapter 37, “PostmortemTracing,” in Solaris
Dynamic Tracing Guide respectively.

The chill() function
void chill(int nanoseconds)

When a probe with the chill() action triggers, DTrace spins for the specified number of
nanoseconds. The chill() action is useful for exploring problems related to timing. Because
interrupts are disabled while in DTrace probe context, any use of chill()will induce interrupt
latency, scheduling latency, dispatch latency.

DTrace Action Basics

Chapter 2 • DTrace Basics 23

DTraceAggregations
For performance-related questions, aggregated data is oftenmore useful than individual data points.
DTrace provides several built-in aggregating functions.When an aggregating function is applied to
subsets of a collection of data, then applied again to the results of the analysis of those subsets, the
results are identical to the results returned by the aggregating function when it is applied to the
collection as a whole.

The DTrace facility stores a running count of data items for aggregations. The aggregating functions
store only the current intermediate result and the new element that the function is being applied to.
The intermediate results are allocated on a per-CPU basis. Because this allocation scheme does not
require locks, the implementation is inherently scalable.

DTraceAggregation Syntax
ADTrace aggregation takes the following general form:

@name[keys] = aggfunc(args);

In this general form, the variables are defined as follows:

name The name of the aggregation, preceded by the @ character.

keys Acomma-separated list of D expressions.

aggfunc One of the DTrace aggregating functions.

args Acomma-separated list of arguments appropriate to the aggregating function.

TABLE 2–1DTraceAggregating Functions

FunctionName Arguments Result

count none The number of times that the count function is called.

sum scalar expression The total value of the specified expressions.

avg scalar expression The arithmetic average of the specified expressions.

min scalar expression The smallest value among the specified expressions.

max scalar expression The largest value among the specified expressions.

lquantize scalar expression,
lower bound, upper
bound, step value

A linear frequency distribution of the values of the specified
expressions that is sized by the specified range. This aggregating
function increments the value in the highest bucket that is less
than the specified expression.

DTrace Aggregations

DTrace User Guide • May 200624

TABLE 2–1DTraceAggregating Functions (Continued)
FunctionName Arguments Result

quantize scalar expression Apower-of-two frequency distribution of the values of the
specified expressions. This aggregating function increments the
value in the highest power-of-two bucket that is less than the
specified expression.

EXAMPLE 2–14Using anAggregating Function

This example uses the count aggregating function to count the number of write(2) system calls per
process. The aggregation does not output any data until the dtrace command is terminated. The
output data represents a summary of the data collected during the time that the dtrace command
was active.

cat writes.d

#!/usr/sbin/dtrace -s

syscall::write:entry]

{ @numWrites[execname] = count();

}

./writes.d

dtrace: script ’writes.d’ matched 1 probe

^C

dtrace 1

date 1

bash 3

grep 20

file 197

ls 201

DTrace Aggregations

Chapter 2 • DTrace Basics 25

26

Scripting With the D Language

This chapter discusses the basic information that you need to start writing your ownD language
scripts.

WritingDScripts
Complex sets of DTrace probes can become difficult tomanage on the command line. The dtrace
command supports scripts. You can specify a script by passing the -s option, along with the script’s
file name, to the dtrace command. You can also create executable DTrace interpreter files.ADTrace
interpreter file always begins with the line #!/usr/sbin/dtrace -s.

ExecutableDScripts
This example script, named syscall.d, traces the executable name every time the executable enters
each system call:

syscall:::entry

{

trace(execname);

}

Note that the filename ends with a .d suffix. This is the conventional ending for D scripts. You can
run this script off the DTrace command line with the following command:

dtrace -s syscall.d
dtrace: description ’syscall ’ matched 226 probes

CPU ID FUNCTION:NAME

0 312 pollsys:entry java

0 98 ioctl:entry dtrace

0 98 ioctl:entry dtrace

0 234 sysconfig:entry dtrace

0 234 sysconfig:entry dtrace

3C H A P T E R 3

27

0 168 sigaction:entry dtrace

0 168 sigaction:entry dtrace

0 98 ioctl:entry dtrace

^C

You can run the script by entering the filename at the command line by following two steps. First,
verify that the first line of the file invokes the interpreter. The interpreter invocation line is
#!/usr/sbin/dtrace -s. Then set the execute permission for the file.

EXAMPLE 3–1Running aD Script from theCommand Line

cat syscall.d
#!/usr/sbin/dtrace -s

syscall:::entry

{

trace(execname);

}

chmod +x syscall.d
ls -l syscall.d
-rwxr-xr-x 1 root other 62 May 12 11:30 syscall.d

./syscall.d
dtrace: script ’./syscall.d’ matched 226 probes

CPU ID FUNCTION:NAME

0 98 ioctl:entry dtrace

0 98 ioctl:entry dtrace

0 312 pollsys:entry java

0 312 pollsys:entry java

0 312 pollsys:entry java

0 98 ioctl:entry dtrace

0 98 ioctl:entry dtrace

0 234 sysconfig:entry dtrace

0 234 sysconfig:entry dtrace

^C

DLiteral Strings
TheD language supports literal strings. DTrace represents strings as an array of characters
terminated by a null byte. The visible part of the string varies in length depending on the location of
the null byte. DTrace stores each string in a fixed-size array to ensure that each probe traces a
consistent amount of data. Strings cannot exceed the length of the predefined string limit. The limit
can bemodified in your D program or on the dtrace command line by tuning the strsize option.
Refer to Chapter 16, “Options and Tunables,” in Solaris Dynamic Tracing Guide for more
information on tunable DTrace options. The default string limit is 256 bytes.

Writing D Scripts

DTrace User Guide • May 200628

The D language provides an explicit string type rather than using the type char * to refer to strings.
See Chapter 6, “Strings,” in Solaris Dynamic Tracing Guide for more information about D literal
strings.

EXAMPLE 3–2UsingDLiteral StringsWith The trace() Function

cat string.d

#!/usr/sbin/dtrace -s

fbt::bdev_strategy:entry

{

trace(execname);

trace(" is initiating a disk I/O\n");

}

The \n symbol at the end of the literal string produces a new line. To run this script, enter the
following command:

dtrace -s string.d
dtrace: script ’string.d’ matched 1 probes

CPU ID FUNCTION:NAME

0 9215 bdev_strategy:entry bash is initiating a disk I/O

0 9215 bdev_strategy:entry vi is initiating a disk I/O

0 9215 bdev_strategy:entry vi is initiating a disk I/O

0 9215 bdev_strategy:entry sched is initiating a disk I/O

^C

The -q option of the dtrace command only records the actions that are explicitly stated in the script
or command line invocation. This option suppresses the default output that the dtrace command
normally produces.

dtrace -q -s string.d
ls is initiating a disk I/O

cat is initiating a disk I/O

fsflush is initiating a disk I/O

vi is initiating a disk I/O

^C

CreatingDScripts ThatUseArguments
You can use the dtrace command to create executable interpreter files. The filemust have execute
permission. The initial line of the file must be #!/usr/sbin/dtrace -s. You can specify other
options to the dtrace command on this line. Youmust specify the options with only one dash (-).
List the s option last, as in the following example.

Writing D Scripts

Chapter 3 • Scripting With the D Language 29

#!/usr/sbin/dtrace -qvs

You can specify options for the dtrace command by using #pragma lines in the D script, as in the
following D fragment:

cat -n mem2.d

1 #!/usr/sbin/dtrace -s

2

3 #pragma D option quiet

4 #pragma D option verbose

5

6 vminfo:::

...

The following table lists the option names that you can use in #pragma lines.

TABLE 3–1DTraceConsumerOptions

OptionName Value dtraceAlias Description

aggrate time Rate of aggregation
reading

aggsize size Aggregation buffer size

bufresize auto or manual Buffer resizing policy

bufsize size -b Principal buffer size

cleanrate time Cleaning rate

cpu scalar -c CPU onwhich to enable
tracing

defaultargs — Allow references to
unspecifiedmacro
arguments

destructive — -w Allow destructive actions

dynvarsize size Dynamic variable space
size

flowindent — -F Indent function entry and
prefix with ->; unindent
function return and prefix
with <-

grabanon — -a Claim anonymous state

jstackframes scalar Number of default stack
frames jstack()

Writing D Scripts

DTrace User Guide • May 200630

TABLE 3–1DTraceConsumerOptions (Continued)
OptionName Value dtraceAlias Description

jstackstrsize scalar Default string space size
for jstack()

nspec scalar Number of speculations

quiet — -q Output only explicitly
traced data

specsize size Speculation buffer size

strsize size String size

stackframes scalar Number of stack frames

stackindent scalar Number of whitespace
characters to use when
indenting stack() and
ustack() output

statusrate time Rate of status checking

switchrate time Rate of buffer switching

ustackframes scalar Number of user stack
frames

AD script can refer to a set of built inmacro variables. Thesemacro variables are defined by the D
compiler.

$[0-9]+ Macro arguments

$egid Effective group-ID

$euid Effective user-ID

$gid Real group-ID

$pid Process ID

$pgid Process group ID

$ppid Parent process ID

$projid Project ID

$sid Session ID

$target Target process ID

$taskid Task ID

$uid Real user-ID

Writing D Scripts

Chapter 3 • Scripting With the D Language 31

EXAMPLE 3–3PIDArgument Example

This example passes the PID of a running vi process to the syscalls2.dD script. The D script
terminates when the vi command exits.

cat -n syscalls2.d

1 #!/usr/sbin/dtrace -qs

2

3 syscall:::entry

4 /pid == $1/

5 {

6 @[probefunc] = count();

7 }

8 syscall::rexit:entry

9 {

10 exit(0);

11 }

pgrep vi

2208

./syscalls2.d 2208

rexit 1

setpgrp 1

creat 1

getpid 1

open 1

lstat64 1

stat64 1

fdsync 1

unlink 1

close 1

alarm 1

lseek 1

sigaction 1

ioctl 1

read 1

write 1

DTraceBuilt-in Variables
The following list includes all of the built-in variables for the DTrace framework.

DTrace Built-in Variables

DTrace User Guide • May 200632

int64_t arg0, ..., arg9 The first ten input arguments to a probe represented as raw 64-bit
integers. If fewer than ten arguments are passed to the current probe,
the remaining variables return zero.

args[] The typed arguments to the current probe, if any. The args[] array
is accessed using an integer index, but each element is defined to be
the type corresponding to the given probe argument. For example, if
the args[] array is referenced by a read(2) system call probe,
args[0] is of type int, args[1] is of type void *, and args[2] is of
type size_t.

uintptr_t caller The program counter location of the current thread just before
entering the current probe.

chipid_t chip The CPU chip identifier for the current physical chip. See Chapter
26, “sched Provider,” in Solaris Dynamic Tracing Guide for more
information.

processorid_t cpu The CPU identifier for the current CPU. See Chapter 26, “sched
Provider,” in Solaris Dynamic Tracing Guide for more information.

cpuinfo_t *curcpu The CPU information for the current CPU. See Chapter 26, “sched
Provider,” in Solaris Dynamic Tracing Guide for more information.

lwpsinfo_t *curlwpsinfo The lightweight process (LWP) state of the LWP associated with the
current thread. This structure is described in further detail in the
proc(4) man page.

psinfo_t *curpsinfo The process state of the process associated with the current thread.
This structure is described in further detail in the This structure is
described in further detail in the proc(4) man page.

kthread_t *curthread The address of the operating system kernel’s internal data structure
for the current thread, the kthread_t. The kthread_t is defined in
<sys/thread.h>. Refer to Solaris Internals for more information on
this variable and other operating system data structures.

string cwd The name of the current working directory of the process associated
with the current thread.

uint_t epid The enabled probe ID (EPID) for the current probe. This integer
uniquely identifiers a particular probe that is enabled with a specific
predicate and set of actions.

int errno The error value returned by the last system call executed by this
thread.

string execname The name that was passed to exec(2) to execute the current process.

gid_t gid The real group ID of the current process.

DTrace Built-in Variables

Chapter 3 • Scripting With the D Language 33

uint_t id The probe ID for the current probe. This ID is the system-wide
unique identifier for the probe as published byDTrace and listed in
the output of dtrace -l.

uint_t ipl The interrupt priority level (IPL) on the current CPU at the time that
the probe fires. Refer to Solaris Internals for more information on
interrupt levels and interrupt handling in the Solaris operating
system kernel.

lgrp_id_t lgrp The locality group ID for the latency group of which the current
CPU is amember. See Chapter 26, “sched Provider,” in Solaris
Dynamic Tracing Guide for more information on CPUmanagement
in DTrace. See Chapter 4, “Locality GroupAPIs,” in Programming
Interfaces Guide for more information about locality groups.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

string probefunc The function name portion of the current probe’s description.

string probemod Themodule name portion of the current probe’s description.

string probename The name portion of the current probe’s description.

string probeprov The provider name portion of the current probe’s description.

psetid_t pset The processor set ID for the processor set that contains the current
CPU. See Chapter 26, “sched Provider,” in Solaris Dynamic Tracing
Guide for more information.

string root The name of the root directory of the process associated with the
current thread.

uint_t stackdepth The current thread’s stack frame depth at probe firing time.

id_t tid The thread ID of the current thread. For threads that are associated
with user processes, this value is equal to the result of a call to
pthread_self(3C).

uint64_t timestamp The current value of a nanosecond timestamp counter. This counter
increments from an arbitrary point in the past and should only be
used for relative computations.

uid_t uid The real user ID of the current process.

uint64_t uregs[] The current thread’s saved user-mode register values at probe firing
time. Use of the uregs[] array is discussed in Chapter 33, “User
Process Tracing,” in Solaris Dynamic Tracing Guide.

uint64_t vtimestamp The current value of a nanosecond timestamp counter. The counter
is virtualized to the amount of time that the current thread has been
running on a CPU. The counter does not include the time that is

DTrace Built-in Variables

DTrace User Guide • May 200634

spent in DTrace predicates and actions. This counter increments
from an arbitrary point in the past and should only be used for
relative time computations.

uint64_t walltimestamp The current number of nanoseconds since 00:00 Universal
Coordinated Time, January 1, 1970.

DTrace Built-in Variables

Chapter 3 • Scripting With the D Language 35

36

Using DTrace

This chapter examines the use of DTrace for common basic tasks, and has information on several
different types of tracing.

PerformanceMonitoring
Several DTrace providers implement probes that correspond to existing performancemonitoring
tools:

� The vminfo provider implements probes that correspond to the vmstat(1M) tool
� The sysinfo provider implements probes that correspond to the mpstat(1M) tool
� The io provider implements probes that correspond to the iostat(1M) tool
� The syscall provider implements probes that correspond to the truss(1) tool

You can use the DTrace facility to extract the same information that the bundled tools provide, but
with greater flexibility. The DTrace facility provides arbitrary kernel information that is available at
the time that the probes fire. The DTrace facility enables you to receive information such as process
identification, thread identification, and stack traces.

ExaminingPerformanceProblemsWith The sysinfo
Provider
The sysinfo providermakes available probes that correspond to the sys kernel statistics. These
statistics provide the input for systemmonitoring utilities such as mpstat. The sysinfo provider
probes fire immediately before the sys named kstat increments. The probes that are provided by the
sysinfo provider are in the following list.

bawrite Probe that fires whenever a buffer is about to be asynchronously written out
to a device.

4C H A P T E R 4

37

bread Probe that fires whenever a buffer is physically read from a device. bread
fires after the buffer has been requested from the device, but before blocking
pending its completion.

bwrite Probe that fires whenever a buffer is about to be written out to a device,
whether synchronously or asynchronously.

cpu_ticks_idle Probe that fires when the periodic system clock hasmade the determination
that a CPU is idle. Note that this probe fires in the context of the system clock
and therefore fires on the CPU running the system clock. The cpu_t
argument (arg2) indicates the CPU that has been deemed idle.

cpu_ticks_kernel Probe that fires when the periodic system clock hasmade the determination
that a CPU is executing in the kernel. This probe fires in the context of the
system clock and therefore fires on the CPU running the system clock. The
cpu_t argument (arg2) indicates the CPU that has been deemed to be
executing in the kernel.

cpu_ticks_user Probe that fires when the periodic system clock hasmade the determination
that a CPU is executing in user mode. This probe fires in the context of the
system clock and therefore fires on the CPU running the system clock. The
cpu_t argument (arg2) indicates the CPU that has been deemed to be
running in user-mode.

cpu_ticks_wait Probe that fires when the periodic system clock hasmade the determination
that a CPU is otherwise idle, but some threads are waiting for I/O on the
CPU. This probe fires in the context of the system clock and therefore fires
on the CPU running the system clock. The cpu_t argument (arg2) indicates
the CPU that has been deemedwaiting on I/O.

idlethread Probe that fires whenever a CPU enters the idle loop.

intrblk Probe that fires whenever an interrupt thread blocks.

inv_swtch Probe that fires whenever a running thread is forced to involuntarily give up
the CPU.

lread Probe that fires whenever a buffer is logically read from a device.

lwrite Probe that fires whenever a buffer is logically written to a device

modload Probe that fires whenever a kernel module is loaded.

modunload Probe that fires whenever a kernel module is unloaded.

msg Probe that fires whenever a msgsnd(2) or msgrcv(2) system call is made, but
before themessage queue operations have been performed.

mutex_adenters Probe that fires whenever an attempt is made to acquire an owned adaptive
lock. If this probe fires, one of the lockstat provider’s adaptive-block or
adaptive-spin probes also fires.

namei Probe that fires whenever a name lookup is attempted in the filesystem.

Performance Monitoring

DTrace User Guide • May 200638

nthreads Probe that fires whenever a thread is created.

phread Probe that fires whenever a raw I/O read is about to be performed.

phwrite Probe that fires whenever a raw I/Owrite is about to be performed.

procovf Probe that fires whenever a new process cannot be created because the
system is out of process table entries.

pswitch Probe that fires whenever a CPU switches from executing one thread to
executing another.

readch Probe that fires after each successful read, but before control is returned to
the thread that is performing the read.Aread can occur through the read(2),
readv(2) or pread(2) system calls. arg0 contains the number of bytes that
were successfully read.

rw_rdfails Probe that fires whenever an attempt is made to read-lock a reader or writer
when the lock is held by a writer or desired by a writer. If this probe fires, the
lockstat provider’s rw-block probe also fires.

rw_wrfails Probe that fires whenever an attempt is made to write-lock a reader or writer
lock when the lock is held by readers or by another writer. If this probe fires,
the lockstat provider’s rw-block probe also fires.

sema Probe that fires whenever a semop(2) system call is made, but before any
semaphore operations have been performed.

sysexec Probe that fires whenever an exec(2) system call is made.

sysfork Probe that fires whenever a fork(2) system call is made.

sysread Probe that fires whenever a read, readv, or pread system call is made.

sysvfork Probe that fires whenever a vfork(2) system call is made.

syswrite Probe that fires whenever a write(2), writev(2), or pwrite(2) system call is
made.

trap Probe that fires whenever a processor trap occurs. Note that some
processors, in particular UltraSPARC variants, handle some lightweight
traps through amechanism that does not cause this probe to fire.

ufsdirblk Probe that fires whenever a directory block is read from the UFS file system.
See ufs(7FS) for details onUFS.

ufsiget Probe that fires whenever an inode is retrieved. See ufs(7FS) for details on
UFS.

ufsinopage Probe that fires after an in-core inodewithout any associated data pages has
beenmade available for reuse. See ufs(7FS) for details onUFS.

Performance Monitoring

Chapter 4 • Using DTrace 39

ufsipage Probe that fires after an in-core inodewith associated data pages has been
made available for reuse. This probe fires after the associated data pages have
been flushed to disk. See ufs(7FS) for details onUFS.

wait_ticks_io Probe that fires when the periodic system clock hasmade the determination
that a CPU is otherwise idle but some threads are waiting for I/O on the
CPU. This probe fires in the context of the system clock and therefore fires
on the CPU running the system clock. The cpu_t argument (arg2) indicates
the CPU that is described as waiting for I/O. No semantic difference between
wait_ticks_io and cpu_ticks_wait; wait_ticks_io exists solely for
historical reasons.

writech Probe that fires after each successful write, but before control is returned to
the thread performing the write.Awrite can occur through the write,
writev, or pwrite system calls. arg0 contains the number of bytes that were
successfully written.

xcalls Probe that fires whenever a cross-call is about to bemade.Across-call is the
operating system’s mechanism for one CPU to request immediate work of
another CPU.

EXAMPLE 4–1Using the quantizeAggregation FunctionWith the sysinfo Probes

The quantize aggregation function displays a power-of-two frequency distribution bar graph of its
argument. The following example uses the quantize function to determine the size of the read calls
that are performed by all processes on the system over a period of ten seconds. The arg0 argument
for the sysinfo probes states the amount by which to increment the statistic. This value is 1 for most
sysinfo probes. Two exceptions are the readch and writech probes. For these probes, the arg0
argument is set to the actual number of bytes that are read or are written, respectively.

cat -n read.d

1 #!/usr/sbin/dtrace -s

2 sysinfo:::readch

3 {

4 @[execname] = quantize(arg0);

5 }

6

7 tick-10sec

8 {

9 exit(0);

10 }

dtrace -s read.d

dtrace: script ’read.d’ matched 5 probes

CPU ID FUNCTION:NAME

0 36754 :tick-10sec

bash

value ---------- Distribution ---------- count

Performance Monitoring

DTrace User Guide • May 200640

EXAMPLE 4–1Using the quantizeAggregation FunctionWith the sysinfo Probes (Continued)

0 | 0

1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 13

2 | 0

file

value ---------- Distribution ---------- count

-1 | 0

0 | 2

1 | 0

2 | 0

4 | 6

8 | 0

16 | 0

32 | 6

64 | 6

128 |@@ 16

256 |@@@@ 30

512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 199

1024 | 0

2048 | 0

4096 | 1

8192 | 1

16384 | 0

grep

value ---------- Distribution ---------- count

-1 | 0

0 |@@@@@@@@@@@@@@@@@@@ 99

1 | 0

2 | 0

4 | 0

8 | 0

16 | 0

32 | 0

64 | 0

128 | 1

256 |@@@@ 25

512 |@@@@ 23

1024 |@@@@ 24

2048 |@@@@ 22

4096 | 4

8192 | 3

16384 | 0

Performance Monitoring

Chapter 4 • Using DTrace 41

EXAMPLE 4–2 Finding the Source of Cross-Calls

In this example, consider the following output form the mpstat(1M) command:

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

0 2189 0 1302 14 1 215 12 54 28 0 12995 13 14 0 73

1 3385 0 1137 218 104 195 13 58 33 0 14486 19 15 0 66

2 1918 0 1039 12 1 226 15 49 22 0 13251 13 12 0 75

3 2430 0 1284 220 113 201 10 50 26 0 13926 10 15 0 75

The values in the xcal and syscl columns are atypically high, reflecting a possible drain on system
performance. The system is relatively idle and is not spending an unusual amount of time waiting for
I/O. The numbers in the xcal column are scaled per second and are read from the xcalls field of the
sys kstat. To see which executables are responsible for the cross-calls, enter the following dtrace
command:

dtrace -n ’xcalls {@[execname] = count()}’

dtrace: description ’xcalls ’ matched 3 probes

^C

find 2

cut 2

snmpd 2

mpstat 22

sendmail 101

grep 123

bash 175

dtrace 435

sched 784

xargs 22308

file 89889

#

This output indicates that the bulk of the cross calls are originating from file(1) and xargs(1)
processes. You can find these processes with the pgrep(1) and ptree(1) commands.

pgrep xargs

15973

ptree 15973

204 /usr/sbin/inetd -s

5650 in.telnetd

5653 -sh

5657 bash

15970 /bin/sh ./findtxt configuration

15971 cut -f1 -d:

15973 xargs file

16686 file /usr/bin/tbl /usr/bin/troff /usr/bin/ul /usr/bin/vgrind /usr/bin/catman

This output indicates that the xargs and file commands form part of a custom user shell script. To
locate this script, you can perform the following commands:

Performance Monitoring

DTrace User Guide • May 200642

EXAMPLE 4–2 Finding the Source of Cross-Calls (Continued)

find / -name findtxt

/usrs1/james/findtxt

cat /usrs1/james/findtxt

#!/bin/sh

find / -type f | xargs file | grep text | cut -f1 -d: > /tmp/findtxt$$

cat /tmp/findtxt$$ | xargs grep $1

rm /tmp/findtxt$$

#

This script runsmany process concurrently.A large amount of interprocess communication is
happening through pipes. The number of pipesmakes the script resource intensive. The script
attempts to find every text file on the system and then searches each file for a specific text.

TracingUser Processes
This section focuses on the DTrace facilities that are useful for tracing user process activity and
provides examples to illustrate their use.

Using the copyin() and copyinstr() Subroutines
DTrace probes execute in the Solaris kernel. Probes use the copyin() or copyinstr() subroutines to
copy user process data into the kernel’s address space.

Consider the following write() system call:

ssize_t write(int fd, const void *buf, size_t nbytes);

The following D program illustrates an incorrect attempt to print the contents of a string that is
passed to the write system call:

syscall::write:entry

{

printf("%s", stringof(arg1)); /* incorrect use of arg1 */

}

When you run this script, DTrace produces errormessages similar to the following example.

dtrace: error on enabled probe ID 1 (ID 37: syscall::write:entry): \

invalid address (0x10038a000) in action #1

The arg1 variable is an address that refers tomemory in the process that is executing the system call.
Use the copyinstr() subroutine to read the string at that address. Record the result with the
printf() action:

Tracing User Processes

Chapter 4 • Using DTrace 43

syscall::write:entry

{

printf("%s", copyinstr(arg1)); /* correct use of arg1 */

The output of this script shows all of the strings that are passed to the write system call.

Avoiding Errors
The copyin() and copyinstr() subroutines cannot read from user addresses which have not yet
been touched.Avalid address might cause an error if the page that contains that address has not been
faulted in by an access attempt. Consider the following example:

dtrace -n syscall::open:entry’{ trace(copyinstr(arg0)); }’

dtrace: description ’syscall::open:entry’ matched 1 probe

CPU ID FUNCTION:NAME

dtrace: error on enabled probe ID 2 (ID 50: syscall::open:entry): invalid address

(0x9af1b) in action #1 at DIF offset 52

In the output from the previous example, the application was functioning properly and the address
in arg0was valid. However, the address in arg0 referred to a page that the corresponding process had
not accessed. To resolve this issue, wait for the kernel or application to use the data before tracing the
data. For example, youmight wait until the system call returns to apply copyinstr(), as shown in
the following example:

dtrace -n syscall::open:entry’{ self->file = arg0; }’ \

-n syscall::open:return’{ trace(copyinstr(self->file)); self->file = 0; }’

dtrace: description ’syscall::open:entry’ matched 1 probe

CPU ID FUNCTION:NAME

2 51 open:return /dev/null

Eliminating dtrace Interference
If you trace every call to the write system call, you will cause a cascade of output. Each call to the
write() function causes the dtrace command to call the write() function as it displays the output.
This feedback loop is a good example of how the dtrace command can interfere with the desired
data. You can use a simple predicate to avoid this behavior, as shown in the following example:

syscall::write:entry

/pid != $pid/

{

printf("%s", stringof(copyin(arg1, arg2)));

}

The $pidmacro variable expands to the process identifier of the process that enabled the probes. The
pid variable contains the process identifier of the process whose thread was running on the CPU
where the probe was fired. The predicate /pid != $pid/ ensures that the script does not trace any
events related to the running of this script.

Tracing User Processes

DTrace User Guide • May 200644

syscallProvider
The syscall provider enables you to trace every system call entry and return. You can use the
prstat(1M) command to see examine process behavior.

$ prstat -m -p 31337

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP

13499 user1 53 44 0.0 0.0 0.0 0.0 2.5 0.0 4K 24 9K 0 mystery/6

This example shows that the process is consuming a large amount of system time. One possible
explanation for this behavior is that the process is executing a large number of system calls. You can
use a simple D program specified on the command line to see which system calls are happeningmost
often:

dtrace -n syscall:::entry’/pid == 31337/{ @syscalls[probefunc] = count(); }’

dtrace: description ’syscall:::entry’ matched 215 probes

^C

open 1

lwp_park 2

times 4

fcntl 5

close 6

sigaction 6

read 10

ioctl 14

sigprocmask 106

write 1092

This report shows a large number of system calls to the write() function. You can use the syscall
provider to further examine the source of all the write() system calls:

dtrace -n syscall::write:entry’/pid == 31337/{ @writes[arg2] = quantize(); }’

dtrace: description ’syscall::write:entry’ matched 1 probe

^C

value ------------- Distribution ------------- count

0 | 0

1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1037

2 |@ 3

4 | 0

8 | 0

16 | 0

32 |@ 3

64 | 0

128 | 0

256 | 0

512 | 0

1024 |@ 5

Tracing User Processes

Chapter 4 • Using DTrace 45

2048 | 0

The output shows that the process is executingmany write() system calls with a relatively small
amount of data.

The ustack()Action
The ustack() action traces the user thread’s stack. If a process that opensmany files occasionally
fails in the open() system call, you can use the ustack() action to discover the code path that
executes the failed open():

syscall::open:entry

/pid == $1/

{

self->path = copyinstr(arg0);

}

syscall::open:return

/self->path != NULL && arg1 == -1/

{

printf("open for ’%s’ failed", self->path);

ustack();

}

This script also illustrates the use of the $1macro variable. This macro variable takes the value of the
first operand that is specified on the dtrace command line:

dtrace -s ./badopen.d 31337

dtrace: script ’./badopen.d’ matched 2 probes

CPU ID FUNCTION:NAME

0 40 open:return open for ’/usr/lib/foo’ failed

libc.so.1‘__open+0x4

libc.so.1‘open+0x6c

420b0

tcsh‘dosource+0xe0

tcsh‘execute+0x978

tcsh‘execute+0xba0

tcsh‘process+0x50c

tcsh‘main+0x1d54

tcsh‘_start+0xdc

The ustack() action records program counter (PC) values for the stack. The dtrace command
resolves those PC values to symbol names by looking though the process’s symbol tables. The dtrace
command prints out PC values that cannot be resolved as hexadecimal integers.

When a process exits or is killed before the ustack() data is formatted for output, the dtrace
commandmight be unable to convert the PC values in the stack trace to symbol names. In that event

Tracing User Processes

DTrace User Guide • May 200646

the dtrace command displays these values as hexadecimal integers. To work around this limitation,
specify a process of interest with the -c or -p option to dtrace. If the process ID or command is not
known in advance, the following example D program that can be used to work around the limitation.
The example uses the open system call probe, but this technique can be used with any script that uses
the ustack action.

syscall::open:entry

{

ustack();

stop_pids[pid] = 1;

}

syscall::rexit:entry

/stop_pids[pid] != 0/

{

printf("stopping pid %d", pid);

stop();

stop_pids[pid] = 0;

}

The previous script stops a process just before the process exits, if the ustack() action has been
applied to a thread in that process. This technique ensures that the dtrace command can resolve the
PC values to symbolic names. The value of stop_pids[pid] is set to 0 after clearing the dynamic
variable.

The pidProvider
The pid provider enables you to trace any instruction in a process. Unlikemost other providers, pid
probes are created on demand, based on the probe descriptions found in your D programs.

User FunctionBoundary Tracing
The simplest mode of operation for the pid provider is as the user space analogue to the fbt provider.
The following example program traces all function entries and returns that aremade from a single
function. The $1macro variable expands to the first operand on the command line. This macro
variable is the process ID for the process to trace. The $2macro variable expands to the second
operand on the command line. This macro variable is the name of the function that all function calls
are traced from.

EXAMPLE 4–3 userfunc.d: TraceUser Function Entry andReturn

pid$1::$2:entry

{

self->trace = 1;

}

Tracing User Processes

Chapter 4 • Using DTrace 47

EXAMPLE 4–3 userfunc.d: TraceUser Function Entry andReturn (Continued)

pid$1::$2:return

/self->trace/

{

self->trace = 0;

}

pid$1:::entry,

pid$1:::return

/self->trace/

{

}

This script produces output that is similar to the following example:

./userfunc.d 15032 execute

dtrace: script ’./userfunc.d’ matched 11594 probes

0 -> execute

0 -> execute

0 -> Dfix

0 <- Dfix

0 -> s_strsave

0 -> malloc

0 <- malloc

0 <- s_strsave

0 -> set

0 -> malloc

0 <- malloc

0 <- set

0 -> set1

0 -> tglob

0 <- tglob

0 <- set1

0 -> setq

0 -> s_strcmp

0 <- s_strcmp

...

The pid provider can only be used on processes that are already running. You can use the $target
macro variable and the dtrace options -c and -p to create and instrument processes of interest using
the dtrace facility. The following D script determines the distribution of function calls that aremade
to libc by a particular subject process:

pid$target:libc.so::entry

{

Tracing User Processes

DTrace User Guide • May 200648

@[probefunc] = count();

}

To determine the distribution of such calls made by the date(1) command, execute the following
command:

dtrace -s libc.d -c date

dtrace: script ’libc.d’ matched 2476 probes

Fri Jul 30 14:08:54 PDT 2004

dtrace: pid 109196 has exited

pthread_rwlock_unlock 1

_fflush_u 1

rwlock_lock 1

rw_write_held 1

strftime 1

_close 1

_read 1

__open 1

_open 1

strstr 1

load_zoneinfo 1

...

_ti_bind_guard 47

_ti_bind_clear 94

TracingArbitrary Instructions
You can use the pid provider to trace any instruction in any user function. Upon demand, the pid
provider creates a probe for every instruction in a function. The name of each probe is the offset of its
corresponding instruction in the function expressed as a hexadecimal integer. To enable a probe that
is associated with the instruction at offset 0x1c in function foo ofmodule bar.so in the process with
PID 123, use the following command.

dtrace -n pid123:bar.so:foo:1c

To enable all of the probes in the function foo, including the probe for each instruction, you can use
the command:

dtrace -n pid123:bar.so:foo:

The following example demonstrates how to combine the pid provider with speculative tracing to
trace every instruction in a function.

EXAMPLE 4–4 errorpath.d: TraceUser FunctionCall Error Path

pid$1::$2:entry

{

Tracing User Processes

Chapter 4 • Using DTrace 49

EXAMPLE 4–4 errorpath.d: TraceUser FunctionCall Error Path (Continued)

self->spec = speculation();

speculate(self->spec);

printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);

}

pid$1::$2:

/self->spec/

{

speculate(self->spec);

}

pid$1::$2:return

/self->spec && arg1 == 0/

{

discard(self->spec);

self->spec = 0;

}

pid$1::$2:return

/self->spec && arg1 != 0/

{

commit(self->spec);

self->spec = 0;

}

When errorpath.d executes, the output of the script is similar to the following example.

./errorpath.d 100461 _chdir

dtrace: script ’./errorpath.d’ matched 19 probes

CPU ID FUNCTION:NAME

0 25253 _chdir:entry 81e08 6d140 ffbfcb20 656c73 0

0 25253 _chdir:entry

0 25269 _chdir:0

0 25270 _chdir:4

0 25271 _chdir:8

0 25272 _chdir:c

0 25273 _chdir:10

0 25274 _chdir:14

0 25275 _chdir:18

0 25276 _chdir:1c

0 25277 _chdir:20

0 25278 _chdir:24

0 25279 _chdir:28

0 25280 _chdir:2c

0 25268 _chdir:return

Tracing User Processes

DTrace User Guide • May 200650

Anonymous Tracing
This section describes tracing that is not associated with anyDTrace consumer.Anonymous tracing
is used in situations when noDTrace consumer processes can run. Only the super usermay create an
anonymous enabling. Only one anonymous enabling can exist at any time.

Anonymous Enablings
To create an anonymous enabling, use the -A option with a dtrace command invocation that
specifies the desired probes, predicates, actions and options. The dtrace command adds a series of
driver properties that represent your request to the configuration file for the dtrace(7D) driver. The
configuration file is typically /kernel/drv/dtrace.conf. The dtrace driver reads these properties
when the driver is loaded. The driver enables the specified probes with the specified actions and
creates an anonymous state to associate with the new enabling. The dtrace driver is normally loaded
on demand, along with any drivers that act as dtrace providers. To allow tracing during boot, the
dtrace drivermust be loaded as early as possible. The dtrace command adds the necessary
forceload statements to /etc/system (see system(4) for each required dtrace provider and for the
dtrace driver.

When the system boots, the dtrace driver sends amessage indicating that the configuration file has
been successfully processed.An anonymous enabling can set any of the options that are available
during normal use of the dtrace command.

To remove an anonymous enabling, specify the -A option to the dtrace commandwithout any probe
descriptions.

ClaimingAnonymous State
When themachine has completely booted, you can claim an existing anonymous state by specifying
the -a option with the dtrace command. By default, the -a option claims the anonymous state and
processes the existing data, then continues to run. To consume the anonymous state and exit, add the
-e option.

When the anonymous state has been consumed from the kernel, the anonymous state cannot be
replaced. If you attempt to claim an anonymous tracing state that does not exist, the dtrace
command generates amessage that is similar to the following example:

dtrace: could not enable tracing: No anonymous tracing state

If drops or errors occur, the dtrace command generates the appropriate messages when the
anonymous state is claimed. Themessages for drops and errors are the same for both anonymous
and non-anonymous state.

Anonymous Tracing

Chapter 4 • Using DTrace 51

Anonymous Tracing Examples
The following example shows an anonymous DTrace enabling for every probe in the iprb(7D)
module:

dtrace -A -m iprb

dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf

dtrace: added forceload directives to /etc/system

dtrace: run update_drv(1M) or reboot to enable changes

reboot

After rebooting, the dtrace driver prints amessage on the console to indicate that the driver is
enabling the specified probes:

...

Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

NOTICE: enabling probe 0 (:iprb::)

NOTICE: enabling probe 1 (dtrace:::ERROR)

configuring IPv4 interfaces: iprb0.

...

After rebooting themachine, specifying the -a option with the dtrace command consumes the
anonymous state:

dtrace -a

CPU ID FUNCTION:NAME

0 22954 _init:entry

0 22955 _init:return

0 22800 iprbprobe:entry

0 22934 iprb_get_dev_type:entry

0 22935 iprb_get_dev_type:return

0 22801 iprbprobe:return

0 22802 iprbattach:entry

0 22874 iprb_getprop:entry

0 22875 iprb_getprop:return

0 22934 iprb_get_dev_type:entry

0 22935 iprb_get_dev_type:return

0 22870 iprb_self_test:entry

0 22871 iprb_self_test:return

0 22958 iprb_hard_reset:entry

0 22959 iprb_hard_reset:return

0 22862 iprb_get_eeprom_size:entry

0 22826 iprb_shiftout:entry

0 22828 iprb_raiseclock:entry

0 22829 iprb_raiseclock:return

...

The following example focuses only on functions that are called from iprbattach().

Anonymous Tracing

DTrace User Guide • May 200652

fbt::iprbattach:entry

{

self->trace = 1;

}

fbt:::

/self->trace/

{}

fbt::iprbattach:return

{

self->trace = 0;

}

Run the following commands to clear the previous settings from the driver configuration file, install
the new anonymous tracing request, and reboot:

dtrace -AFs iprb.d

dtrace: cleaned up old anonymous enabling in /kernel/drv/dtrace.conf

dtrace: cleaned up forceload directives in /etc/system

dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf

dtrace: added forceload directives to /etc/system

dtrace: run update_drv(1M) or reboot to enable changes

reboot

After rebooting, the dtrace driver prints a different message on the console to indicate the slightly
different enabling:

...

Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

NOTICE: enabling probe 0 (fbt::iprbattach:entry)

NOTICE: enabling probe 1 (fbt:::)

NOTICE: enabling probe 2 (fbt::iprbattach:return)

NOTICE: enabling probe 3 (dtrace:::ERROR)

configuring IPv4 interfaces: iprb0.

...

After themachine has finished booting, run the dtrace commandwith the -a and the -e options to
consume the anonymous data and then exit.

dtrace -ae

CPU FUNCTION

0 -> iprbattach

0 -> gld_mac_alloc

0 -> kmem_zalloc

0 -> kmem_cache_alloc

0 -> kmem_cache_alloc_debug

0 -> verify_and_copy_pattern

Anonymous Tracing

Chapter 4 • Using DTrace 53

0 <- verify_and_copy_pattern

0 -> tsc_gethrtime

0 <- tsc_gethrtime

0 -> getpcstack

0 <- getpcstack

0 -> kmem_log_enter

0 <- kmem_log_enter

0 <- kmem_cache_alloc_debug

0 <- kmem_cache_alloc

0 <- kmem_zalloc

0 <- gld_mac_alloc

0 -> kmem_zalloc

0 -> kmem_alloc

0 -> vmem_alloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> vmem_xalloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> segkmem_alloc

0 -> segkmem_xalloc

0 -> vmem_alloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> vmem_seg_alloc

0 -> highbit

0 <- highbit

0 -> highbit

0 <- highbit

0 -> vmem_seg_create

...

Speculative Tracing
This section discusses the DTrace facility for speculative tracing. Speculative tracing is the ability to
tentatively trace data and decide whether to commit the data to a tracing buffer or discard it. The
primarymechanism to filter out uninteresting events is the predicatemechanism. Predicates are

Speculative Tracing

DTrace User Guide • May 200654

useful when you know at the time that a probe fires whether or not the probe event is of interest.
Predicates are not well suited to dealing with situations where you do not know if a given probe event
is of interest or not until after the probe fires.

If a system call is occasionally failing with a common error code, youmight want to examine the code
path that leads to the error condition. You can use the speculative tracing facility to tentatively trace
data at one ormore probe locations, then decide to commit the data to the principal buffer at another
probe location. The resulting trace data contains only the output of interest and requires no
postprocessing.

Speculation Interfaces
The following table describes the DTrace speculation functions.

TABLE 4–1DTrace SpeculationFunctions

FunctionName Arguments Description

speculation None Returns an identifier for a new speculative buffer

speculate ID Denotes that the remainder of the clause should be
traced to the speculative buffer specified by ID

commit ID Commits the speculative buffer that is associated
with ID

discard ID Discards the speculative buffer associated with ID

Creating a Speculation
The speculation() function allocates a speculative buffer and returns a speculation identifier. Use
the speculation identifier in subsequent calls to the speculate() function.Aspeculation identifier of
zero is always invalid, but can be passed to speculate(), commit() or discard(). If a call to
speculation() fails, the dtrace command generates amessage that is similar to the following
example.

dtrace: 2 failed speculations (no speculative buffer space available)

Using a Speculation
To use a speculation, use a clause to pass an identifier that has been returned from speculation() to
the speculate() function before any data-recording actions.All data-recording actions in a clause
that contains a speculate() are speculatively traced. The D compiler generates a compile-time error
if a call to speculate() follows data recording actions in a D probe clause. Clauses can contain either
speculative tracing requests or non-speculative tracing requests, but not both.

Speculative Tracing

Chapter 4 • Using DTrace 55

Aggregating actions, destructive actions, and the exit actionmay never be speculative.Any attempt
to take one of these actions in a clause that contains a speculate() results in a compile-time error.A
speculate() functionmay not follow a previous speculate() function. Only one speculation is
permitted per clause.Aclause that contains only a speculate() function will speculatively trace the
default action, which is defined to trace only the enabled probe ID.

The typical use of the speculation() function is to assign the result of the speculation() function
to a thread-local variable. That thread-local variable acts as a subsequent predicate to other probes, as
well as an argument to speculate().

EXAMPLE 4–5Typical Use of The speculation() Function

syscall::open:entry

{

self->spec = speculation();

}

syscall:::

/self->spec/

{

speculate(self->spec);

printf("this is speculative");

}

Committing a Speculation
Commit speculations by using the commit() function.When you commit a speculative buffer the
buffer’s data is copied into the principal buffer. If the data in the speculative buffer exceeds the
available space in the principal buffer, no data is copied and the drop count for the buffer increments.
If the buffer has been speculatively traced onmore than one CPU, the speculative data on the
committing CPU is copied immediately, while speculative data on other CPUs is copied after the
commit().

A speculative buffer that is being committed is not available to subsequent speculation() calls until
each per-CPU speculative buffer is completely copied into its corresponding per-CPU principal
buffer. Subsequent attempts to write the results of a speculate() function call to the committing
buffer discard the data without generating an error. Subsequent calls to commit() or discard() also
fail without generating an error.Aclause that contains a commit() function cannot contain a data
recording action, but a clause can containmultiple commit() calls to commit disjoint buffers.

Discarding a Speculation
Discard speculations by using the discard() function. If the speculation has only been active on the
CPU that is calling the discard() function, the buffer is immediately available for subsequent calls
to the speculation() function. If the speculation has been active onmore than one CPU, the

Speculative Tracing

DTrace User Guide • May 200656

discarded buffer will be available for subsequent calls to the speculation() function after the call to
discard(). If no speculative buffers are available at the time that the speculation() function is
called adtracemessage that is similar to the following example is generated:

dtrace: 905 failed speculations (available buffer(s) still busy)

Speculation Example
One potential use for speculations is to highlight a particular code path. The following example
shows the entire code path under the open(2) system call when the open() fails.

EXAMPLE 4–6 specopen.d: Code Flow for Failed open()

#!/usr/sbin/dtrace -Fs

syscall::open:entry,

syscall::open64:entry

{

/*

* The call to speculation() creates a new speculation. If this fails,

* dtrace(1M) will generate an error message indicating the reason for

* the failed speculation(), but subsequent speculative tracing will be

* silently discarded.

*/

self->spec = speculation();

speculate(self->spec);

/*

* Because this printf() follows the speculate(), it is being

* speculatively traced; it will only appear in the data buffer if the

* speculation is subsequently commited.

*/

printf("%s", stringof(copyinstr(arg0)));

}

fbt:::

/self->spec/

{

/*

* A speculate() with no other actions speculates the default action:

* tracing the EPID.

*/

speculate(self->spec);

}

syscall::open:return,

syscall::open64:return

/self->spec/

Speculative Tracing

Chapter 4 • Using DTrace 57

EXAMPLE 4–6 specopen.d: Code Flow for Failed open() (Continued)

{

/*

* To balance the output with the -F option, we want to be sure that

* every entry has a matching return. Because we speculated the

* open entry above, we want to also speculate the open return.

* This is also a convenient time to trace the errno value.

*/

speculate(self->spec);

trace(errno);

}

syscall::open:return,

syscall::open64:return

/self->spec && errno != 0/

{

/*

* If errno is non-zero, we want to commit the speculation.

*/

commit(self->spec);

self->spec = 0;

}

syscall::open:return,

syscall::open64:return

/self->spec && errno == 0/

{

/*

* If errno is not set, we discard the speculation.

*/

discard(self->spec);

self->spec = 0;

}

When you run the previous script, the script generates output that is similar to the following
example.

./specopen.d

dtrace: script ’./specopen.d’ matched 24282 probes

CPU FUNCTION

1 => open /var/ld/ld.config

1 -> open

1 -> copen

1 -> falloc

1 -> ufalloc

1 -> fd_find

1 -> mutex_owned

Speculative Tracing

DTrace User Guide • May 200658

1 <- mutex_owned

1 <- fd_find

1 -> fd_reserve

1 -> mutex_owned

1 <- mutex_owned

1 -> mutex_owned

1 <- mutex_owned

1 <- fd_reserve

1 <- ufalloc

1 -> kmem_cache_alloc

1 -> kmem_cache_alloc_debug

1 -> verify_and_copy_pattern

1 <- verify_and_copy_pattern

1 -> file_cache_constructor

1 -> mutex_init

1 <- mutex_init

1 <- file_cache_constructor

1 -> tsc_gethrtime

1 <- tsc_gethrtime

1 -> getpcstack

1 <- getpcstack

1 -> kmem_log_enter

1 <- kmem_log_enter

1 <- kmem_cache_alloc_debug

1 <- kmem_cache_alloc

1 -> crhold

1 <- crhold

1 <- falloc

1 -> vn_openat

1 -> lookupnameat

1 -> copyinstr

1 <- copyinstr

1 -> lookuppnat

1 -> lookuppnvp

1 -> pn_fixslash

1 <- pn_fixslash

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 -> groupmember

1 -> supgroupmember

Speculative Tracing

Chapter 4 • Using DTrace 59

1 <- supgroupmember

1 <- groupmember

1 <- ufs_iaccess

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 <- ufs_iaccess

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 <- ufs_iaccess

1 -> vn_rele

1 <- vn_rele

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 <- lookuppnvp

1 <- lookuppnat

1 <- lookupnameat

1 <- vn_openat

1 -> setf

1 -> fd_reserve

1 -> mutex_owned

1 <- mutex_owned

1 -> mutex_owned

1 <- mutex_owned

1 <- fd_reserve

1 -> cv_broadcast

Speculative Tracing

DTrace User Guide • May 200660

1 <- cv_broadcast

1 <- setf

1 -> unfalloc

1 -> mutex_owned

1 <- mutex_owned

1 -> crfree

1 <- crfree

1 -> kmem_cache_free

1 -> kmem_cache_free_debug

1 -> kmem_log_enter

1 <- kmem_log_enter

1 -> tsc_gethrtime

1 <- tsc_gethrtime

1 -> getpcstack

1 <- getpcstack

1 -> kmem_log_enter

1 <- kmem_log_enter

1 -> file_cache_destructor

1 -> mutex_destroy

1 <- mutex_destroy

1 <- file_cache_destructor

1 -> copy_pattern

1 <- copy_pattern

1 <- kmem_cache_free_debug

1 <- kmem_cache_free

1 <- unfalloc

1 -> set_errno

1 <- set_errno

1 <- copen

1 <- open

1 <= open 2

Speculative Tracing

Chapter 4 • Using DTrace 61

62

Index

A
actions

data recording, 20
destructive, 22

breakpoint, 23
chill, 23
copyout, 22
copyoutstr, 23
panic, 23
raise, 22
stop, 22
system, 23

jstack, 22
printa, 21
printf, 20
stack, 21
trace, 20
tracemem, 20
ustack, 21

anonymous enabling, 51
anonymous tracing, 51

claiming anonymous state, 51
example of use, 52

C
copyin(), 43
copyinstr(), 43

D
data recording actions, 20

destructive actions, 22
kernel, 23
process, 22

dtrace interference, 44

E
examples

anonymous tracing, 52
speculation, 57

F
function boundary testing (FBT), 47

P
pid provider, 47, 49
predicates, 11
probes, syscall(), 45

S
speculation, 55

committing, 56
creating, 55
discarding, 56
example of use, 57
use, 55

63

speculation() function, 55
strings, 28

type, 29
subroutines

copyin(), 43
copyinstr(), 43

T
tracing instructions, 49

U
user process tracing, 43
ustack(), 46

Index

DTrace User Guide • May 200664

	DTrace User Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	Related Books
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction
	DTrace Capabilities
	Architecture overview
	DTrace Providers
	DTrace Probes
	DTrace Predicates
	DTrace Actions
	D Scripting Language

	DTrace Basics
	Listing Probes
	Specifying Probes in DTrace
	Enabling Probes
	DTrace Action Basics
	Data Recording Actions
	The trace() function
	The tracemem() function
	The printf() function
	The printa() function
	The stack() function
	The ustack() function
	The jstack() function

	Destructive Actions
	Process Destructive Actions
	The stop() function
	The raise() function
	The copyout() function
	The copyoutstr() function
	The system() function

	Kernel Destructive Actions
	The breakpoint() function
	The panic() function
	The chill() function

	DTrace Aggregations
	DTrace Aggregation Syntax

	Scripting With the D Language
	Writing D Scripts
	Executable D Scripts
	D Literal Strings
	Creating D Scripts That Use Arguments

	DTrace Built-in Variables

	Using DTrace
	Performance Monitoring
	Examining Performance Problems With The sysinfo Provider

	Tracing User Processes
	Using the copyin() and copyinstr() Subroutines
	Avoiding Errors

	Eliminating dtrace Interference
	syscall Provider
	The ustack() Action
	The pid Provider
	User Function Boundary Tracing
	Tracing Arbitrary Instructions

	Anonymous Tracing
	Anonymous Enablings
	Claiming Anonymous State
	Anonymous Tracing Examples

	Speculative Tracing
	Speculation Interfaces
	Creating a Speculation
	Using a Speculation
	Committing a Speculation
	Discarding a Speculation
	Speculation Example

	Index

