
70 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

contributed articles
DOI:10.1145/2795228

MINIX shows even an operating system
can be made to be self-healing.

BY ANDREW S. TANENBAUM

WHILE LINUX IS well known, its direct ancestor, MINIX,
is now 30 and still quite spry for such aged software.
Its story and how it and Linux got started is not well
known, and there are perhaps some lessons to be
learned from MINIX’s development. Some of these
lessons are specific to operating systems, some to
software engineering, and some to other areas (such
as project management). Neither MINIX nor Linux
was developed in a vacuum. There was quite a bit of
relevant history before either got started, so a brief
introduction may put this material in perspective.

In 1960, the Massachusetts Institute of Technology,
where I later studied, had a room-size vacuum-
tube-based scientific computer called the IBM 709.
Although a modern Apple iPad is 70,000x faster and
has 7,300x more RAM, the IBM 709 was the most
powerful computer in the world when introduced.
Users wrote programs, generally in FORTRAN, on

80-column punched cards and brought
them to the human operator, who read
them in. Several hours later the results
appeared, printed on 132-column fan-
fold paper. A single misplaced comma
in a FORTRAN statement could cause
a compilation failure, resulting in the
programmer wasting hours of time.

To give users better service, MIT de-
veloped the Compatible Time-Sharing
System (CTSS), which allowed users to
work at interactive terminals and re-
duce the turnaround time from hours
to seconds while at the same time us-
ing spare cycles to run old-style batch
jobs in the background. In 1964, MIT,
Bell Labs, and GE (then a computer
vendor) partnered to build a successor
that could handle hundreds of users
all over the Boston area. Think of it as
cloud computing V.0.0. It was called
MULTiplexed Information and Com-
puting Service, or MULTICS. To make a
long and complicated story very short,
MULTICS had a troubled youth; the
first version required more RAM than
the GE 645’s entire 288kB memory.
Eventually, its PL/1 compiler was im-
proved, and MULTICS booted and ran.
Nevertheless, Bell Labs soon tired of
the project and pulled out, leaving one
of its programmers on the project, Ken
Thompson, with a burning desire to
reproduce a scaled-down MULTICS on
cheap hardware. MULTICS itself was
released commercially in 1973 and ran
at a number of installations worldwide
until the last one was shut down on
Oct. 30, 2000, a run of 27 years.

Back at Bell Labs, Thompson found a
discarded Digital Equipment Corp. PDP-
7 minicomputer and wrote a stripped
down version of MULTICS in PDP-7 as-
sembly code. Since it could handle only
one user at a time, Thompson’s col-

Lessons
Learned
from 30 Years
of MINIX

 key insights

 ˽ Each device driver should run as
an independent, user-mode process.

 ˽ Software can last a long time and
should be designed accordingly.

 ˽ It is very difficult to get people
to accept new and disruptive ideas.

http://10.1145/2795228

MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 71

I
M

A
G

E
 B

Y
 I

W
O

N
A

 U
S

A
K

I
E

W
I

C
Z

/A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S

league Brian Kernighan dubbed it the
UNIplexed Information and Computing
Service, or UNICS. Despite puns about
EUNUCHS being a castrated MULTICS,
the name UNICS stuck, but the spelling
was later changed to UNIX. It is some-
times now written as Unix since it is not
really an acronym anymore.

In 1972, Thompson teamed up with
his Bell Labs colleague Dennis Ritchie,
who designed the C language and
wrote a compiler for it. Together they
reimplemented UNIX in C on the PDP-
11 minicomputer. UNIX went through
several internal versions until Bell Labs
decided to license UNIX V6 to universi-
ties in 1975 for a $300 fee. Since the
PDP-11 was enormously popular, UNIX
spread fast worldwide.

In 1977, John Lions of the Univer-
sity of New South Wales in Sydney,

Australia, wrote a commentary on the
V6 source code, explaining line by line
what it meant, a technological version
of a line-by-line commentary on the
Bible. Hundreds of universities world-
wide began teaching UNIX V6 courses
using Lions’s book as the text.

The lawyers at AT&T, which owned
Bell Labs, were aghast that thousands
of students were learning all about
their product. This had to stop. So the
next release, V7 (1979), came equipped
with a license that explicitly forbade
anyone from writing a book about it
or teaching it to students. Operating
systems courses went back to theory-
only mode or had to use toy simula-
tors, much to the dismay of professors
worldwide. The early history of UNIX
has been documented in Peter Salus’s
1994 book.14

MINIX Is Created
There matters rested until 1984, when I
decided to rewrite V7 in my spare time
while teaching at the Vrije Universiteit
(VU) in Amsterdam in order to provide
a UNIX-compatible operating system
my students could study in a course or
on their own. My idea was to write the
system, called MIni-uNIX, or MINIX,
for the new IBM PC, which was cheap
enough (starting at $1,565) a student
could own one. Because early PCs did
not have a hard disk, I designed MINIX
to be V7 compatible yet run on an IBM
PC with 256kB RAM and a single 360kB
5¼-inch floppy disk—a far smaller con-
figuration than the PDP-11 V7 ran on.
Although the system was supposed to
run on this configuration (and did), I
realized from the start that to actually
compile and build the whole system

MINIX’s longtime mascot is a raccoon, chosen because it is agile, smart, usually friendly, and eats bugs.

72 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

contributed articles

system components, including the
file system and memory manager, was
compiled as a separate program and
run as a separate process. Because the
8088 did not have a memory manage-
ment unit (MMU), I could have taken
shortcuts and put everything into one
executable but decided against it be-
cause I wanted the design to work on
future CPUs with an MMU.

It took me approximately two years
to get it running, working on it only
evenings and weekends. After the sys-
tem was basically working, it tended to
crash after an hour of operation for no
reason at all and in no discernible pat-
tern. Debugging the operating system
on the bare metal was well nigh impos-
sible and I came within a hair of aban-
doning the project.

I then made one final effort. I wrote
an 8088 simulator on which to run
MINIX, so when it crashed I could get
a proper dump and stack trace. To my
horror, MINIX would run flawlessly for
days, even weeks, at a time on the sim-
ulator. It never once crashed. I was to-
tally flummoxed. I mentioned this pe-
culiar situation of MINIX running on
the simulator but not on the hardware
to my student, Robbert van Renesse,
who said he heard somewhere that the
8088 generated interrupt 15 when it
got hot. I told him there was nothing
in the 8088 documentation about that,
but he insisted he heard it somewhere.
So I inserted code to catch interrupt 15.
Within an hour I saw this message on
the screen: “Hi. I am interrupt 15. You
will never see this message.” I immedi-
ately made the required patch to catch
interrupt 15. After that MINIX worked
flawlessly and was ready for release.

Lesson. Do not trust documentation
blindly; it could be wrong.

Thirty years later the consequences
of Van Renesse’s offhand remark are
enormous. If he had not mentioned
interrupt 15, I would probably have
eventually given up in despair. With-
out MINIX, it is inconceivable there
would have been a Linux since Linus
Torvalds learned about operating sys-
tems by studying the MINIX source
code in minute detail and using it as
a base to write Linux. Without Linux,
there would not have been an Android
since it is built on top of Linux. With-
out Android, the relative stock prices
of Apple and Samsung might be quite

on a PC, I would need a larger system,
namely one with the maximum possible
RAM (640kB) and two 360kB 5¼-inch
floppy disks.

My design goals for MINIX were as
follows:

 ˲ Build a V7 clone that ran on an IBM
PC with only a single 360kB floppy disk;

 ˲ Build and maintain the system us-
ing itself, or “self-hosting”;

 ˲ Make the full source code available
to everyone;

 ˲ Have a clean design students could
easily understand;

 ˲ Make the (micro) kernel as small as
possible, since kernel failures are fatal;

 ˲ Break the rest of the operating
system into independent user-mode
processes;

 ˲ Hide interrupts at a very low level;
 ˲ Communicate only by synchro-

nous message passing with clear pro-
tocols; and

 ˲ Try to make the system port easily
to future hardware.

Initially, I did software develop-
ment on my home IBM PC running
Mark Williams Coherent, a V7 clone
written by alumni of the University
of Waterloo. Its source code was not
publicly available. Using Coherent
was initially necessary because at first
I did not have a C compiler. When my
programmer, Ceriel Jacobs, was able
to port a C compiler based on the Am-
sterdam Compiler Kit,18 written at the
VU as part of my research, the system
became self-hosting. Because I was
now using MINIX to compile and build
MINIX, I was extremely sensitive to any
bugs or flaws that turned up. All devel-
opers should try to use their own sys-
tems as early as feasible so they can see
what users will experience.

Lesson. Eat your own dog food.
The microkernel was indeed small.

Only the scheduler, low-level process
management, interprocess communi-
cation, and the device drivers were in it.
Although the device drivers were com-
piled into the microkernel’s executable
program, they were actually scheduled
independently as normal processes.
This was a compromise because I felt
having to do a full address space switch
to run a device driver would be too
painful on a 4.77MHz 8088, the CPU
in the IBM PC. The microkernel was
compiled as a standalone executable
program. Each of the other operating

Be careful what
you put out on the
Internet; it might
come back to haunt
you decades later.

MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 73

contributed articles

different today.
Lesson. Listen to your students; they

may know more than you.
I wrote most of the basic utilities

myself. MINIX 1.1 included 60 of them,
from ar to wc. A typical one was approx-
imately 4kB. A boot loader today can be
100x bigger. All of MINIX, including
the binaries and sources, fit nicely on
eight 360kB floppy disks. Four of them
were the boot disk, the root file system,
/usr, and /user (see Figure 1). The
other four contained the full operating
system sources and the sources to the
60 utilities. Only the compiler source
was left out, as it was quite large.

Lesson. Nathan Myhrvold’s Law is
true: Software is a gas. It expands to fill
its container.

With some discipline, developers
can try to break this “law” but have to try
really hard. The default is “more bloat.”

Figuring out how to distribute the
code was a big problem. In those days
(1987) almost nobody had a proper In-
ternet connection (though newsgroups
on USENET via the UUCP program and
email existed at some universities). I
decided to write a book15 describing
the code, like Lions did before me, and
have my publisher, Prentice Hall, dis-
tribute the system, including all source
code, as an adjunct to the book. After
some negotiation, Prentice Hall agreed
to sell a nicely packaged box contain-
ing eight 5¼-inch floppy disks and a
500-page manual for $69. This was es-
sentially the manufacturing cost. Pren-
tice Hall had no understanding of what
software was but saw selling the soft-
ware at cost as a way to sell more books.
When high-capacity 1.44MB 3½-inch
floppies became available later, I also
made a version using them.

Lesson. No matter how desirable your
product is, you need a way to market or
distribute it.

Within a few days of its release, a
USENET newsgroup, comp.os.minix,
was started. Before a month had gone
by, it had 40,000 readers, a huge num-
ber considering how few people even
had access to USENET. MINIX became
an instant cult item.

I soon received an email message
from Dan Doernberg, co-founder of the
now-defunct Computer Literacy book-
store in Silicon Valley inviting me to
speak about MINIX if I was ever there.
As it turned out, I was going to the Bay

Area in a few weeks to attend a confer-
ence, so I accepted. I was expecting him
to set up a table and chair in his store
for me to sign books. Little did I know
he would rent the main auditorium at
the Santa Clara Convention Center and
do enough publicity to nearly fill it. Af-
ter my talk, the questions went on until
close to midnight.

I began getting hundreds of email
messages asking for (no, demanding)
this feature or that feature. I resisted
some (but not all) demands because I
was concerned about the possibility the
system would become so big it would
require expensive hardware students
could not afford, and many people, in-
cluding me, expected either GNU/Hurd
or Berkeley Software Distribution (BSD)
to take over the niche of full-blown
open-source production system, so I
kept my focus on education.

People also began contributing
software, some very useful. One of
the many contributors was Jan-Mark
Wams, who wrote a hugely useful test
suite that helped debug the system.
He also wrote a new compression pro-
gram that was better than all the exist-

ing ones at the time. This reduced the
number of floppy disks in the distribu-
tion by two disks. Even when the distri-
bution later went online this was im-
portant because not many people had
a super-speed 56kbps modem.

Lesson. Size matters.
In 1985, Intel released its 386 proc-

essor with a full protected-mode 32-bit
architecture. With the help of many us-
ers, notably Bruce Evans of Australia,
I was able to release a 32-bit protected
mode version of MINIX. Since I was
always thinking about future hard-
ware, from day 1, the code clearly dis-
tinguished what code ran in “kernel
mode” and what code ran as separate
processes in “user mode,” even though
the 8088 had only one mode. This
helped a lot when these modes finally
appeared in the 386. Also, the original
code clearly distinguished virtual ad-
dresses from physical addresses, which
did not matter on the 8088 but did mat-
ter (a lot) on the 386, making porting to
it much easier. Also around this time
two people at the VU, Kees Bot and Phil-
ip Homburg, produced an excellent 32-
bit version with virtual memory, but I

Figure 1. Four of the original 5¼-inch MINIX 1 floppy disks.

74 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

contributed articles

disk) PC largely for the purpose of run-
ning MINIX and studying it. On March
29, 1991, Torvalds posted his first mes-
sage to the USENET newsgroup, comp.
os.minix:

“Hello everybody, I’ve had minix
for a week now, and have upgraded to
386-minix (nice), and duly downloaded
gcc for minix … ”

His second posting to comp.
os.minix was on April 1, 1991, in re-
sponse to a simple question from
someone else:

“RTFSC (Read the F***ing Source
Code :-)—It is heavily commented and
the solution should be obvious … ”

This posting shows that in 10 days,
Torvalds had studied the MINIX source
code well enough to be somewhat dis-
dainful of people who had not studied
it as well as he had. The goal of MINIX
at the time was, of course, to be easy for
students to learn; in Torvalds’ case, it
was wildly successful.

Then on August 25, 1991, Torvalds
made another post to comp.os.minix:

“Hello everybody out there using
minix—I’m doing a (free) operat-
ing system (just a hobby, won’t be
big and professional like gnu) for
386(486) AT clones. This has been
brewing since April, and is starting
to get ready. I’d like any feedback on
things people like/dislike in minix,
as my OS resembles it somewhat
(same physical layout of the file-
system (due to practical reasons)
among other things).”

During the next year, Torvalds con-
tinued studying MINIX and using it to
develop his new system. This became
the first version of the Linux kernel.
Fossilized remains of its connection
to MINIX were later visible to software
archaeologists in things like the Linux
kernel using the MINIX file system and
source-tree layout.

On January 29, 1992, I posted a mes-
sage to comp.os.minix saying micro-
kernels were better than monolithic
designs, except for performance. This
posting unleashed a flamewar that
still, even today, 24 years later, inspires
many students worldwide to write and
tell me their position on this “debate.”

Lesson. The Internet is like an ele-
phant; it never forgets.

That is, be careful what you put out
on the Internet; it might come back to
haunt you decades later.

decided to stick with Evans’s work since
it was closer to the original design.

Lesson, Try to make your design be ap-
propriate for hardware likely to appear
in the future.

By 1991, MINIX 1.5, had been ported
to the Apple Macintosh, Amiga, Atari,
and Sun SPARCstation, among other
platforms (see Figure 2).

Lesson. By not relying on idiosyncrat-
ic features of the hardware, one makes
porting to new platforms much easier.

As the system developed, problems
cropped up in unexpected places. A
particularly annoying one involved a
network card driver that could not be
debugged. Someone eventually dis-
covered the card did not honor its own
specifications.

Lesson. As with software, hardware
can contain bugs.

A hardware “feature” can some-
times be viewed as a hardware bug.
The port of MINIX to a PC clone made
by Olivetti, a major Italian computer
manufacturer at the time, was caus-
ing problems until I realized, for inex-

plicable reasons, a handful of keys on
the Olivetti keyboard returned differ-
ent scan codes from those returned
by genuine IBM keyboards. This led
me to realize that many countries have
their own standardized keyboards, so
I changed MINIX to support multiple
keyboards, selectable when the system
is installed. This is useful for people
with Italian, French, German, and oth-
er national keyboards. So, my initial
annoyance at Olivetti was tempered
when I saw a way to make MINIX better
for people in countries other than the
U.S. Likewise, in several future cases,
what were initially seen as bugs moti-
vated me to generalize the system to
improve it.

Lesson. When someone hands you a
lemon, make lemonade.

Linus Torvalds Buys a PC
On January 5, 1991, Linus Torvalds,
a hitherto-unknown Finnish student
at the University of Helsinki, made
a critical decision. He bought a fast
(33MHz) large (4MB RAM, 40MB hard

Figure 2. MINIX 1.5 for four different platforms.

MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 75

contributed articles

It turns out performance is more
important to some people than I had
expected. Windows NT was designed
as a microkernel, but Microsoft later
switched to a hybrid design when the
performance was not good enough. In
NT, as well as in Windows 2000, XP, 7,
8, and 10, there is a hardware abstrac-
tion layer at the very bottom (to hide
differences between motherboards).
Above it is a microkernel for handling
interrupts, thread scheduling, low-
level interprocess communication,
and thread synchronization. Above the
microkernel is the Windows Execu-
tive, a group of separate components
for process management, memory
management, I/O management, secu-
rity, and more that together comprise
the core of the operating system. They
communicate through well-defined
protocols, just like on MINIX, except
on MINIX they are user processes. NT
(and its successors) were something of
a hybrid because all these parts ran in
kernel mode for performance reasons,
meaning fewer context switches. So,
from a software engineering stand-
point, it was a microkernel design, but
from a reliability standpoint, it was
monolithic, because a single bug in
any component could crash the whole
system. Apple’s OS X has a similar
hybrid design, with the bottom layer
being the Mach 3.0 microkernel and
the upper layer (Darwin) derived from
FreeBSD, a descendant of the BSD
system developed at the University of
California at Berkeley.

Also worth noting is in the world of
embedded computing, where reliability
often trumps performance, microker-
nels dominate. QNX, a commercial
UNIX-like real-time operating system,
is widely used in automobiles, factory
automation, power plants, and medi-
cal equipment. The L4 microkernel11
runs on the radio chip inside more
than one billion cellphones worldwide
and also on the security processor
inside recent iOS devices like the
iPhone 6. L4 is so small, a version of it
consisting of approximately 9,000 lines
of C was formally proven correct against
its specification,9 something unthink-
able for multimillion-line monolithic
systems. Nevertheless, microkernels
remain controversial for historical rea-
sons and to some extent due to some-
what lower performance.16

On the newsgroup comp.os.minix
in 1992 I also made the point that tying
Linux tightly to the 386 architecture was
not a good idea because RISC machines
would eventually dominate the market.
To a considerable extent this is happen-
ing, with more than 50 billion (RISC)
ARM chips shipped. Most smartphones
and tablets use an ARM CPU, including
variants like Qualcomm’s Snapdragon,
Apple’s A8, and Samsung’s Exynos. Fur-
thermore, 64-bit ARM servers and note-
books are beginning to appear. Linux
was eventually ported to the ARM, but it
would have been much easier had it not
been tied so closely to the x86 architec-
ture from the start.

Lesson. Do not assume today’s hard-
ware will be dominant forever.

Also in this vein, Linux is so tightly
tied to the gcc compiler that compil-
ing it with newer (arguably, better)
compilers like clang/LLVM requires
major patches to the Linux code.

Lesson. When standards exist (such as
ANSI Standard C) stick to them.

In addition to the real start of Linux,
another major development occurred
in 1992. AT&T sued BSDI (a company
created by the developers of Berkeley
UNIX to sell and support the BSD soft-
ware) and the University of California.
AT&T claimed BSD contained pieces of
AT&T code and also BSDI’s telephone
number, 1-800-ITS-UNIX, violated
AT&T’s intellectual property rights. The
case was settled out of court in 1994,
until which time BSD was handcuffed,
giving the new Linux system critical
time to develop. If AT&T had been more
sensible and just bought BSDI as its
marketing arm, Linux might never have
caught on against such a mature and
stable competitor with a very large in-
stalled base.

Lesson. If you are running one of the
biggest corporations in the world and a
tiny startup appears in an area you care
about but know almost nothing about,
ask the owners how much they want for
the company and write them a check.

In 1997, MINIX 2, now changed
to be POSIX-compatible rather than
UNIX V7-compatible, was released,
along with a second edition of my
book Operating Systems Design and
Implementation, now co-authored with
Albert Woodhull, a professor at Hamp-
shire College in Massachusetts.

In 2000, I finally convinced Prentice

What was new
about MINIX
research was
the attempt
to build
a fault-tolerant
multi-server
POSIX-compliant
operating
system on top
of the microkernel.

76 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

contributed articles

3 to the assembled operating system
experts. Partway through my talk I re-
moved my dress shirt on stage to reveal
a MINIX 3 T-shirt. The MINIX website
was set up to allow downloading start-
ing that day. Needless to say, I wanted
to be online during the conference
to see if the server could handle the
load. Since I was the honored guest of
the conference, I was put in the Royal
Suite, where the Queen of England
would stay should she choose to visit
Brighton. It is a massive room, with a
magnificent view of the sea. Unfortu-
nately, it was the only room in the hotel
lacking an Internet connection, since
apparently the Queen is not a big In-
ternet user. To make it worse, the hotel
did not have Wi-Fi. Fortunately, one of
the conference organizers took pity on
me and was willing to swap rooms so I
could have a standard room but with
that oh-so-important Ethernet port.

Lesson. Keep focused on your real goal.
That is, do not be distracted when

something seemingly nice (like a beau-
tiful hotel room) pops up but is actually
a hindrance.

By 2005, MINIX 3 was a much more
serious system, but so many people
had read the Operating Systems Design
and Implementation book and studied
MINIX in college it was very difficult to
convince anyone it was not a toy system
anymore. So I had the irony of a very
well-known system but had to struggle
to get people to take it seriously due
to its history. Microsoft was smarter;
early versions of Windows, including
Windows 95 and Windows 98, were
just MS-DOS with a graphical shell. But
if they had been marketed as “Graphi-
cal MS-DOS” Microsoft might not have
done as well as renaming them “Win-
dows,” which Microsoft indeed did.

Lesson. If V3 of your product differs
from V2 in a really major way, give it a
totally new name.

In 2008, the MINIX project received
another piece of good luck. For some
years, the European Union had been
toying with the idea of revising prod-
uct liability laws to apply to software. If
one in 10 million tires explode, killing
people, the manufacturer cannot get
off the hook by saying, “Tire explosions
happen.” With software, that argument
works. Since a country or other jurisdic-
tion cannot legislate something that is
technically impossible, the European

Hall to release MINIX 2 under the BSD
license and make it (including all source
code) freely available on the Internet. I
should have tried to do this much ear-
lier, especially since the original license
allowed unlimited copying at universi-
ties, and it was being sold at essentially
the publisher’s cost price anyway.

Lesson. Even after you have adopted
a strategy, you should nevertheless reex-
amine it from time to time.

MINIX as Research Project
MINIX 2 continued to develop slowly
for a few more years, but the direction
changed sharply in 2004 when I received
a grant from the Netherlands Organisa-
tion for Scientific Research (http://www.
nwo.nl) to turn what had been an edu-
cational hobby into a serious, funded
research project on building a highly
reliable system; until 2004, there was
no external funding. Shortly thereafter,
I received an Academy Professorship
from the Royal Netherlands Academy
of Arts and Sciences in Amsterdam. To-
gether, these grants provided almost $3
million for research into reliable operat-
ing systems based on MINIX.

Lesson. Working on something impor-
tant can get you research funding, even if
it is outside the mainstream.

MINIX was not, of course, the only re-
search project looking at microkernels.
Early systems from as far back as 1970
included Amoeba,17 Chorus,12 L3,10 L4,11
Mach,1 RC 4000 Nucleus,3 and V.4 What
was new about MINIX research was the
attempt to build a fault-tolerant multi-
server POSIX-compliant operating sys-
tem on top of the microkernel.

Together with my students and pro-
grammers in 2004, I began to develop
MINIX 3. Our first step was to move the
device drivers entirely out of the micro-
kernel. In the MINIX 1 and MINIX 2 de-
signs, device drivers were treated and
scheduled as independent processes
but lived in the microkernel’s (virtual)
address space. My student Jorrit Herd-
er’s master’s thesis consisted of making
each driver a full-blown user-mode proc-
ess. This change made MINIX far more
reliable and robust. During his subse-
quent Ph.D. research at the VU under my
supervision, Herder showed failed driv-
ers could be replaced on the fly, while
the system was running, with no adverse
effects at all.7 Even a failed disk driver
could be replaced on the fly, since a copy

was always kept in RAM; the other driv-
ers could always be fetched from disk.
This was a first step toward a self-heal-
ing system. The fact that MINIX could
now do something—replace (some) key
operating system components that had
crashed without rebooting and without
running application processes even no-
ticing it—no other system could do this,
which gave my group confidence we
were really onto something.

Lesson. Try for an early success of some
kind; it builds up everyone’s morale.

This change made it possible to
implement the Principle of Least Au-
thority, also called Principle of Least
Privilege,13 much better. To touch de-
vice registers, even for its own device,
a driver now had to make a call to the
microkernel, which could check if that
driver had permission to access the de-
vice, greatly improving robustness. In
a monolithic system like Windows or
Linux, a rogue or malfunctioning audio
driver has the power to erase the disk; in
MINIX, the microkernel will not let it.
If an I/O memory-management unit is
present, mediation by the microkernel
is not needed to achieve the same effect.

In addition, components could com-
municate with other components only
if the microkernel approved, and com-
ponents could make only approved
microkernel calls, all of this controlled
by tables and bitmaps within the mi-
crokernel. This new design with tighter
restrictions on the operating system
components (and other improvements)
was called MINIX 3 and coincided with
the third edition of my and Woodhull’s
book Operating Systems Design and Im-
plementation, Third Edition.

Lesson. Each device driver should run
as an unprivileged, independent user-
mode process.

Microsoft clearly understood and
still understands this and introduced
the User-Mode Driver Framework for
Windows XP and later systems, intend-
ing to encourage device-driver writers
to make their drivers run as user-mode
processes, just as in MINIX.

In 2005, I was invited to be the key-
note speaker at ACM’s Symposium on
Operating System Principles (http://
www.sosp.org), the top venue for oper-
ating systems research. It was held in
October at the Grand Hotel in Brigh-
ton, U.K., that year. I decided in my
talk I would formally announce MINIX

MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 77

contributed articles

Research Council, which is funded by
the E.U., decided to give me a European
Research Council Advanced Grant of
roughly $3.5 million to see if I could
make a highly reliable, self-healing op-
erating system based on MINIX.

While I was enormously grateful for
the opportunity, this immense good
fortune also created a major problem.
I was able to hire four expert profes-
sional programmers to develop “MINIX
3, the product” while also funding six
Ph.D. students and several postdocs
to push the envelope on research. Be-
fore long, each Ph.D. student had cop-
ied the MINIX 3 source tree and began
modifying it in major ways to use in his
research. Meanwhile, the programmers
were busy improving and “productiz-
ing” the code. After two or three years,
we were unable to put Humpty Dumpty
back together again. The carefully de-
veloped prototype and the students’ ver-
sions had diverged so much we could
not put their changes back in, despite
our using git and other state-of-the-art
tools. The versions were simply too in-
compatible. For example, if two people
completely rewrite the scheduler using
totally different algorithms, they cannot
be automatically merged later.

Also, despite my stated desire to
put the results of the research into the
product, the programmers strongly re-
sisted, since they had been extremely
meticulous about their code and were
not enthusiastic (to put it mildly) about
injecting a lot of barely tested student-
quality code into what had become a
well-tested production system. Only
with a lot of effort would my group pos-
sibly succeed with getting one of the
research results into the product. But
we did publish a lot of papers; see, for
example Appuswamy et al.,2 Giuffrida
et al.,5 Giuffrida et al.,6 and Hruby et al.8

Lesson. Doing Ph.D. research and de-
veloping a software product at the same
time are very difficult to combine.

Sometimes both researchers and
programmers would run into the same
problem. One such problem involved
the use of synchronous communica-
tion. Synchronous communication
was there from the start and is very
simple. It also conflicts with the goal of
reliability. If a client process, C, sends
a message to a server process, S, and C
crashes or gets stuck in an infinite loop
without listening for the response, the

server hangs because it is unable to
send its reply. This problem is inher-
ent in synchronous communication.
To avoid it, we were forced to introduce
virtual endpoints, asynchronous com-
munication, and other things far less
elegant than the original design.

Lesson. Einstein was right: Things
should be as simple as possible but
not simpler.

What Einstein meant is everyone
should strive for simplicity and make
sure their solution is comprehensive
enough to do the job but no more.
This has been a guiding principle for
MINIX from the start. It is unfortu-
nately absent in far too much modern
bloated software.

Around 2011, the direction we were
going to take with the product be-
gan to come into better focus, and we
made two important decisions. First,
we came to realize that to get anyone
to use the system it had to have appli-
cations, so we adopted the headers,
libraries, package manager, and a lot
more from BSD (specifically, NetBSD).
In effect, we had reimplemented the
NetBSD user environment on a much
more fault-tolerant substructure. The
big gain here was 6,000 NetBSD pack-
ages were suddenly available.

Lesson. If you want people to use your
product, it has to do something useful.

Second, we realized winning the
desktop war against Windows, Linux,

OS X, and half a dozen BSDs was a tall
order, although MINIX 3 could well be
used in universities as a nice base for
research on fault-tolerant computing.
So we ported MINIX 3 to the ARM proc-
essor and began to focus on embed-
ded systems, where high reliability is
often crucial. Also, when engineers
are looking for an operating system
to embed in a new camera, television
set, digital video recorder, router, or
other product, they do not have to con-
tend with millions of screaming users
who demand the product be backward
compatible to 1981 and run all their
MS-DOS games as fast as their previ-
ous product did. All the users see is the
outside, not the inside. In particular,
we got MINIX 3 running on the Beagle-
Bone series of single-board computers
that use the ARM Cortex-A8 processor
(see Figure 3). These boards are es-
sentially complete PCs and retail for
about $50. They are often used to pro-
totype embedded systems. All of them
are open source hardware, which made
figuring out how they work easy.

Lesson. If marketing the product ac-
cording to plan A does not work, invent
plan B.

Retrospective. With 20-20 hindsight,
some things stand out now. First, the
idea of a small microkernel with user-
level system components protected
from each other by the hardware MMU
is probably still the best way to aim for

Figure 3. A BeagleBone Black Board.

78 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

contributed articles

USENIX Association, Berkeley, CA, 1986, 93–112.
2. Appuswamy, R., van Moolenbroek, D.C., and

Tanenbaum, A.S. Loris: A dependable, modular
file-based storage stack. In Proceedings of the 16th
Pacific Rim International Symposium of Dependable
Computing (Tokyo, Dec. 13–15). IEEE Computer
Society, Washington, D.C., 2010, 165–174.

3. Brinch Hansen, P. The nucleus of a multiprogramming
system. Commun. ACM 13, 4 (Apr. 1970), 238–241.

4. Cheriton, D.R. The V kernel, a software base for distributed
systems. IEEE Software 1, 4 (Apr. 1984), 19–42.

5. Giuffrida, C., Iorgulescu, C., Kuijsten, A., and
Tanenbaum, A.S. Back to the future: Fault-tolerant
live update with time-traveling state transfer. In
Proceedings of the 27th Large Installation System
Administration Conference (Washington D.C., Nov. 3–8).
USENIX Association, Berkeley, CA, 2013, 89–104.

6. Giuffrida, C., Kuijsten, A., and Tanenbaum, A.S. Safe
and automatic live update for operating systems. In
Proceedings of the 18th International Conference on
Architectural Support for Programming Languages
and Operating Systems (Houston, TX, Mar. 16–20).
ACM Press, New York, 2013, 279–292.

7. Herder, J. Building a Dependable Operating System,
Fault Tolerance in MINIX 3. Ph.D. Thesis, Vrije
Universiteit, Amsterdam, the Netherlands, 2010;
http://www.cs.vu.nl/~ast/Theses/herder-thesis.pdf

8. Hruby, T., Bos, H., and Tanenbaum, A.S. When slower
is faster: On heterogeneous multicores for reliable
systems. In Proceedings of the Annual Technical
Conference (San Jose, CA, June 26–28). USENIX
Association, Berkeley, CA, 2013, 255–266.

9. Klein G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R.,
Norrish, M., Swell, T., Tuch, H., and Winwood, S. seL4:
Formal verification of an OS kernel. In Proceedings of
the 22nd Symposium on Operating Systems Principles
(Big Sky, MT, Oct. 11–14). ACM Press, New York, 2009,
207–220.

10. Liedtke, J. Improving IPC by kernel design. In
Proceedings of the 14th ACM Symposium on Operating
Systems Principles (Asheville, NC, Dec. 5–8). ACM
Press, New York, 1993, 174–188.

11. Liedtke, J. On microkernel construction. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles (Copper Mountain Resort, CO, Dec.
3–6). ACM Press, New York, 1995, 237–250.

12. Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien,
M. Guillemont, M., Herrmann, F., Kaiser, C., Langlois,
S., Leonard, P., and Neuhauser, W. The CHORUS
distributed operating system. Computing Systems
Journal 1, 4 (Dec. 1988), 305–370.

13. Saltzer, J.H. and Schroeder, M.D. The protection of
information in computer systems. Proceedings of the
IEEE 63, 9 (Sept. 1975), 1278–1308.

14. Salus, P.H. A Quarter Century of UNIX. Addison-
Wesley, Reading, MA, 1994.

15. Tanenbaum, A.S. Operating Systems Design and
Implementation, First Edition. Prentice Hall, Upper
Saddle River, NJ, 1987.

16. Tanenbaum, A.S., Herder, J., and Bos, H.J. Can
we make operating systems reliable and secure?
Computer 39, 5 (May 2006), 44–51.

17. Tanenbaum, A.S. and Mullender, S.J. A capability-
based distributed operating system. In Proceedings of
the Conference on Local Networks & Distributed Office
Systems (London, U.K., May 1981), 363–377.

18. Tanenbaum, A.S, van Staveren, H., Keizer, E.G.,
and Stevenson, J.W. A practical toolkit for making
portable compilers. Commun. ACM 26, 9 (Sept. 1983),
654–660.

Andrew S. Tanenbaum (ast@cs.vu.nl) is a professor
emeritus of computer science in the Department
of Computer Science in the Faculty of Sciences at
the Vrije Universiteit, Amsterdam, the Netherlands
and an ACM Fellow.

Copyright held by the author.

highly reliable, self-healing systems
because this design keeps problems
in one component from spreading to
others. It is perhaps surprising that in
30 years, almost no code was moved
into the MINIX microkernel. In fact,
some major software components,
including all the drivers and much of
the scheduler, were moved out of it.
The world is also moving (slowly) in
this direction (such as Windows User-
mode drivers and embedded systems).
Nevertheless, having most of the operat-
ing system run as user-mode processes
is disruptive, and it takes time for dis-
ruptive ideas to take hold; for example,
FORTRAN, Windows XP, mainframes,
QWERTY keyboards, the x86 architec-
ture, fax machines, magnetic-stripe
credit cards, and the interlaced NTSC
color television standard made sense
when they were invented but not so
much anymore. However, they are not
about to exit gracefully. For example, ac-
cording to Microsoft, as of March 2016,
the obsolete Windows XP still runs on
250 million computers.

Lesson. It is very difficult to change en-
trenched ways of doing things.

Furthermore, in due course, com-
puters will have so much computing
power, efficiency will not matter so
much. For example, Android is written
in Java, which is far slower than C, but
nobody seems to care.

My initial decision back in 1984 to
have fixed-size messages throughout
the system and avoid dynamic memory
allocation (such as malloc) and a heap
in the kernel has not been a problem
and avoids problems that occur with
dynamic storage management (such as
memory leaks and buffer overruns).

Another thing that worked well in
MINIX is the event-driven model. Each
driver and server has a loop consisting of

{ get_request();
 process_request();
 send_reply();
}

This design makes them easy to test
and debug in isolation.

On the other hand, the simplicity of
MINIX 1 limited its usability. Lack of
features like kernel multithreading and
full-demand paging were not a realis-
tic option on a 256kB IBM PC with one
floppy disk. We could have added them

(and all their complexity) at some point,
but we did not (although we have some
workarounds) and are paying a price to-
day, as porting some software is more
difficult than it would otherwise be.

Although funding has now ended,
the MINIX project is not ending. It
is instead transitioning to an open
source project, like so many others.
Various improvements are in progress
now, including some very interesting
ones (such as being able to update
nearly all of the operating system driv-
ers, file system, memory manager, and
process manager) on the fly to major
new versions (potentially with differ-
ent data structures) while the system
is running.5,6 These updates require no
down time and have no effect on run-
ning processes, except for the system
freezing very briefly before continuing.
The structure of the system as a collec-
tion of servers makes live update much
simpler than in traditional designs,
since it is possible to do a live update
on, say, the memory manager, with-
out affecting the other (isolated) com-
ponents because they are in different
address spaces. In systems that pass
pointers between subsystems within
the kernel, live updating one piece
without updating all of them is very dif-
ficult. This area is one of the few where
the research may make it into the prod-
uct, but it is an important one that few,
if any, other systems have.

MINIX 3 can be downloaded for free
at http://www.minix3.org.

Acknowledgments
I would like to thank the hundreds of
people who have contributed to the
MINIX project over the course of 30
years. Unfortunately there are far too
many to name here. Nevertheless,
some stand out for a special mention:
Kees Bot, Ben Gras, Philip Homburg,
Kees Jongenburger, Lionel Sambuc,
Arun Thomas, Thomas Veerman, and
Jan-Mark Wams. This work was sup-
ported in part by the Netherlands Or-
ganisation for Scientific Research, as
well as by European Research Council
Advanced Grant 227874 and ERC Proof
of Concept Grant 297420.

References
1. Accetta, M., Baron, R., Golub, D., Rashid, R., Tevian, A.,

and Young, M. Mach 1986: A new kernel foundation
for Unix development. In Proceedings of the USENIX
Summer Conference (Atlanta, GA, June 9–13).

Watch the author discuss
his work in this exclusive
Communications video.
http://cacm.acm.org/
videos/lessons-learned-
from-30-years-of-minix

