
Attack Trends
Editors: Elias Levy, aleph1@securityfocus.com

Iván Arce, ivan.arce@coresecurity.com

Although kernel bugs have had
serious security implications for the
past three decades, researchers have
not studied their importance or the
mechanics for discovering, exploit-
ing, and fixing them as much as
they’ve focused on other informa-
tion technology infrastructure com-
ponents. Yet, over the past several
years, an increasing number of ker-
nel security vulnerabilities have
demonstrated that the most impor-
tant component of today’s operating
systems is not free of bugs—when
these vulnerabilities are exploited,
serious security incidents ensue.

In this installment of Attack
Trends, I focus on kernel security is-
sues, recent vulnerabilities, and the
emergence of publicly available ex-
ploit code for them.

Kernel overview
An operating system’s principal func-
tion is to provide an execution envi-
ronment in which users’ programs
run. This requires a basic framework
for uniform program execution with
a uniform and standardized way to
use the hardware and access system
resources in a coordinated and or-
derly manner. The kernel provides
this basic service in all but the most
simplistic operating systems.

To provide these fundamental ca-
pabilities to the operating system,

several portions of software initialize
and run at system boot time. Typi-
cally, each piece implements specific
functions and exposes a well-defined
programming interface to other por-
tions of code that might use them.
This outlines a view of the operating
system as a layered set of components
in which each layer fulfills specific
requirements.

Ultimately, applications interact
with the user—or other applica-
tions—and with hardware resources
via programming interfaces made
accessible by each layer of code.

Functional layers found in mod-
ern kernels include:

• device drivers and a hardware-
abstraction layer,

• process- and thread-execution
framework,

• process scheduling,
• memory management,
• file-system services,
• networking services, and
• security services

Design and implementation de-
cisions made for developing today’s
kernels follow a small set of para-
digms that produce different strains
of operating systems based on
monolithic, micro, and exo kernels.
Although their differences are quite
important from an engineering per-

spective, we won’t delve into them
here. For the purpose of this depart-
ment, it suffices to say that even the
minimal set of services that any ker-
nel provides is complex enough to
justify a closer look in the context of
information security threats.

Kernel and user
modes of execution
Kernel software requires full and
unrestricted access to all system
components to operate and arbi-
trate concurrent requests from user
applications to resources. To ac-
complish orderly program execu-
tion, a simple model provides two
separate environments for code ex-
ecution: Kernel code runs in a priv-
ileged execution environment with
almost complete control of the
computer system and without any
security restrictions. This is often
called privileged or kernel mode. In the
other environment, called the user
mode, the kernel code mediates sys-
tem privileges, allowing a restricted
execution environment for user ap-
plications. To acquire and use sys-
tem resources or modify its own ex-
ecution environment, a user-mode
application communicates with the
operating system’s kernel via a well-
defined channel, called the system
calls interface.

Many system administrators and
other IT practitioners generally re-
gard the kernel as a black-box compo-
nent in the operating system—a
closed system whose internal work-
ings do not need to be understood—
and expect it to work in an efficient,
reliable, and secure manner. Adminis-
trators generally resort to kernel con-
figuration tweaking and optimization
as a way to increase system perfor-

IVÁN ARCE

Core Security
TechnologiesT

he kernel is a fundamental piece of the operating sys-

tem that provides and mediates access to a computer

system’s resources. Naturally, such a critical compo-

nent plays a key role in providing users a secure envi-

ronment and should be subject to security practitioners’ scrutiny.

The Kernel Craze

PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY 79

Attack Trends

mance, solve efficiency and reliability
problems, or address underlying hard-
ware requirements, such as adding or
modifying hardware devices.

To the security-conscious reader,
my simplistic kernel overview might
have already triggered concerns due
to the kernel software’s complex and
critical nature. It is an accepted prin-
ciple that simpler and smaller code is
more easily scrutinized and less
prone to software bugs.

Yet, the functional requirements
for a modern kernel foster an in-
crease in code complexity and size.
We should not assume that any of the
different layers of code running in
kernel mode, including the system-
calls interface, are free of program-
ming errors.

Impact
of kernel bugs
The existence of a bug in the kernel
is of utmost importance to security-
conscious users due to its key role in
the operating system. Kernel bugs
can affect the entire operating sys-
tem’s stability and operations and,
therefore, have a direct impact on all
running applications.

Also, because code running in ker-
nel space has direct and unrestricted

access to all low-level system re-
sources, a kernel bug provides a direct
avenue of attack that bypasses all secu-
rity controls in most general-purpose
operating systems. From an informa-
tion-security perspective, the kernel is
the last line of defense; a bug discov-
ered in it implies that, if the vulnerabil-
ity is exploited, all security mecha-
nisms are completely breached.

After a kernel is compromised, we
can argue that we still rely on certain,
very specific security mechanisms
and features implemented at the
hardware level, but for all practical
purposes, an attacker will now have
full reign over the computer system.

Kernel bug
exploitation
Because executing the kernel code
correctly is directly related to the op-
erating system’s reliability and trust-
worthiness, exploiting kernel bugs is
an extremely sensitive endeavor:

• Common development tools such
as debuggers, compilers, and disas-
semblers must be used in a con-
strained manner to avoid system
instability and crashes. This leads
to a cumbersome and tedious de-
velopment process with no room

for programming errors in the ex-
ploit code: a failed exploit yields a
crashed system.Components run-
ning in kernel space are tightly
coupled and often have complex
interactions; badly coded exploit
code results in erratic and unex-
pected system behavior. This re-
quires that the exploit developer
have a thorough understanding of
kernel operations, data structures,
and internal algorithms.

• The exploit code’s reliability is of
outmost importance because the
exploit is not only required to
function properly, but to do so in a
variety of system configurations
and operational conditions. A
trial-and-error approach is unsuit-
able because it makes the attack ev-
ident owing to continuous re-
peated system crashes and
noticeably disrupted operations.

• Simple exploitation does not easily
yield directly usable benefits in the
kernel space. Because all operating
system interactions with humans
or external entities are carried via
applications running in user mode,
a kernel exploit must transfer its
newly acquired privileges to a
user-mode program.

These technical barriers will hardly
deter a skilled and decided attacker.

Most exploit code found in the
wild for kernel vulnerabilities does
not go beyond triggering a denial-
of-service attack against the system
due to system resource exhaustion or
system crashes. However, well-
thought-out exploits, carefully de-
veloped using clever tricks to gain
and maintain elevated privileges
through kernel vulnerabilities on
compromised systems, have
emerged in the past few years.

Additionally, the kernel space is
the best-suited portion of the oper-
ating system for an attacker to hide
malicious programs that provide ille-
gitimate access to system resources
because it hides their activities from
the rest of the operating system; this
is referred to as kernel-level rootkits.

80 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2004

Attack Trends

A history of kernel
vulnerabilities
and exploits
An exhaustive account of the past 30
years of kernel vulnerabilities and ex-
ploits would probably consume a
large portion of this issue of IEEE Se-
curity & Privacy and bore all but our
most kernel-fanatic readers, so I will
resort to pinpointing the more rele-
vant references in this matter. The
reader is left with the exercise of con-
necting the dots and adding more
data points that lead to a more accu-
rate extrapolation of trends in kernel
vulnerability and exploitation.

We can track the first account of a
kernel exploit to the US Air Force’s
security evaluation of the Multics
operating system, published in 1974
(“Multics Security Evaluation: Vul-
nerability Analysis”; http://csrc.nist.
gov/publications/history/karg74.
pdf). In their report, authors Paul
Karger and Roger Schell detailed a
kernel vulnerability in the Multics
operating system, followed by a
step-by-step procedure on how to
exploit the flaw and force the oper-
ating system and its underlying mi-
croprocessor to run unprivileged
code in privileged mode.

Eugene Spafford illustrated the
outcome of letting possibly mali-
cious users mangle arbitrary portions
of kernel memory in his account of
an easy way to elevate privileges on
buggy Unix systems. In it, the sys-
tems let user-mode programs exe-
cute a divide-by-zero operation—an
erroneous operation that must be
caught and dealt with carefully—and
store the results in kernel memory
(see http://securitydigest.org/core/
archive/122).

The Last Stage of Delirium (LSD),
a Polish research group, has studied the
exploitation of kernel-level vulnera-
bilities in modern Unix operating sys-
tems that run on the Intel x86 family
of microprocessors. Their report of
their participation in a hacking chal-
lenge in 2001 provides a complete de-
scription of several kernel bugs and the
exploit code they developed to suc-

cessfully breach the security mecha-
nisms of a security-hardened operat-
ing system (see “Kernel-Level Vulner-
abilities: Behind the Scenes of the 5th
Argus Hacking Challenge”; www.
lsd-pl.net/documents/kernvuln
-1.0.2.pdf).

Perhaps the most widely known
and publicized kernel bug is the one
leading to the infamous Ping of Death
attacks that were rampant on the Inter-
net in the mid 1990s. A bug in the ker-
nel networking code of almost all op-
erating systems then in use allowed
attackers to remotely crash vulnerable
computers—the sole requirement was
to send a maliciously crafted IP data-
gram with an ICMP Echo Request
(“ping”) payload (see http://search
security.techtarget.com/sDefinition/
0,,sid14_gci822096,00.html).

In “More Bang for the Bug: An
Account of 2003’s Attack Trends”
(IEEE Security & Privacy, vol. 2, no. 1,
2004, pp. 66–68), I gave an account of
attackers’ recent exploitation of a
Linux kernel bug in their attempt to
introduce backdoors in one of the
most widely used Linux distributions.

A quick search on MITRE’s Com-
mon Vulnerabilities and Exposures
(CVE) directory (cve.mitre.org) re-
sults in 117 kernel-level vulnerabilities
reported since 1999. As well, exploit
code to elevate privileges on vulnera-
ble systems with kernel-level bugs cat-
alogued in Symantec’s SecurityFocus
vulnerability database (www.security
focus.com/bid/keyword/) has been
publicly available for at least 6 of the 12

kernel vulnerabilities reported since
December 2003.

The proliferation of new types of
hardware devices and the advances in
microprocessor, storage, and net-
working technologies call for increas-
ingly complex kernels. As I men-

tioned, security practitioners accept
that code size and complexity grow to
the detriment of security; the keep-
it-simple principle applies to the ker-
nel as well as—or even more than—
to any other software program.

There is no temporary fix or
workaround for kernel bugs. Usu-
ally, the only cure is to fix and replace
the current kernel with one that is
patched. Fixing kernel security bugs
is both an unrewarding and critically
sensitive activity that can often go
wrong, with a possibly serious im-
pact on network operations due to
system outages, performance degra-
dation, or erratic system behavior.
However, remaining oblivious to re-
cent advances in kernel vulnerability
exploitation or underestimating
would-be attackers’ ingenuity and
determination of is a perfect recipe
for an information-security disaster.

S ecurity problems in kernel code
are difficult to spot, understand,

and fix. We must address kernel se-
curity throughout the entire devel-
opment process. Although operat-
ing-system vendors should place
their most substantial efforts in the
early stages of design and develop-
ment, IT and security practitioners
must prepare practical strategies to
effectively address kernel security is-
sues in operational environments.

Iván Arce is chief technology officer and
cofounder of Core Security Technologies,
an information security company based

in Boston. Previously, he worked as vice
president of research and development for
a computer telephony integration com-
pany and as information security consul-
tant and software developer for various
government agencies and financial and
telecommunications companies. Contact
him at ivan.arce@coresecurity.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 81

Remaining oblivious to advances in
kernel exploitation is a perfect recipe
for an information-security disaster.

