
Cryptography is a systems problem

(or)

‘Should we deploy TLS?’

Matthew Green
Johns Hopkins University

Why this presentation?

Why this presentation?
These people are wrong

Algorithms

Protocol Design

Implementation

Library API design

Deployment & Correct Usage

“solved problem”

Confidence
(inverse)

Algorithms

Protocol Design

Implementation

Library API design

Deployment & Correct Usage

“solved problem”

Confidence
(inverse)

Today’s example: SSL/TLS
•Why SSL/TLS?

• Because it’s the most important security
protocol in the world!

What’s the matter with TLS?

Designwise/
Analysis-wise/

Implementation-wise/
Usage-wise

This presentation

A brief history
• SSLv1 born at Netscape. Never released. (~1995)

• SSLv2 released one year later

• Serious protocol negotiation bugs.

A brief history
• SSLv1 born at Netscape (~1995)

• SSLv2 released one year later

• Serious protocol negotiation bugs. Just awful.

• SSLv3

• Slightly less serious issues [Schneier & Kelsey, others]
padding oracles

A brief history
• TLSv1.0

• Predictable IVs, renegotiation attacks and more!

The SSL protocol

The SSL protocol

Negotiation

Key exchange

Secure communication

Renegotiation... etc. etc.

Protocol Design

It’s bad
•Many problems result from TLS’s use of

“pre-historic cryptography” (- Eric Rescorla)

• CBC with Mac-then-Encrypt, bad use of IVs

• RSA-PKCS#1v1.5 encryption padding

• RC4

• Horrifying backwards compatibility requirements

MAC-then-pad-then-Encrypt
• TLS MACs the record, then pads (in CBC), then enciphers

•Obvious problem: padding oracles (2002)

MAC-then-pad-then-Encrypt
• TLS MACs the record, then pads (in CBC), then enciphers

•Obvious problem: padding oracles

• Countermeasure(s):

1. Do not distinguish padding/MAC failure

MAC-then-pad-then-Encrypt
• TLS MACs the record, then pads (in CBC), then enciphers

•Obvious problem: padding oracles

• Countermeasure(s):

1. Do not distinguish padding/MAC failure

In theory, this
works (if the MAC
is larger than the

block size)
-Paterson et al.

’11

MAC-then-pad-then-Encrypt
• TLS MACs the record, then pads (in CBC), then enciphers

•Obvious problem: padding oracles

• Countermeasure(s):

1. Do not distinguish padding/MAC failure

2. “Constant-time” decryption

MAC-then-pad-then-Encrypt
• TLS MACs the record, then pads (in CBC), then enciphers

•Obvious problem: padding oracles

• Countermeasure(s):

1. Do not distinguish padding/MAC failure

2. “Constant-time” decryption

Probably good
enough for

remote timing...

BEAST
• Serious bug in TLS 1.0

• Allows complete (hollywood!) decryption of CBC
ciphertexts

• Use of predictable Initialization Vector (CBC residue bug)

• Known since 2002, attack described by Bard in 2005
(Bard was advised to focus on more interesting problems.)

•Nobody cared or noticed until someone implemented it

Solution in practice: RC4

:-(

(When RC4 is your solution,
you need a better problem)

Compression (CRIME)
• Can’t really blame the TLS designers for including it...

• Blame cryptographers for not noticing it’s still in use?

• Blame cryptographers for pretending it would go away.

•We need a model for compression+encryption

• Clearly this is weaker than semantic security

• But how much weaker? Can we quantify?

Analysis

TLS for cryptographers

TLS for cryptographers

Q: What’s
missing?

Example: Negotiation

Each TLS protocol begins with a ciphersuite
negotiation that determines which key agreement

protocol (etc.) will be used.

Tolga Acar, Mira Belenkiy, Mihir Bellare, and David Cash, Cryptographic Agility and its Relation to Circular Encryption, in EUROCRYPT 2010

Negotiation

Key Agreement

http://research.microsoft.com/apps/pubs/default.aspx?id=121045
http://research.microsoft.com/apps/pubs/default.aspx?id=121045

Surely we’ve analyzed TLS?
•Well -- not really.

• In CRYPTO 2012 (!) we saw the first paper
to successfully analyze TLS-DHE [Jager et al.]

• To date: no published work that analyzes even the
TLS-RSA handshake (in a realistic setting)

•Nobody has ever proven the /full/ TLS protocol to be secure

Implementation

Everything up ‘til now was the good news.

OpenSSL, GnuTLS, NSS
• The problem with TLS is that we are cursed

with implementations

•OpenSSL being the chief offender

• But followed closely...

Code to the spec!

PKCS #1v1.5

PKCS #1v1.5

Thread locks

PKCS #1v1.5
Good news: NSS

doesn’t have a set of
thread locks.

(They have two.)

Why do it the simple way?

PKCS#1
recommendation

OpenSSL v1.0.1c

Why you should follow
recommendations

APIs
just at least one guy who thinks “int enable”

has only 2 values (not 3!) --- theGruqq

APIs

Space shuttles vs. Elevators
int	 do_evp_seal(FILE	 *rsa_pkey_file,	 FILE	 *in_file,	 FILE	 *out_file)
{
	 	 	 	 int	 retval	 =	 0;
	 	 	 	 RSA	 *rsa_pkey	 =	 NULL;
	 	 	 	 EVP_PKEY	 *pkey	 =	 EVP_PKEY_new();
	 	 	 	 EVP_CIPHER_CTX	 ctx;
	 	 	 	 unsigned	 char	 buffer[4096];
	 	 	 	 unsigned	 char	 buffer_out[4096	 +	 EVP_MAX_IV_LENGTH];
	 	 	 	 size_t	 len;
	 	 	 	 int	 len_out;
	 	 	 	 unsigned	 char	 *ek	 =	 NULL;
	 	 	 	 int	 eklen;
	 	 	 	 uint32_t	 eklen_n;
	 	 	 	 unsigned	 char	 iv[EVP_MAX_IV_LENGTH];

	 	 	 	 if	 (!PEM_read_RSA_PUBKEY(rsa_pkey_file,	 &rsa_pkey,	 NULL,	 NULL))
	 	 	 	 {
	 	 	 	 	 	 	 	 fprintf(stderr,	 "Error	 loading	 RSA	 Public	 Key	 File.\n");
	 	 	 	 	 	 	 	 ERR_print_errors_fp(stderr);
	 	 	 	 	 	 	 	 retval	 =	 2;
	 	 	 	 	 	 	 	 goto	 out;
	 	 	 	 }

	 	 	 	 if	 (!EVP_PKEY_assign_RSA(pkey,	 rsa_pkey))
	 	 	 	 {
	 	 	 	 	 	 	 	 fprintf(stderr,	 "EVP_PKEY_assign_RSA:	 failed.\n");
	 	 	 	 	 	 	 	 retval	 =	 3;
	 	 	 	 	 	 	 	 goto	 out;
	 	 	 	 }

	 	 	 	 EVP_CIPHER_CTX_init(&ctx);
	 	 	 	 ek	 =	 malloc(EVP_PKEY_size(pkey));

	 	 	 	 if	 (!EVP_SealInit(&ctx,	 EVP_aes_128_cbc(),	 &ek,	 &eklen,	 iv,	 &pkey,	 1))
	 	 	 	 {
	 	 	 	 	 	 	 	 fprintf(stderr,	 "EVP_SealInit:	 failed.\n");
	 	 	 	 	 	 	 	 retval	 =	 3;
	 	 	 	 	 	 	 	 goto	 out_free;
	 	 	 	 }

Elevators vs. space shuttles

Elevators vs. space shuttles

Usage

• Typical Banking Experience:
- SSL URLs begin with https://
- But users rarely type the prefix

HTTP->HTTPS

GET http://americanexpress.com

REDIRECT https://americanexpress.com

User enters: americanexpress.com

GET https://americanexpress.com

SSL secured web page

User login info

http://americanexpress.com
http://americanexpress.com
https://americanexpress.com
https://americanexpress.com
http://americanexpress.com
http://americanexpress.com

Login page: https

https://boa.com
https://boa.com

• If you can intercept the user’s connection:
- Don’t redirect, or:
- Redirect to malicious site, unsecured (http)

HTTP->HTTPS

GET http://amex.com

REDIRECT http://secure.amex.com

User enters: americanexpress.com

GET https://secure.amex.com

SSL secured web page

User login info

http://americanexpress.com
http://americanexpress.com
http://americanexpress.com
http://americanexpress.com

• If you can intercept the user’s connection:
- Homograph site: paypaI.com (with a capital i), or:
- Use clever IDN tricks e.g.,

https://www.gmail.com/accounts/ServiceLogin!f.ijjk.cn

HTTP->HTTPS

https://www.gmail.com/accounts/ServiceLogin!f.ijjk.cn
https://www.gmail.com/accounts/ServiceLogin!f.ijjk.cn

• It can be worse:
- Some sites give an http page with

a form that submits via https

HTTP->HTTP->HTTPS

GET http://americanexpress.com

User enters: americanexpress.com

Unsecured http web page

User login info

http://americanexpress.com
http://americanexpress.com

Login page: http

https://boa.com
https://boa.com

We’re all gonna die
• This is not what I’m saying

• There is a lot of good news in here:

•We are learning how to analyze TLS

•We are learning how to implement & use TLS

• But there is still so much left to be done.

blog.cryptographyengineering.com

