
CS 258, Midterm Exam, Winter 2017

Rules of Engagement. This is a take-home, open-book, open-manual, open-shell, open-Internet
exam. Solutions are due by noon of Sunday February 26. Start early, do not postpone! Some
problems may require more time than you might expect!

You are expected to use (at least) DTrace, the OpenGrok source code browser1 and the Modular
Debugger’s running kernel inspection capability (mdb -k). You may use any other tools you find
useful. The documents in the class directory http://www.cs.dartmouth.edu/~sergey/cs258/

and the textbook index might be useful, too.
For each problem, you should “show your work”: the output of the above tools on your actual

platform (virtual or physical).2 For OS kernel code lines, provide the filename and the line number,
or the OpenGrok URL pointing to the right line.

You are allowed to discuss the use of tools with your fellow students, but not the solutions
themselves. For example, sharing a tracing trick is OK, but sharing part of a solution as such is
not. Note that in most exercises you are free to choose your targets (which may help you avoid
conflicts with the above rule). If in doubt, ask.

Submit your work as an ASCII text or a PDF file named <YourName>-midterm-w17.txt or
<YourName>-midterm-w17.pdf, or a tarball named <YourName>-midterm-w17.tar.gz that con-
tains a directory named <YourName>-midterm-w17 (with your solutions inside :)). No MS Word
files, please, and please do not use spaces in any filenames!

Note: The default system for these problems is Illumos, due to the great flexibility of DTrace and
MDB. You may choose to do some or all or the problems on GNU/Linux instead of Illumos if you so
desire (e.g., using SystemTap, FTrace with Brendan Gregg’s perf-tools http://www.brendangregg.
com/linuxperf.html, or Kprobes); note, however, that Illumos’ tools for examining a running
kernel are much more versatile and stable. Linux will likely be more work, unless you’ve been
working on a Linux project idea and practiced with Linux tools already. I will give extra points for
Linux solutions, in recognition of the extra work involved.

General hint: Several of these problems require so-called destructive actions by MDB and/or
DTrace. In MDB, use the command $W to enable writing memory; use writing formats (see
::formats ! grep write) to actually write memory. In DTrace, use the -w to enable its de-
structive actions. With DTrace destructive actions enabled, you can suspend a process by using
the stop() action. See DTrace User Guide for details.

Problem 1. RSS is Magic.
1. For each process that uses libc.so,3 calculate how many pages of libc’s code are mapped but

not loaded into the process. What is the average ratio of loaded libc.so’s code size to its overall
code size?

Your answer may, of course, vary depending on the system load. Show your logic and commands.

1http://src.illumos.org/source/
2You can record your entire shell session with the script <filename> command, or, when working in MDB, with

the ::log <filename> command.
3In your Illumos VM, libc may show as /usr/lib/libc/libc hwcap1.so.1 in a pmap enumeration of mapped virtual

address ranges. This is due to the OS choosing the optimal variant of libc for your hardware capabilities, from
the variants in /usr/lib/libc/, and then mounting that specific variant file as /lib/libc.so.1. So although ldd shows
a dependency on /lib/libc.so.1, pmap and the kernel see the actual mapped file as /usr/lib/libc/libc hwcap1.so.1.
More info in https://blogs.oracle.com/darren/entry/whats_this_lofs_mount_onto. It may be a nice project to
explore this optimization.

2. Select a process, and make it load a page of libc code that it has not loaded before. Write a
DTrace script to detect this load and show which page has been loaded as a result of your interaction
with the process. Alternatively, you may use MDB to confirm the load and the page’s identity.

Note: You are free to choose any process you like. I think it will be easier if you choose an interactive
one.

3. Choose a process that uses libc, and enumerate continuous ranges of virtual addresses of libc’s
loaded pages in this process. How long is the longest contiguous piece? For extra credit, create a
map of these contiguous sections vs the full code of libc.

Problem 2. Process, know thyself.
Write a program that will print out its own memory map without making any calls to pmap,

mdb, dtrace, shell, or reading /proc. The process should rely on its own code and the libc standard
library to perform the task.

Problem 3. Won’t you be my neighbor?
Write a DTrace script to report every time a physical page is mapped into a selected process,

the PFN of the page, and the reason (such as the intended function for this page: text, global data
from file, anonymous memory, etc.) for this mapping.

How frequently are adjacent physical pages mapped into the same process?4 How frequently do
they correspond to consecutive ranges of virtual addresses? Which process has the most consecutive
physical pages mapped?

This guide may help5: https://www.princeton.edu/~unix/Solaris/troubleshoot/SolarisMemory.
pdf

Your answer may, of course, vary depending on the system load. Show your logic and commands.

Problem 4. .
Write the function traceme() that, when called at the start of a program, would print to stderr

a message every time a dynamically linked library function if called.
For example,

#include <stdio.h>

#include <stdlib.h>

#include <dirent.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

void* traceme();

int main (int argc, char *argv[])

{

DIR *dp = NULL;

4There are several ways to interpret this question. For example: what is the chance that a process’ address space
has two adjacent PFNs mapped into it? Pick the interpretation you find the easiest to answer experimentally and
explain your choice.

5Note that it dates back to 2008. The new paging algorithm it describes is the unified one we looked at in class.

struct dirent *dptr = NULL;

traceme();

// Open the directory stream

if(NULL == (dp = opendir("/tmp"))){

printf("\n Cannot open /tmp\n");

exit(1);

}

// Read the directory contents

while(NULL != (dptr = readdir(dp))){

printf(" [%s] ",dptr->d_name);

}

// Close the directory stream

closedir(dp);

printf("\n");

return 0;

}

should print to stderr something like

opendir

readdir

printf

readdir

printf

...

closedir

putchar

(some compilers would change printf("\n") into a putchar or puts.
Your code should not execute outside programs but can use any libraries you need. You may

put your traceme() in the same file or into a separate library.
I will accept solutions that “work on your machine”, so long as they work on every run and

with a reasonable variation of the body of the main program.
Note: There is a tool for doing this properly from outside of the process: ltrace.

Problem 5.
Pick a kernel Kmem object cache and write a program that will cause that Kmem cache to

allocate a new slab. You may use any programming language for the program (since, ultimately,
its purpose is to consume OS resources via system calls).

Catch the event of a new slab being allocated via a DTrace probe. Compare the size of the
object with the number of new allocations that happen before a new slab is needed.

