KERNEL MEMORY

| I n the last chapter, we looked mostly at process address space and process mem-
ory, but the kernel also needs memory to run the operating system. Kernel mem-
ory is required for the kernel text, kernel data, and kernel data structures. In this
chapter, we look at what kernel memory is used for, what the kernel virtual
address space looks like, and how kernel memory is allocated and managed.

6.1 Kernel Virtual Memory Layout

The kernel, just like a process, uses virtual memory and uses the memory manage-
ment unit to translate its virtual memory addresses into physical pages. The ker-
nel has its own address space and corresponding virtual memory layout. The
kernel's address space is constructed of address space segments, using the stan-
dard Solaris memory architecture framework.

Most of the kernel’s memory is nonpageable, or “wired down.” The reason is that
the kernel requires its memory to complete operating system tasks that could
affect other memory-related data structures and, if the kernel had to take a page
fault while performing a memory management task (or any other task that
affected pages of memory), a deadlock could occur. Solaris does, however, allow
some deadlock-safe parts of the Solaris kernel to be allocated from pageable mem-
ory, which is used mostly for the lightweight process thread stacks.
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Kernel memory consists of a variety of mappings from physical memory (physi-
cal memory pages) to the kernel’s virtual address space, and memory is allocated
by a layered series of kernel memory allocators. Two segment drivers handle the
creation and management of the majority of kernel mappings. Nonpageable ker-
nel memory is mapped with the segkmem kernel segment driver and pageable ker-
nel memory with the segkp segment driver. On platforms that support it, the
critical and frequently used portions of the kernel are mapped from large
(4-Mbyte) pages to maximize the efficiency of the hardware TLB.

6.1.1 Kernel Address Space

The kernel virtual memory layout differs from platform to platform, mostly based
on the platform’s MMU architecture. On all platforms except the sun4u, the ker-
nel uses the top 256 Mbytes or 512 Mbytes of a common virtual address space,
shared by the process and kernel (see “Virtual Address Spaces” on page 173). Shar-
ing the kernel address space with the process address space limits the amount of
usable kernel virtual address space to 256 Mbytes and 512 Mbytes, respectively,
which is a substantial limitation on some of the older platforms (e.g., the SPARC-
center 2000). On sun4u platforms, the kernel has its own virtual address space
context and consequently can be much larger. The sun4u kernel address space is 4
Gbytes on 32-bit kernels and spans the full 64 bit address range on 64-bit kernels.

The kernel virtual address space contains the following major mappings:

The kernel text and data (mappings of the kernel binary)

The kernel map space (data structures, caches, etc.)

A 32-bit kernel map, for module text and data (64-bit kernels only)
The trap table

Critical virtual memory data structures (TSB, etc.)

A place for mapping the file system cache (segmap)

The layout of the kernel's virtual memory address space is mostly platform spe-
cific, and as a result, the placement of each mapping is different on each platform.
For reference, we show the sun4u 64-bit kernel address space map in Figure 6.1.



Kernel Virtual Memory Layout

OXFFFFFFFF.FFFFFFFF

OxFFFFFFFC.00000000
0x00000302.00000000

0x00000300.00000000

0x000002A7.50000000

0x000002A1.00000000
0x00000000.FFFFFFFF
0x00000000.FO000000

0x00000000.EDDOOO00O
0x00000000.7c000000

0x00000000.78002000

0x00000000.78000000

0x00000000.10400000

0x00000000.10400000

0x00000000.10000000

OxO ...

Open Boot PROM
Page Tables

64-Bit Kernel Map

File System Cache

Pageable Kernel Mem.

Open Boot PROM

Kernel Debugger

32-Bit Kernel Map
segkmem32

Panic Message Buffer

Large TSB

sun4u HAT Structures
Small TSB & Map Blks

Kernel Data Segment

Kernel Text Segment

Trap Table

(8 Ghytes)

(256 Mbytes)

segmap

512 Mbytes)

segkp

segkmem

4-Mbyte Pages)

(1 x 4-Mbyte Page)

(1 x 4-Mbyte Page)

Figure 6.1 Solaris 7 64-Bit Kernel Virtual Address Space
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6.1.2 The Kernel Text and Data Segments

The kernel text and data segments are created when the kernel core is loaded and
executed. The text segments contain the instructions, and the data segment con-
tains the initialized variables from the kernel/unix image file, which is loaded at
boot time by the kernel bootstrap loader.

The kernel text and data are mapped into the kernel address space by the Open
Boot PROM, prior to general startup of the kernel, to allow the base kernel code to
be loaded and executed. Shortly after the kernel loads, the kernel then creates the
kernel address space and the segkmem kernel memory driver creates segments for
kernel text and kernel data.

On systems that support large pages, the kernel creates a large translation
mapping for the first four megabytes of the kernel text and data segments and
then locks that mapping into the MMU’s TLB. Mapping the kernel into large pages
greatly reduces the number of TLB entries required for the kernel’'s working set
and has a dramatic impact on general system performance. Performance was
increased by as much as 10 percent, for two reasons:

1. The time spent in TLB miss handlers for kernel code was reduced to
almost zero.

2. The number of TLB entries used by the kernel was dramatically reduced,
leaving more TLB entries for user code and reducing the amount of time
spent in TLB miss handlers for user code.

On SPARC platforms, we also put the trap table at the start of the kernel text
(which resides on one large page).

6.1.3 Virtual Memory Data Structures

The kernel keeps most of the virtual memory data structures required for the plat-
form’s HAT implementation in a portion of the kernel data segment and a sepa-
rate memory segment. The data structures and allocation location are typically
those summarized in Table 6-1.

Table 6-1 Virtual Memory Data Structures

Platform Data Structures Location

sundu The Translation Storage Buffer (TSB). | Allocated initially from the
The HAT mapping blocks (HME), one | kernel data-segment large
for every page-sized virtual address page, and overflows into

mapping. (See “The UltraSPARC-I another large-page, mapped
and -11 HAT” on page 235.) segment, just above the ker-
nel data segment.
sun4m Page Tables, Page Structures Allocated in the kernel

data-segment large page.
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Table 6-1 Virtual Memory Data Structures (Continued)

Platform Data Structures Location

sun4d Page Tables, Page Structures Allocated in the kernel
data-segment large page.

x86 Page Tables, Page Structures Allocated from a separate
VM data structure’s segment.

6.1.4 The SPARC V8 and V9 Kernel Nucleus

Required on sun4u kernel implementations is a core area of memory that can be
accessed without missing in the TLB. This memory area is necessary because the
sundu SPARC implementation uses a software TLB replacement mechanism to fill
the TLB, and hence we require all of the TLB miss handler data structures to be
available during a TLB miss. As we discuss in “The UltraSPARC-I and -1l HAT” on
page 235, the TLB is filled from a software buffer, known as the translation stor-
age buffer (TSB), of the TLB entries, and all of the data structures needed to han-
dle a TLB miss and to fill the TLB from the TSB must be available with
wired-down TLB mappings. To accommodate this requirement, SPARC V8 and
SPARC V9 implement a special core of memory, known as the nucleus. On sun4u
systems, the nucleus is the kernel text, kernel data, and the additional “large TSB”
area, all of which are allocated from large pages.

6.1.5 Loadable Kernel Module Text and Data

The kernel loadable modules require memory for their executable text and data.
On sun4u, up to 256 Kbytes of module text and data are allocated from the same
segment as the kernel text and data, and after the module text and data are
loaded from the general kernel allocation area, the kernel map segment. The loca-
tion of kernel module text and data is shown in Table 6-2.

Table 6-2 Kernel Loadable Module Allocation

Platform Module Kernel and Text Allocation
sundu Up to 256 Kbytes of kernel module are loaded from the same
64 bit large pages as the kernel text and data. The remainder are

loaded from the 32-bit kernel map segment, a segment that is
specifically for module text and data.

sundu Up to 256 Kbytes of kernel module are loaded from the same
32 bit large pages as the kernel text and data. The remainder are
loaded from the general kernel memory allocation segment, the
kernel map segment.

sundm Loadable module text and data are loaded from the general
kernel memory allocation segment, the kernelmap segment.
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Table 6-2 Kernel Loadable Module Allocation (Continued)

Platform Module Kernel and Text Allocation

sun4d Loadable module text and data are loaded from the general
kernel memory allocation segment, the kernelmap segment.

x86 Up to 256 Kbytes of kernel module are loaded from the same

large pages as the kernel text and data. The remainder are
loaded from an additional segment, shared by HAT data struc-
tures and module text/data.

We can see which modules fitted into the kernel text and data by looking at the
module load addresses with the modinfo command.

rmc@devhome> modinfo

Id Loadaddr Size Info Rev Module Name

51010c000 4b63 1 1 specfs (filesystem for specfs)

7 10111654 3724 1 1 TS (time sharing sched class)
81011416¢c 5c0 - 1 TS_DPTBL (Time sharing dispatch table)
9101141c0 29680 2 1 ufs (filesystem for ufs)

97 10309b38 28e0 52 1 shmsys (System V shared memory)

97 10309b38 28e0 52 1 shmsys (32-bit System V shared memory)
98 1030bc90 43c - 1 ipc (common ipc code)

99 78096000 3723 18 1 ffb (ffb.c 6.42 Aug 11 1998 11:20:45)
100 7809c000 f5ee - 1 xfb (xfb driver 1.2 Aug 11 1998 11:2)

102 780c2000 leca - 1 bootdev (bootdev misc module)

Using the modinfo command, we can see on a sun4u system that the initial mod-
ules are loaded from the kernel-text large page. (Address 0x1030bc90 lies within
the kernel-ext large page, which starts at 0x10000000.)

On 64-bit sun4u platforms, we have an additional segment for the spillover ker-
nel text and data. The reason for having the segment is that the address at which
the module text is loaded must be within a 32-bit offset from the kernel text.
That's because the 64-bit kernel is compiled with the ABS32 flag so that the ker-
nel can fit all instruction addresses within a 32-bit register. The ABS32 instruc-
tion mode provides a significant performance increase and allows the 64-bit kernel
to provide similar performance to the 32-bit kernel. Because of that, a separate
kernel map segment (segkmem32) within a 32-bit offset of the kernel text is used
for spillover module text and data.

Solaris does allow some portions of the kernel to be allocated from pageable mem-
ory. That way, data structures directly related to process context can be swapped
out with the process during a process swap-out operation. Pageable memory is
restricted to those structures that are not required by the kernel when the process
is swapped out:

« Lightweight process stacks
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e The TNF Trace buffers

= Special pages, such as the page of memory that is shared between user and
kernel for scheduler preemption control

Pageable memory is allocated and swapped by the seg_kp segment and is only
swapped out to its backing store when the memory scheduler (swapper) is acti-
vated. (See “The Memory Scheduler” on page 231.)

6.1.6 The Kernel Address Space and Segments

The kernel address space is represented by the address space pointed to by the
system object, kas. The segment drivers manage the manipulation of the seg-
ments within the kernel address space (see Figure 6.2).

The full list of segment drivers the kernel uses to create and manage kernel
mappings is shown in Table 6-3. The majority of the kernel segments are manu-
ally calculated and placed for each platform, with the base address and offset
hard-coded into a platform-specific header file. See Appendix B, “Kernel Virtual
Address Maps” for a complete reference of platform-specific kernel allocation and
address maps.

Table 6-3 Solaris 7 Kernel Memory Segment Drivers

Segment Function
seg_kmem Allocates and maps nonpageable kernel memory pages.
seg_kp Allocates, maps, and handles page faults for pageable
kernel memory.
seg_nf Nonfaulting kernel memory driver.
seg_map Maps the file system cache into the kernel address
space.
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Figure 6.2 Kernel Address Space

6.2 Kernel Memory Allocation

Kernel memory is allocated at different levels, depending on the desired allocation
characteristics. At the lowest level is the page allocator, which allocates unmapped
pages from the free lists so the pages can then be mapped into the kernel’s address
space for use by the kernel.

Allocating memory in pages works well for memory allocations that require
page-sized chunks, but there are many places where we need memory allocations
smaller than one page; for example, an in-kernel inode requires only a few hun-
dred bytes per inode, and allocating one whole page (8 Kbytes) would be wasteful.
For this reason, Solaris has an object-level kernel memory allocator in addition to
the page-level allocator to allocate arbitrarily sized requests, stacked on top of the
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page-level allocator. The kernel also needs to manage where pages are mapped, a
function that is provided by the resource map allocator. The high-level interaction
between the allocators is shown in Figure 6.3.
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processes

inodes,
proc structs

kmem_alloc()
kmem_cache_alloc()

kernelmap drivers

Kernel Process

Memory (Slab)
Allocator

Memory

page- (malloc)
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segkmem_getpages() requests

Process

seg_vn
Driver

Raw Page

page_create_va() page_create_va()

Allocator

Figure 6.3 Different Levels of Memory Allocation

6.2.1 The Kernel Map

We access memory in the kernel by acquiring a section of the kernel's virtual
address space and then mapping physical pages to that address. We can acquire
the physical pages one at a time from the page allocator by calling
page_create va() , but to use these pages, we first need to map them. A section
of the kernel's address space, known as the kernel map, is set aside for gen-
eral-purpose mappingsp. (See Figure 6.1 for the location of the sun4u kernelmap;
see also Appendix B, “Kernel Virtual Address Maps” for kernel maps on other
platforms.)
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The kernel map is a separate kernel memory segment containing a large area of
virtual address space that is available to kernel consumers who require virtual
address space for their mappings. Each time a consumer uses a piece of the kernel
map, we must record some information about which parts of the kernel map are
free and which parts are allocated, so that we know where to satisfy new requests.
To record the information, we use a general-purpose allocator to keep track of the
start and length of the mappings that are allocated from the kernel map area. The
allocator we use is the resource map allocator, which is used almost exclusively for
managing the kernel map virtual address space.

The kernel map area is large, up to 8 Gbytes on 64-bit sun4u systems, and can
quickly become fragmented if it accommodates many consumers with differ-
ent-sized requests. It is up to the resource map allocator to try to keep the kernel
map area as unfragmented as possible.

6.2.2 The Resource Map Allocator

Solaris uses the resource map allocator to manage the kernel map. To keep track
of the areas of free memory within the map, the resource map allocator uses a sim-
ple algorithm to keep a list of start/length pairs that point to each area of free
memory within the map. The map entries are sorted in ascending order to make it
quicker to find entries, allowing faster allocation. The map entries are shown in
the following map structure, which can be found in the <sys/map.h> header file.

struct map {
size_t m_size; /* size of this segment of the map */
ulong_t m_addr; /* resource-space addr of start of segment */

I

The area managed by the resource map allocator is initially described by just one
map entry representing the whole area as one contiguous free chunk. As more allo-
cations are made from the area, more map entries are used to describe the area,
and as a result, the map becomes ever more fragmented over time.

The resource map allocator uses a first-fit algorithm to find space in the map to
satisfy new requests, which means that it attempts to find the first available slot
in the map that fits the request. The first-fit algorithm provides a fast find alloca-
tion at the expense of map fragmentation after time. For this reason, it is impor-
tant to ensure that kernel subsystems do not perform an excessive amount of map
allocation and freeing. The kernel slab allocator (discussed next) should be used for
these types of requests.

Map resource requests are made with the rmalloc() call, and resources are
returned to the map by rmfree() . Resource maps are created with the rmalloc-
map() function and destroyed with the rmfreemap() function. The functions that
implement the resource map allocator are shown in Table 6-4.
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Table 6-4 Solaris 7 Resource Map Allocator Functions from <sys/map.h>

Function

Description

rmallocmap()

Dynamically allocates a map. Does not sleep.
Driver-defined basic locks, read/write locks, and
sleep locks can be held across calls to this func-
tion.

DDI-/DKI-conforming drivers may only use map
structures that have been allocated and initial-
ized with rmallocmap()

rmallocmap_wait()

Dynamically allocates a map. It does sleep.
DDI-/DKI-conforming drivers can only use map
structures that have been allocated and initial-
ized with rmallocmap() and
rmallocmap_wait()

rmfreemap()

Frees a dynamically allocated map. Does not
sleep.

Driver-defined basic locks, read/write locks, and
sleep locks can be held across calls to this func-
tion.

Before freeing the map, the caller must ensure
that nothing is using space managed by the map
and that nothing is waiting for space in the map.

rmalloc()

Allocates size units from the given map. Returns
the base of the allocated space. In a map, the
addresses are increasing and the list is termi-
nated by a O size.

Algorithm is first-fit.

rmalloc_wait()

Like rmalloc , but waits if necessary until space
is available.

rmalloc_locked()

Like rmalloc , but called with lock on map held.

rmfree() Frees the previously allocated space at addr of
size units into the specified map.
Sorts addr into map and combines on one or both
ends if possible.

rmget() Allocates size units from the given map, start-

ing at address addr . Returns addr if successful, O
if not. This may cause the creation or destruction
of a resource map segment.

This routine returns failure status if there is not
enough room for a required additional map seg-
ment.
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6.2.3 The Kernel Memory Segment Driver

The segkmem segment driver performs two major functions: it manages the cre-
ation of general-purpose memory segments in the kernel address space, and it also
provides functions that implement a page-level memory allocator by using one of
those segments—the kernel map segment.

The segkmem segment driver implements the segment driver methods described
in Section 5.4, “Memory Segments,” on page 185, to create general-purpose, non-
pageable memory segments in the kernel address space. The segment driver does
little more than implement the segkmem_create method to simply link segments
into the kernel's address space. It also implements protection manipulation meth-
ods, which load the correct protection modes via the HAT layer for segkmem seg-
ments. The set of methods implemented by the segkmem driver is shown in Table
6-5.

Table 6-5 Solaris 7 segkmem Segment Driver Methods

Function Description
segkmem_create() Creates a new kernel memory segment.
segkmem_setprot() Sets the protection mode for the supplied segment.
segkmem_checkprot() Checks the protection mode for the supplied segment.
segkmem_getprot() Gets the protection mode for the current segment.

The second function of the segkmem driver is to implement a page-level memory
allocator by combined use of the resource map allocator and page allocator. The
page-level memory allocator within the segkmem driver is implemented with the
function kmem_getpages() . The kmem_getpages() function is the kernel’s cen-
tral allocator for wired-down, page-sized memory requests. Its main client is the
second-level memory allocator, the slab allocator, which uses large memory areas
allocated from the page-level allocator to allocate arbitrarily sized memory objects.
We'll cover more on the slab allocator further in this chapter.

The kmem_getpages() function allocates page-sized chunks of virtual address
space from the kernelmap segment. The kernelmap segment is only one of many
segments created by the segkmem driver, but it is the only one from which the seg-
kmem driver allocates memory.

The resource map allocator allocates portions of virtual address space within
the kernelmap segment but on its own does not allocate any physical memory
resources. It is used together with the page allocator, page_create_va() , and the
hat_memload() functions to allocate physical mapped memory. The resource map
allocator allocates some virtual address space, the page allocator allocates pages,
and the hat_memload() function maps those pages into the virtual address space
provided by the resource map. A client of the segkmem memory allocator can
acquire pages with kmem_getpages and then return them to the map with
kmem_freepages , as shown in Table 6-6.
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Table 6-6 Solaris 7 Kernel Page Level Memory Allocator

Function Description
kmem_getpages() Allocates npages pages worth of system virtual
address space, and allocates wired-down page
frames to back them.

If flag is KM_NOSLEEPIlocks until address
space and page frames are available.
kmem_freepages() Frees npages (MMU) pages allocated with
kmem_getpages()

Pages allocated through kmem_getpages are not pageable and are one of the few
exceptions in the Solaris environment where a mapped page has no logically asso-
ciated vnode. To accommodate that case, a special vnode, kvp, is used. All pages
created through the segkmem segment have kvp as the vnode in their identity—
this allows the kernel to identify wired-down kernel pages.

6.2.4 The Kernel Memory Slab Allocator

In this section, we introduce the general-purpose memory allocator, known as the
slab allocator. We begin with a quick walk-through of the slab allocator features,
then look at how the allocator implements object caching, and follow up with a
more detailed discussion on the internal implementation.

6.2.4.1 Slab Allocator Overview

Solaris provides a general-purpose memory allocator that provides arbitrarily
sized memory allocations. We refer to this allocator as the slab allocator because it
consumes large slabs of memory and then allocates smaller requests with portions
of each slab. We use the slab allocator for memory requests that are:

= Smaller than a page size

= Not an even multiple of a page size

= Frequently going to be allocated and freed, so would otherwise fragment the
kernel map

The slab allocator was introduced in Solaris 2.4, replacing the buddy allocator that
was part of the original SVR4 Unix. The reasons for introducing the slab allocator
were as follows:

The SVRA4 allocator was slow to satisfy allocation requests.
Significant fragmentation problems arose with use of the SVR4 allocator.
The allocator footprint was large, wasting a lot of memory.

With no clean interfaces for memory allocation, code was duplicated in many
places.
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The slab allocator solves those problems and dramatically reduces overall system
complexity. In fact, when the slab allocator was integrated into Solaris, it resulted
in a net reduction of 3,000 lines of code because we could centralize a great deal of
the memory allocation code and could remove a lot of the duplicated memory allo-
cator functions from the clients of the memory allocator.

The slab allocator is significantly faster than the SVR4 allocator it replaced.
Table 6-7 shows some of the performance measurements that were made when the
slab allocator was first introduced.

Table 6-7 Performance Comparison of the Slab Allocator

Operation SVR4 Slab
Average time to allocate and free 9.4 ps 3.8 ps
Total fragmentation (wasted memory) 46% 14%
Kenbus benchmark performance 199 233
(number of scripts executed per second)

The slab allocator provides substantial additional functionality, including the fol-
lowing:
= General-purpose, variable-sized memory object allocation

= A central interface for memory allocation, which simplifies clients of the allo-
cator and reduces duplicated allocation code

= Very fast allocation/deallocation of objects

= Low fragmentation / small allocator footprint

= Full debugging and auditing capability

= Coloring to optimize use of CPU caches

= Per-processor caching of memory objects to reduce contention

= A configurable back-end memory allocator to allocate objects other than regu-
lar wired-down memory

The slab allocator uses the term object to describe a single memory allocation unit,
cache to refer to a pool of like objects, and slab to refer to a group of objects that
reside within the cache. Each object type has one cache, which is constructed from
one or more slabs. Figure 6.4 shows the relationship between objects, slabs, and
the cache. The example shows 3-Kbyte memory objects within a cache, backed by
8-Kbyte pages.
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Figure 6.4 Objects, Caches, Slabs, and Pages of Memory

The slab allocator solves many of the fragmentation issues by grouping differ-
ent-sized memory objects into separate caches, where each object cache has its own
object size and characteristics. Grouping the memory objects into caches of similar
size allows the allocator to minimize the amount of free space within each cache by
neatly packing objects into slabs, where each slab in the cache represents a contig-
uous group of pages. Since we have one cache per object type, we would expect to
see many caches active at once in the Solaris kernel. For example, we should
expect to see one cache with 440 byte objects for UFS inodes, another cache of 56
byte objects for file structures, another cache of 872 bytes for LWP structures, and
several other caches.

The allocator has a logical front end and back end. Objects are allocated from
the front end, and slabs are allocated from pages supplied by the back-end page
allocator. This approach allows the slab allocator to be used for more than regular
wired-down memory; in fact, the allocator can allocate almost any type of memory
object. The allocator is, however, primarily used to allocate memory objects from
physical pages by using kmem_getpages as the back-end allocator.

Caches are created with kmem_cache_create() , once for each type of memory
object. Caches are generally created during subsystem initialization, for example,
in the init  routine of a loadable driver. Similarly, caches are destroyed with the
kmem_cache_destroy() function. Caches are named by a string provided as an
argument, to allow friendlier statistics and tags for debugging. Once a cache is cre-
ated, objects can be created within the cache with kmem_cache_alloc() , which
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creates one object of the size associated with the cache from which the object is cre-
ated. Objects are returned to the cache with kmem_cache_free()

6.2.4.2 Object Caching

The slab allocator makes use of the fact that most of the time objects are heavily
allocated and deallocated, and many of the slab allocator's benefits arise from
resolving the issues surrounding allocation and deallocation. The allocator tries to
defer most of the real work associated with allocation and deallocation until it is
really necessary, by keeping the objects alive until memory needs to be returned to
the back end. It does this by telling the allocator what the object is being used for,
so that the allocator remains in control of the object’s true state.

So, what do we really mean by keeping the object alive? If we look at what a
subsystem uses memory objects for, we find that a memory object typically con-
sists of two common components: the header or description of what resides within
the object and associated locks; and the actual payload that resides within the
object. A subsystem typically allocates memory for the object, constructs the object
in some way (writes a header inside the object or adds it to a list), and then cre-
ates any locks required to synchronize access to the object. The subsystem then
uses the object. When finished with the object, the subsystem must deconstruct the
object, release locks, and then return the memory to the allocator. In short, a sub-
system typically allocates, constructs, uses, deallocates, and then frees the object.

If the object is being created and destroyed often, then a great deal of work is
expended constructing and deconstructing the object. The slab allocator does away
with this extra work by caching the object in its constructed form. When the client
asks for a new object, the allocator simply creates or finds an available con-
structed object. When the client returns an object, the allocator does nothing other
than mark the object as free, leaving all of the constructed data (header informa-
tion and locks) intact. The object can be reused by the client subsystem without
the allocator needing to construct or deconstruct—the construction and decon-
struction is only done when the cache needs to grow or shrink. Deconstruction is
deferred until the allocator needs to free memory back to the back-end allocator.

To allow the slab allocator to take ownership of constructing and deconstruct-
ing objects, the client subsystem must provide a constructor and destructor
method. This service allows the allocator to construct new objects as required and
then to deconstruct objects later, asynchronously to the client's memory requests.
The kmem_cache_create() interface supports this feature by providing a con-
structor and destructor function as part of the create request.

The slab allocator also allows slab caches to be created with no constructor or
destructor, to allow simple allocation and deallocation of simple raw memory
objects.

The slab allocator moves a lot of the complexity out of the clients and central-
izes memory allocation and deallocation policies. At some points, the allocator may
need to shrink a cache as a result of being notified of a memory shortage by the
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VM system. At this time, the allocator can free all unused objects by calling the
destructor for each object that is marked free and then returning unused slabs to
the back-end allocator. A further callback interface is provided in each cache so
that the allocator can let the client subsystem know about the memory pressure.
This callback is optionally supplied when the cache is created and is simply a func-
tion that the client implements to return, by means of kmem_cache free() , as
many objects to the cache as possible.

A good example is a file system, which uses objects to store the inodes. The slab
allocator manages inode objects; the cache management, construction, and decon-
struction of inodes are handed over to the slab allocator. The file system simply
asks the slab allocator for a “new inode” each time it requires one. For example, a
file system could call the slab allocator to create a slab cache, as shown below.

inode_cache = kmem_cache_create("inode_cache",
sizeof (struct inode), 0, inode_cache_constructor,
inode_cache_destructor, inode_cache_reclaim,
NULL, NULL, 0);

struct inode *inode = kmem_cache_alloc(inode_cache, 0);

The example shows that we create a cache named inode_cache , with objects of
the size of an inode, no alignment enforcement, a constructor and a destructor
function, and a reclaim function. The back-end memory allocator is specified as
NULL, which by default allocates physical pages from the segkmem page allocator.

We can see from the statistics exported by the slab allocator that the UFS file
system uses a similar mechanism to allocate its inodes. We use the netstat -k
function to dump the statistics. (We discuss allocator statistics in more detail in
“Slab Allocator Statistics” on page 270.)

# netstat -k ufs_inode_cache

ufs_inode_cache:

buf_size 440 align 8 chunk_size 440 slab_size 8192 alloc 20248589
alloc_fail 0 free 20770500 depot_alloc 657344 depot_free 678433
depot_contention 85 global_alloc 602986 global_free 578089
buf_constructed 0 buf_avail 7971 buf_inuse 24897 buf_total 32868
buf_max 41076 slab_create 2802 slab_destroy 976 memory_class 0
hash_size 0 hash_lookup_depth 0 hash_rescale 0 full_magazines O
empty_magazines 0 magazine_size 31 alloc_from_cpu0 9583811
free_to_cpu0 10344474 buf_avail_cpu0 0 alloc_from_cpul 9404448
free_to_cpul 9169504 buf_avail_cpul 0
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The allocator interfaces are shown in Table 6-8.

Table 6-8 Solaris 7 Slab Allocator Interfaces from <sys/kmem.h >

Function Description
kmem_cache_create() Creates a new slab cache with the supplied
name, aligning objects on the boundary supplied
with alignment.

The constructor, destructor, and reclaim func-
tions are optional and can be supplied as NULL
An argument can be provided to the constructor
with arg .

The back-end memory allocator can also be spec-
ified or supplied as NULL If a NULL back-end
allocator is supplied, then the default allocator,
kmem_getpages() , is used.

Flags can supplied as be KMC_NOTOUCH
KMC_NODEBUY&MC_NOMAGAZINEnd

KMC_NOHASH
kmem_cache_destroy() Destroys the cache referenced by cp.
kmem_cache_alloc() Allocates one object from the cache referenced

by cp. Flags can be supplied as either KM_SLEEP
or KM_NOSLEEP

kmem_cache_free() Returns the buffer buf to the cache referenced
by cp.
kmem_cache_stat() Returns a named statistic about a particular

cache that matches the string name. Finds a
name by looking at the kstat slab cache names
with netstat -k

Caches are created with the kmem_cache_create() function, which can option-
ally supply callbacks for construction, deletion, and cache reclaim notifications.
The callback functions are described in Table 6-9.

Table 6-9 Slab Allocator Callback Interfaces from <sys/lkmem.h >

Function Description
constructor() Initializes the object buf . The arguments arg and
flag are those provided during
kmem_cache_create()

destructor() Destroys the object buf . The argument arg is
that provided during kmem_cache_create()
reclaim() Where possible, returns objects to the cache. The

argument is that provided during
kmem_cache_create()
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6.2.4.3 General-Purpose Allocations

In addition to object-based memory allocation, the slab allocator provides back-
ward-compatible, general-purpose memory allocation routines. These routines allo-
cate arbitrary-length memory by providing a method to malloc() . The slab
allocator maintains a list of various-sized slabs to accommodate kmem_alloc()
requests and simply converts the kmem_alloc()  request into a request for an
object from the nearest-sized cache. The sizes of the caches used for
kmem_alloc() are named kmem_alloc_ n, where n is the size of the objects
within the cache (see Section 6.2.4.9, “Slab Allocator Statistics,” on page 270). The
functions are shown in Table 6-10.

Table 6-10 General-Purpose Memory Allocation

Function Description
kmem_alloc() Allocates size bytes of memory. Flags can be
either KM_SLEERor KM_NOSLEEP
kmem_zalloc() Allocates size bytes of zeroed memory. Flags can
be either KM_SLEEPor KM_NOSLEEP
kmem_free() Returns to the allocator the buffer pointed to by
buf and size .

6.2.4.4 Slab Allocator Implementation

The slab allocator implements the allocation and management of objects to the
front-end clients, using memory provided by the back-end allocator. In our intro-
duction to the slab allocator, we discussed in some detail the virtual allocation
units: the object and the slab. The slab allocator implements several internal lay-
ers to provide efficient allocation of objects from slabs. The extra internal layers
reduce the amount of contention between allocation requests from multiple
threads, which ultimately allows the allocator to provide good scalability on large
SMP systems.

Figure 6.5 shows the internal layers of the slab allocator. The additional layers
provide a cache of allocated objects for each CPU, so a thread can allocate an object
from a local per-CPU object cache without having to hold a lock on the global slab
cache. For example, if two threads both want to allocate an inode object from the
inode cache, then the first thread’'s allocation request would hold a lock on the
inode cache and would block the second thread until the first thread has its object
allocated. The per-cpu cache layers overcome this blocking with an object cache per
CPU to try to avoid the contention between two concurrent requests. Each CPU
has its own short-term cache of objects, which reduces the amount of time that
each request needs to go down into the global slab cache.
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kmem_cache_alloc() / kmem_cache_free()
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Figure 6.5 Slab Allocator Internal Implementation
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The layers shown in Figure 6.5 are separated into the slab layer, the depot layer,
and the CPU layer. The upper two layers (which together are known as the maga-
zine layer) are caches of allocated groups of objects and use a military analogy of
allocating rifle rounds from magazines. Each per-CPU cache has magazines of allo-
cated objects and can allocate objects (rounds) from its own magazines without
having to bother the lower layers. The CPU layer needs to allocate objects from the
lower (depot) layer only when its magazines are empty. The depot layer refills mag-
azines from the slab layer by assembling objects, which may reside in many differ-
ent slabs, into full magazines.

6.2.4.5 The CPU Layer

The CPU layer caches groups of objects to minimize the number of times that an
allocation will need to go down to the lower layers. This means that we can satisfy
the majority of allocation requests without having to hold any global locks, thus
dramatically improving the scalability of the allocator.

Continuing the military analogy: three magazines of objects are kept in the
CPU layer to satisfy allocation and deallocation requests—a full, a half-allocated,
and an empty magazine are on hand. Objects are allocated from the half-empty
magazine, and until the magazine is empty, all allocations are simply satisfied
from the magazine. When the magazine empties, an empty magazine is returned
to the magazine layer, and objects are allocated from the full magazine that was
already available at the CPU layer. The CPU layer keeps the empty and full maga-
zine on hand to prevent the magazine layer from having to construct and decon-
struct magazines when on a full or empty magazine boundary. If a client rapidly
allocates and deallocates objects when the magazine is on a boundary, then the
CPU layer can simply use its full and empty magazines to service the requests,
rather than having the magazine layer deconstruct and reconstruct new maga-
zines at each request. The magazine model allows the allocator to guarantee that
it can satisfy at least a magazine size of rounds without having to go to the depot
layer.

6.2.4.6 The Depot Layer

The depot layer assembles groups of objects into magazines. Unlike a slab, a maga-
zine’s objects are not necessarily allocated from contiguous memory; rather, a mag-
azine contains a series of pointers to objects within slabs.

The number of rounds per magazine for each cache changes dynamically,
depending on the amount of contention that occurs at the depot layer. The more
rounds per magazine, the lower the depot contention, but more memory is con-
sumed. Each range of object sizes has an upper and lower magazine size. Table
6-11 shows the magazine size range for each object size.
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Table 6-11 Magazine Sizes

Object Size Minimum Maximum
Range Magazine Size Magazine Size

0-63 15 143

64-127 7 95

128-255 3 47

256-511 1 31

512-1023 1 15

1024-2047 1 7

2048-16383 1 3

16384 1 1

A slab allocator maintenance thread is scheduled every 15 seconds (controlled by
the tunable kmem_update_interval ) to recalculate the magazine sizes. If signifi-
cant contention has occurred at the depot level, then the magazine size is bumped
up. Refer to Table 6-12 on page 269 for the parameters that control magazine
resizing.

6.2.4.7 The Global (Slab) Layer

The global slab layer allocates slabs of objects from contiguous pages of physical
memory and hands them up to the magazine layer for allocation. The global slab
layer is used only when the upper layers need to allocate or deallocate entire slabs
of objects to refill their magazines.

The slab is the primary unit of allocation in the slab layer. When the allocator
needs to grow a cache, it acquires an entire slab of objects. When the allocator
wants to shrink a cache, it returns unused memory to the back end by deallocat-
ing a complete slab. A slab consists of one or more pages of virtually contiguous
memory carved up into equal-sized chunks, with a reference count indicating how
many of those chunks have been allocated.

The contents of each slab are managed by a kmem_slab data structure that
maintains the slab’s linkage in the cache, its reference count, and its list of free
buffers. In turn, each buffer in the slab is managed by a kmem_bufctl  structure
that holds the freelist linkage, the buffer address, and a back-pointer to the con-
trolling slab.

For objects smaller than 1/8th of a page, the slab allocator builds a slab by allo-
cating a page, placing the slab data at the end, and dividing the rest into
equal-sized buffers. Each buffer serves as its own kmem_bufctl  while on the
freelist. Only the linkage is actually needed, since everything else is computable.
These are essential optimizations for small buffers; otherwise, we would end up
allocating almost as much memory for kmem_bufctl as for the buffers them-
selves. The free-list linkage resides at the end of the buffer, rather than the begin-
ning, to facilitate debugging. This location is driven by the empirical observation
that the beginning of a data structure is typically more active than the end. If a
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buffer is modified after being freed, the problem is easier to diagnose if the heap
structure (free-list linkage) is still intact. The allocator reserves an additional
word for constructed objects so that the linkage does not overwrite any con-
structed state.

For objects greater than 1/8th of a page, a different scheme is used. Allocating
objects from within a page-sized slab is efficient for small objects but not for large
ones. The reason for the inefficiency of large-object allocation is that we could fit
only one 4-Kbyte buffer on an 8-Kbyte page—the embedded slab control data takes
up a few bytes, and two 4-Kbyte buffers would need just over 8 Kbytes. For large
objects, we allocate a separate slab management structure from a separate pool of
memory (another slab allocator cache, the kmem_slab_cache ). We also allocate a
buffer control structure for each page in the cache from another cache, the
kmem_bufctl cache . The slab /bufctl /buffer structures are shown in the slab
layer in Figure 6.5 on page 266.

The slab layer solves another common memory allocation problem by imple-
menting slab coloring. If memory objects all start at a common offset (e.g., at
512-byte boundaries), then accessing data at the start of each object could result in
the same cache line being used for all of the objects. The issues are similar to those
discussed in “The Page Scanner” on page 220. To overcome the cache line problem,
the allocator applies an offset to the start of each slab, so that buffers within the
slab start at a different offset. This approach is also shown in Figure 6.5 on
page 266 by the color offset segment that resides at the start of each memory allo-
cation unit before the actual buffer. Slab coloring results in much better cache uti-
lization and more evenly balanced memory loading.

6.2.4.8 Slab Cache Parameters

The slab allocator parameters are shown in Table 6-12 for reference only. We rec-
ommend that none of these values be changed.

Table 6-12 Kernel Memory Allocator Parameters

Parameter Description 2.7 Def.
kmem_reap_interval The number of ticks after which the 15000
slab allocator update thread will run. (15s)
kmem_depot_contention If the number of times depot conten- 3

tion occurred since the last time the
update thread ran is greater than this
value, then the magazine size is
increased.

kmem_reapahead If the amount of free memory falls 0
below cachefree +

kmem_reapahead , then the slab alloca-
tor will give back as many slabs as pos-
sible to the back-end page allocator.
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6.2.4.9 Slab Allocator Statistics

Two forms of slab allocator statistics are available: global statistics and per-cache
statistics. The global statistics are available through the crash utility and display
a summary of the entire cache list managed by the allocator.

# crash
dumpfile = /dev/mem, namelist = /dev/ksyms, oultfile = stdout
> kmastat
buf buf buf memory #allocations

cache name size avail total inuse succeed fail
kmem_magazine_1 16 483 508 8192 6664 O Magazme
kmem_magazine_3 32 1123 1270 40960 55225 O
kmem_magazine_7 64 584 762 49152 62794 0 Caches
kmem_magazine_15 128 709 945 122880 194764 O
kmem_magazine_31 256 58 62 16384 24915 O
kmem_magazine_47 38 0 O 0 00
kmem_magazine_63 512 0 O 0 0 0
kmem_magazine_95 768 0 O 0 00
kmem_magazine_143 1152 0 O 0 0 0 Slab&
kmem_slab_cache 56 308 2159 139264 22146 0 Bufctl
kmem_bufctl_cache 32 2129 6096 196608 54870 O C h
kmem_bufct_audit cache 184 24 16464 3211264 16440 0 aches
kmem_pagectl_cache 32 102 254 8192 406134 0
kmem_alloc_8 8 9888 31527 253952 115432346 O
kmem_alloc_16 16 7642 18288 294912 374733170 O
kmem_alloc_24 24 443211187 270336 30957233 0 kmem a_lloc()

j caches
kmem_alloc_12288 12288 2 4 49152 660 O
kmem_alloc_16384 16384 0 42 688128 1845 0
1l Blk 64 3988 5969 385024 31405446 O Streams
streams_m
streams_dblk_32 128 795 1134 147456 72553829 0 Data Blocks

streams_dblk_64 160 716 1650 270336 196660790 O

Streams_dbik_8096 8192 17 17 139264 356266482 0
streams_dblk_12192 12288 8 8 98304 14848223 0

streams_dblk_esb 9% 0 O 0 406326 0
stream_head_cache 328 68 648 221184 492256 O
queue_cache 456 109 1513 729088 1237000 O
syncq_cache 120 48 67 8192 373 0
gband_cache 64 125 635 40960 1303 0
linkinfo_cache 48 156 169 8192 90 O
strevent_cache 48 153 169 8192 5442622 0
as_cache 120 45 201 24576 158778 O
seg_skiplist_cache 32 540 1524 49152 1151455 O
anon_cache 48 1055 71825 3481600 7926946 O
anonmap_cache 48 551 4563 221184 5805027 O
segvn_cache 88 686 6992 622592 9969087 O
flk_edges 48 0 O 0 10
physio_buf_cache 224 0 O 0 98535107 O
snode_cache 240 39 594 147456 1457746 O
ufs_inode_cache 440 8304 32868 14958592 20249920 O

The kmastat command shows summary information for each statistic and a sys-
temwide summary at the end. The columns are shown in Table 6-13.
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Table 6-13 kmastat Columns

Parameter Description
Cache name The name of the cache, as supplied during
kmem_cache_create()
buf_size The size of each object within the cache in
bytes.
buf_avail The number of free objects in the cache.
buf_total The total number of objects in the cache.

Memory in use

The amount of physical memory consumed by
the cache in bytes.

Allocations succeeded

The number of allocations that succeeded.

Allocations failed

The number of allocations that failed. These
are likely to be allocations that specified
KM_NOSLEE®uring memory pressure.

A more detailed version of the per-cache statistics is exported by the kstat
command to display the cache statistics, which

nism. You can use the netstat
are described in Table 6-14.

# netstat -k ufs_inode_cache
ufs_inode_cache:

-k

buf_size 440 align 8 chunk_size 440 slab_size 8192 alloc 20248589
alloc_fail O free 20770500 depot_alloc 657344 depot_free 678433
depot_contention 85 global_alloc 602986 global_free 578089

271

mecha-

buf_constructed 0 buf_avail 7971 buf_inuse 24897 buf_total 32868
buf_max 41076 slab_create 2802 slab_destroy 976 memory_class 0
hash_size 0 hash_lookup_depth 0 hash_rescale 0 full_magazines 0
empty_magazines 0 magazine_size 31 alloc_from_cpu0 9583811
free_to_cpu0O 10344474 buf_avail_cpu0 0 alloc_from_cpul 9404448

free_to_cpul 9169504 buf_avail_cpul 0

Table 6-14 Slab Allocator Per-Cache Statistics

Parameter Description

buf_size The size of each object within the cache in
bytes.

align The alignment boundary for objects within the
cache.

chunk_size The allocation unit for the cache in bytes.

slab_size The size of each slab within the cache in bytes.

alloc The number of object allocations that suc-
ceeded.

alloc_fail The number of object allocations that failed.
(Should be zero!).
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Table 6-14 Slab Allocator Per-Cache Statistics (Continued)

Parameter Description
free The number of objects that were freed.
depot_alloc The number of times a magazine was allo-
cated in the depot layer.
depot_free The number of times a magazine was freed to

the depot layer.

depot_contention

The number of times a depot layer allocation
was blocked because another thread was in
the depot layer.

global_alloc The number of times an allocation was made
at the global layer.
global_free The number of times an allocation was freed

at the global layer.

buf_constructed

Zero or the same as buf_avall

buf_avail The number of free objects in the cache.

buf_inuse The number of objects used by the client.

buf_total The total number of objects in the cache.

buf_max The maximum number of objects the cache
has reached.

slab_create The number of slabs created.

slab_destroy

The number of slabs destroyed.

memory_class

The ID of the back-end memory allocator.

hash_size

Buffer hash lookup statistics.

hash_lookup_depth

Buffer hash lookup statistics.

hash_rescale

Buffer hash lookup statistics.

full_magazines

The number of full magazines.

empty_magazines

The number of empty magazines.

magazine_size

The size of the magazine.

alloc_from_cp uN

Object allocations from CPU N

free_to cpu N

Objects freed to CPU N

buf_avail cpu N

Objects available to CPU N

6.2.4.10 Slab Allocator Tracing

The slab allocator includes a general-purpose allocation tracing facility that tracks
the allocation history of objects. The facility is switched off by default and can be
enabled by setting of the system variable kmem_flags . The tracing facility cap-
tures the stack and history of allocations into a slab cache, named as the name of
the cache being traced, with .DEBUG appended to it. Audit tracing can be enabled

by the following:
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- Setting kmem_flags to indicate the type of tracing desired, usually Ox1F to
indicate all tracing

= Booting the system with kadb -d and setting kmem_flags before startup

The following simple example shows how to trace a cache that is created on a
large system, after the flags have been set. To enable tracing on all caches, the sys-
tem must be booted with kadb and the kmem_flags variable set. The steps for
such booting are shown below.

ok boot kadb -d
Resetting ...

Sun Ultra 1 UPA/SBus (UltraSPARC 167MHz), No Keyboard
OpenBoot 3.1, 128 MB memory installed, Serial #8788108.
Ethernet address 8:0:20:86:18:8c, Host ID: 8086188c.

Rebooting with command: boot kadb -d

Boot device: /sbus/SUNW,fas@e,8800000/sd@0,0 File and args: kadb -d
kadb: <return>

kadb[O]: kmem_flags/D

kmem_flags:

kmem_flags: 0O

kadb[O]: kmem_flags/W Ox1f

kmem_flags:  Ox0 = Ox1f

kadb[0]: c

SunOS Release 5.7 Version Generic 64-bit
Copyright 1983-2000 Sun Microsystems, Inc. All rights reserved.
\

Note that the total number of allocations traced will be limited by the size of the
audit cache parameters, shown in Table 6-12 on page 269. Table 6-15 shows the
parameters that control kernel memory debugging.

Table 6-15 Kernel Memory Debugging Parameters

Parameter Description 2.7 Def.
kmem_flags Set this to select the mode of kernel 0
memory debugging. Set to Ox1F to
enable all debugging, or set the logical
AND of the following:
0x1 Transaction auditing
0x2 deadbeef checking
0x4 red-zone checking
0x8 freed buffer content logging

kmem_log_size Maximum amount of memory to use for | 2% of
slab allocator audit tracing. mem.
kmem_content_maxsave The maximum number of bytes to log 256

in each entry.
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