CS 258, Midterm Exam, Winter 2014

Terms and Conditions. This is a take-home, open-book, open-manual, open-
shell exam. The solutions are due by noon of Monday February 17.

You are expected to use (at least) DTrace, the OpenGrok source code browser
and the Modular Debugger’s running kernel inspection capability (mdb -k), and any
other tools you find useful. The documents in the class directory http://www.cs.
dartmouth.edu/ sergey/cs258/ and the textbook’s index might be useful, too.

For each problem, you should “show your work”: the output of the above tools
on your actual platform (virtual or physical).? For OS kernel code lines, provide the
filename and the line number, or the OpenGrok URL pointing to the right line.

You are allowed to discuss the use of tools with your fellow students, but not the
solutions themselves. For example, sharing a tracing trick is OK, but sharing part
of a solution as such is not. Note that in most exercises you are free to choose your
targets (which may help you avoid conflicts with the above rule). If in doubt, ask.

Submit your work as a text or PDF file, or as a tarball (.tar.gz file) that contains
a directory named <YourName>-midterm (with your solutions inside :)).

Note: The default system for these problems is Illumos, due to the great flex-
ibility of DTrace and MDB. You may choose to do some or all or the problems on
GNU/Linux instead of Illumos if you so desire (e.g., using SysTrace and Kprobes);
note, however, that Illumos’ tools for examining a running kernel are much more
versatile and stable. Linux will likely be more work, unless you’ve been working on
a Linux project idea and practiced with Linux tools already.

1

Problem 1. Hide a process: a poor man’s rootkit.

e Using MDB or DTrace, manipulate kernel data structures so that a running
process doesn’t show on ps ax but still runs normally (check that by interact-
ing with the process after your kernel manipulations).

e Using the same tools, make it so that signals sent to the process by kill -s
<signal> <pid> are ignored. Then find another way to send a signal so that
it is not ignored.

Hint: In MDB, use the command $W to enable writing memory, and writing formats
(see ::formats ! grep write) to actually write memory. In DTrace, use the -w
to enable “destructive” actions to write memory.

http://src.illumos.org/source/
%You can record your entire shell session with the script <filename> command, or, when
working in MDB, with the ::log <filename> command.

Problem 2. Battle of the debuggers.

Start a process under gdb or attach gdb to a running process. Set a breakpoint
in the process. In MDB, navigate to and show the contents of the process’ memory
where the breakpoint is set. Using memory examination commands, describe and
demonstrate how gdb implements its breakpoints.

Extra credit: Explain in detail (showing traces and relevant data structures) how
gdb’s breakpoint handing code gets invoked when a breakpoint is hit.

Problem 3. The cow jumped over the loop.

In the following C program, add code where indicated to avoid the effects of
the indicated puts in the for loop but still hit its ending statements. Your pro-
gram should produce the output shown below, and should not use goto, return,
setjmp/longjmp, mprotect, exit or exec-family system calls, but may read and
write any place its process memory as needed and allowed by the memory protec-
tions.

#include <stdio.h>

int main()

{
int i;
puts("Starting program...\n");
/*
* Add your code here.
*/
for(i=0; i<=100; i++){
puts("Moo!\n"); /* Avoid this */
}
printf ("Finishing program, %d iterations.\n", i); /* Hit this! */
return O;
}
Output:

Starting program...
Finishing program, 101 iteratioms.

Problem 4. Dynamic symbol popularity contest.

What dynamic symbol occurs in the largest number of processes running on your
system? (Assume that ps ax gives you a representative view of your process load).
More specifically:

1. Answer the above question for any symbols present in the program executable’s
dynamic symbol table, without regard for their type or whether or not they
have been resolved by the dynamic linker by the time you look.

2. Answer the above question limited to symbols that refer to dynamic library
functions, whether or not they have been resolved & linked.

3. Answer the above question limited to dynamic library functions that have
been already resolved & linked.

Eztra credit: Generate information to answer questions (1) and (2) with one-
liner shell commands (pipes and any command-line awk, sed, perl, python or ruby
are allowed.® For (3), I don’t immediately see a one-liner solution, so all the more
credit if you find one!

Problem 5. Lock and load.

Write a program that will exercise the Magazine and Depot layers of the Illumos
Kmem/Vmem allocator as described in Bonwick’s 2001 paper.* You program should
trigger magazine allocations of an OS object, and then cause the Depot layer to
provide new magazines. Show that this happens by setting appropriate DTrace
probes and recording a trace. Point out the work of different allocator layers in the
trace.

You program can be in any language, not necessarily C.

Note that this problem is OpenSolaris/Illumos-specific and doesn’t easily adapt
to Linux. If you would like a similar one on Linux, please talk to me.

3Google “X one-liners” where X is one of the above languages; the trick is to specify the full
program on the command line and then pipe the output to another program, such as uniq, sort,
cut, etc., with appropriate options. There is no limit on how many commands are piped.

*http:/ /www.cs.dartmouth.edu/ sergey/cs258/bonwick01.pdf

