
Composition Patterns of Hacking

Sergey Bratus∗, Julian Bangert∗, Alexandar Gabrovsky∗, Anna Shubina∗, Daniel Bilar†, and Michael E. Locasto‡
∗Dartmouth College
‡Siege Technologies

‡The University of Calgary

Abstract—You do not understand how your program really
works until it has been exploited. We believe that computer
scientists and software engineers should regard the activity of
modern exploitation as an applied discipline that studies both the
actual computational properties and the practical computational
limits of a target platform or system.

Exploit developers study the computational properties of
software that are not studied elsewhere, and they apply unique
engineering techniques to the challenging engineering problem of
dynamically patching and controlling a running system. These
techniques leverage software and hardware composition mech-
anisms in unexpected ways to achieve such control. Although
unexpected, such composition is not arbitrary, and it forms the
basis of a coherent engineering workflow. This paper contains
a top-level overview of these approaches and their historical
development.

I. INTRODUCTION

When academic researchers study hacking, they mostly con-
centrate on two classes of attack-related artifacts: “malicious
code” (malware, worms, shellcode) and, lately, “malicious
computation” (exploits via crafted data payloads containing
no native code, a popular exploiter technique1). We argue
that studying just these two classes is an insufficient means
of making progress toward the goal of more fundamentally
secure software because this perspective does not include a
notion of composing the attacker computation with the native
computation of the target. We claim that such composition is
the source of the most powerful and productive concepts and
methodologies that emerge from exploitation practice.

When researchers focus on attacker artifacts alone, they
frequently miss an important point of successful exploitation:
the exploited system needs to remain available and reliably
usable for the attacker.

In order to support this assertion and further discuss ex-
ploitation, we need to make an important terminological point.
The word hacking is used to refer to all kinds of attacks on
computer systems, including those that merely shut down sys-
tems or otherwise prevent access to them (essentially achieving
nothing that could not be achieved by cutting a computer
cable). Many activities labeled as hacking lack sophistication.
In this paper we discuss not hacking, but exploitation or exploit
programming. We take exploitation and exploit programming
to mean subverting the system to make it work for the attacker

1Discussed in the hacker community since at least early 2000s, see [2] for a
brief history sketch. These artifacts were brought to the attention of academia
by Shacham [30], [24].

– that is, lend itself to being programmed by the attacker.
Exploiters are less interested in BSODs, kernel panics, and
plain network DOS attacks that merely result in a DoS on the
target and cannot otherwise be leveraged and refined to take
control over the system rather than disabling it.

Not surprisingly, preventing a disabling crash and subse-
quently “patching up” the target into a stable running state
requires significantly more expertise and effort than, say, a
memory-corrupting DoS. By achieving this state exploiters
demonstrate a sophisticated understanding of the target plat-
form2.

In this paper we review a series of classic exploitation3

techniques from the perspective of composition (specifically,
composition as the basic unit of activity of an engineering
workflow, whether that workflow is a traditional software
engineering workflow or a workflow focused on engineering
an exploit). Many of these have been extensively described
and reviewed from other perspectives; however, their compo-
sitional aspect is still treated as ad hoc, and has not, as far as
we know, been the subject of systematic analysis.

We posit that such analysis is required for designing de-
fensible systems (see Section IV). The practical properties
of composition in actual computer systems uncovered and
distilled by hacker research have often surprised both designers
and defenders. We believe that the relevant methods here must
be cataloged and generalized to help approach the goal of
secure composition in future designs.

II. A TALE OF TWO ENGINEERING WORKFLOWS

Hacking, vulnerability analysis, and exploit programming
are generally perceived to be difficult and arcane activities. The
development of exploits is seen as something unrepeatable and
enabled only by some unfortunate and unlikely combination
of events or conditions. Almost by definition, something as
imbued with arbitrary chance cannot or should not be an
engineering discipline or workflow. Popular perception casts
these activities as requiring specialized cross–layer knowledge
of systems and a talent for “crafting” input.

This paper asserts that what seems arcane is really only
unfamiliar. In fact, although it may be difficult to conceive of

2It also serves as an excellent teaching aid in advanced OS courses; see,
e.g., [25].

3 Since our focus is on composition, we do not distinguish between tech-
niques used by rootkits vs. exploits. Indeed, rootkits, even when introduced
at higher privilege, face similar context limitation obstacles as exploits.



exploit development as anything other than fortunate mysti-
cism, we argue that its structure is exactly that of a software
engineering workflow. The difference emerges in the specific
constructs at each stage, but the overall activities remain the
same. A software developer engineers in terms of sequences
of function calls operating on abstract data types, whereas an
exploit developer engineers in terms of sequences of machine–
level memory reads and writes. The first one programs the
system in terms of what its compile-time API promises; the
other programs it in terms of what its runtime environment
actually contains.

This section contains a brief comparison of these two
engineering workflows. We do so to help give a conceptual
frame of reference to the enumeration of exploit techniques
and composition patterns detailed in Section III.

The main difference between the two workflows is that the
exploit engineer must first recover or understand the semantics
of the runtime environment. In either case, programming is
composition of functionality.

In the “normal” workflow of software engineering, the pro-
grammer composes familiar, widely-used libraries, primitive
language statements (repetition and decision control struc-
tures), and function calls to kick input data along a processing
path and eventually produce the result dictated by a set of
functional requirements.

In the exploit workflow, the reverser or exploit engineer
attempts to build this programming toolkit from scratch: the
languages and libraries that the software engineer takes for
granted are not of direct use to the exploit developer. Instead,
these elements define a landscape from which the exploit
developer must compose and create his own toolkit, language
primitives, and component groups. The first job of the vulner-
ability analyst or reverse engineer is therefore to understand
the latent functionality existing in runtime environments that
the software engineer either neglects or does not understand.

A. The Software Engineer

Based on functional requirements, a software engineer’s
goal is to cause some expected functionality happen. In
essence, this kind of programming is the task of choosing a
sequence of library calls and composing them with language
primitives like decision control structure and looping control
structures. Data structures are created to capture the relevant
properties of the system’s input; this structure usually dictates
how processing (i.e., control flow) occurs.

A software engineer follows roughly this workflow path:

1) design and specify data types
2) design data flow relationships (i.e., an API)
3) write down source code implementing the data types and

API
4) ask compiler and assembler to translate code
5) ask OS to load binary, invoke the dynamic linker, and

create memory regions
6) run program according to the control flow as conceived

in the source level

In this workflow, we can see the software engineer engaged
in: memory layout, specifying control flow, program construc-
tion, program delivery (loading) and translation, and program
execution. As we will see below, the exploit engineer engages
in much the same set of tasks.

The software engineer’s goal is to bring order to a compo-
sition of procedures via compilation and assembly of machine
code. One does this through toolchains, design patterns, IDEs,
and popular languages — the software engineer therefore does
not need to relearn the (public) semantics of these operations
every time he prepares to program.

These conventions are purely an effort–saving device aimed
at increasing productivity by increasing the lines of code and
features implemented in them. These patterns, tools, and aids
reduce the level of thought required to emit a sequence of
function calls that satisfy the functional requirements. They
are an effort to deal with complexity. The goal of software
engineers in dealing with complexity is to eliminate or hide
it.

B. The Exploit Engineer

In contrast, exploit engineers also deal with complexity,
but their goal is to manipulate it — expressiveness, side
effects, and implicit functionality are a collective boon, not
a bane. Any operations an exploit engineer can get “for free”
increase his exploit (i.e., weird machine programming) toolkit,
language, or architecture. A software engineer attempts to hide
or ignore side effects and implicit state changes, but the very
things encouraged by traditional engineering techniques like
“information hiding” and encapsulation on the other side of
an API become recoverable primitives for a reverser or exploit
engineer.

The main difference in the workflows is the preliminary
step: you have to learn on a case by case or scenario by
scenario basis what “language” or computational model you
should be speaking in order to actually begin programming
toward a specific functional end. Based on some initial access,
the first goal is to understand the system enough to recover
structure of “programming” primitives. The workflow is thus:

1) identify system input points
2) recapture or expose trust relationships between compo-

nents (functions, control flow points, modules, subrou-
tines, etc.)

3) recover the sequencing composition of data transforma-
tions (enumerate layer crossings)

4) enumerate instruction sequences / primitives / gadgets
5) program the process address space (prepare the memory

image and structure)
6) deliver the exploit
In this workflow, we can see the exploit engineer engaged

in: recovering memory layout, specifying control flow, pro-
gram construction, program delivery (loading) and translation,
and program execution. Unlike the software engineering work-
flow, the delivery of an exploit (i.e., loading a program) can
be mixed up and interposed with translation of the program
and preparation of the target memory space. Even though



these activities might be more tightly coupled for an exploit
developer, much of the same discipline remains.

One major challenge exists for the exploit engineer: recov-
ering the unknown unknowns. Although they can observe side
effects of mainline execution or even slightly fuzzed execution,
can they discover the side effects of “normally” dormant
or latent “normal” functionality (e.g., an internationalization
module that is never invoked during normal operation, or
configuration code that has only been invoked in the “ancient
past” of this running system)? This challenge is in some sense
like the challenge a software engineer faces when exploring a
very large language library (e.g., the Java class library API).

III. PATTERNS

a) Exploitation as programming “weird machines”:
Bratus et al. [2] summarized a long-standing hacker intuition
of exploits as programs, expressed as crafted inputs, for
execution environments implicitly present in the target as a
result of bugs or unforeseen combination of features (“weird
machines”), which are reliably driven by the crafted inputs to
perform unexpected computations. More formally, the crafted
inputs that constitute the exploit drive an input-accepting
automaton already implicitly present in the target’s input-
handling implementation, its sets of states and transitions
owing to the target’s bugs, features or combinations thereof.
The implicit automaton is immersed into or is part of the
target’s execution environment; its processing of crafted input
is part of the “malicious computation” – typically, the part that
creates the initial compromise, after which the exploiter can
program the target with more conventional means. The crafted
input is both a program for that automaton and a constructive
proof of its existence. Further discussion from the practical
exploit programming standpoint can be found in Dullien [7],
from a theory standpoint in Sassaman [28].

In the following items, we focus on one critical aspect of the
implicit exploit execution environments and the computations
effected in them by exploit-programs: they must reliably co-
exist with the native, intended computations both for their
duration and in their effects, while their composition is done
in contexts more limited and lacking critical information as
compared to the system’s intended scenarios. This is far
from trivial on systems where state that is “borrowed” by
the exploit computation thread of control is simultaneously
used by others, and involves dissecting and “slimming down”
interfaces to their actual implementation primitives and finding
out unintended yet stable properties of these primitives.

b) Recoving Context, Symbols, and Structure: To com-
pose its computation with a target, an exploit must refer to
the objects it requires in its virtual address space (or in other
namespaces). In essence, except in the most trivial cases, a
“name service” of a kind (ranging from ad-hoc to the system’s
own) is involved to reconstruct the missing information.

Early exploits and rootkit install scripts relied on hard-
coded fixed addresses of objects they targeted, since back
then memory virtual space layouts were identical for large

classes of targets4. As targets’ diversity increased, naturally
or artificially (e.g., OpenWall, PaX, other ASLR), exploits
progressed to elaborate address space layout reconstruction
schemes and co-opting the system’s own dynamic linking
and/or trapping debugging.

Cesare [5] describes the basic mechanism behind ELF
linking – based on little more that careful reading of the ELF
standard. However, it broke the opacity and resulted in an
effective exploit technique, developed by others, e.g., [29].
In [16] mayhem builds on the same idea by looking into
the significance and priority of ELF’s .dynamic symbols.
Nergal [17] co-opted Linux’s own dynamic linker into an
ROP5 crafted stack frame-chaining scheme, to have necessary
symbols resolved and libraries loaded. Oakley [18] showed
how to co-opt the DWARF-based exception handling mecha-
nism.

Skape [31] takes the understanding of ELF in a different
direction by showing how its relocation mechanism works and
how that could be used for unpacking a binary.

c) Preparing Vulnerable System State: Earlier classes
of exploits leveraged conditions and configurations (such as
memory allocation of relevant objects) present in the target’s
state through all or most runs. Subsequent advancements such
as Sotirov’s [32] demonstrated that otherwise non-exploitable
targets can have their state carefully prepared by way of a
calculated sequence of requests and inputs for an exploitable
configuration to be instantiated.

This pattern of pre-compositional state-construction of tar-
gets is becoming essential, as protective entropy-injecting
techniques prevent setting up an effective “name service”.
Recent examples [22], [11] show its applications to modern
heaps (the former for the Windows low fragmentation heap),
in presence of ASLR and DEP. Moreover, this method can
target the injected entropy directly, by bleeding it from the
target’s state (e.g., [8]).

d) Seeing through Abstraction: Developers make use of
abstractions to decrease implementation effort and increase
code maintainability.However, abstractions hide the details of
their implementation and as they become part of a program-
mers daily vocabulary, the implementation details are mostly
forgotten. For example, few programmers worry about how a
function call is implemented at the machine level or how the
linking and loading mechanisms assign addresses to imported
symbols.

Exploit engineers, however, distill abstractions into their
implementation primitives and synthesize new composition
patterns from them. Good examples of this are found in [17],
who modifies the return addresses on the stack to compose ex-
isting code elements into an exploit, and the LOCREATE [31]
packer which obfuscates binary code by using the primitives

4This fact was not well understood by most engineers or academics,
who regarded below-compiler OS levels as unpredictable; Stephanie Forrest
deserves credit for putting this and other misconceptions into broader scientific
perspective.

5Which it pre-dates, together with other hacker descriptions of the tech-
nique, by 5-7 years.



for dynamic linking.
e) Scoping Out The Devil’s Bargain:
Wherever there is modularity there is the potential
for misunderstanding: Hiding information implies a
need to check communication. A. Perlis

When a software architect considers how much context to
pass through an interface, he has to bargain with the devil.
Either a lot of context is passed, reducing the flexibility of
the code, or too little context is preserved and the remaining
data can no longer be efficiently validated by code operat-
ing on it, so more assumptions about the input have to be
trusted. Exploiters explore this gap in assumptions, and distill
the unintended side-effects to obtain primitives, from which
weird machines are constructed [23], [9], [7]. We posit that
understanding this gap is the way to more secure API design.

f) Bit path tracing of cross-layer flows: When an ex-
ploiter studies a system, he starts with bit-level description
of its contents and communications. Academic textbooks and
user handbooks, however, typically do not descend to bit level
and provide only a high-level description of how the system
works. A crucial part of such bit-level description is the flow
of bits between the conceptual design layers of the system: i.e.
a binary representation of the data and control flow between
layers.

Constructing these descriptions may be called the corner-
stone of the hacker methodology. It precedes the search for
actual vulnerabilities and may be thought of as the modeling
step for constructing the exploit computation. The model may
ignore large parts of the target platform but is likely to punctil-
iously describe the minutiae of composition mechanisms that
actually tie the implementations of the layers together.

For example, the AlephOne Phrack article [19] famous
for its description of stack buffer overflows also contained
a bit-level description of UNIX system calls, which for many
readers was in fact their first introduction to syscall mech-
anisms. Similarly, other shellcode tutorials detailed the data
flow mechanisms of the target’s ABIs (such as various calling
conventions and the structure of libraries). In networking,
particular attention was given to wrapping and unwrapping
of packet payloads at each level of the OSI stack model, and
libraries such as libnet and libdnet were provided for emulating
the respective functionality throughout the stack layers.

What unites the above examples is that in all of them
exploiters start analyzing the system by tracing the flow of
bits within the target and enumerating the code units that
implement or interact with that flow. The immediate benefits
of this analysis are at least two-fold: locating of less known
private or hidden APIs and collecting potential exploitation
primitives or “cogs” of “weird machines”, i.e. code fragments
on which crafted data bits act in predictable way.

Regardless of its immediate benefits, though, bit-level cross-
layer flow descriptions also provide useful structural descrip-
tions of the system’s architecture, or, more precisely, of the
mechanisms that underly the structure, such as the library
and loadable kernel functionality, DDKs, and network stack
composition.

For instance, the following sequence of Phrack articles
on Linux rootkits is a great example of deep yet concise
coverage of the layers in the Linux kernel architecture: Sub
proc root Quando Sumus (Advances in Kernel Hacking) [21]
(VFS structures and their linking and hijacking), 5 Short
Stories about execve (Advances in Kernel Hacking II) [20]
(driver/DDK interfaces, different binary format support), and
Execution path analysis: finding kernel based rootkits [27]
(instrumentation for path tracing). Notably, these articles at the
cusp where three major UNIX innovations meet: VFS, kernel
state reporting through pseudo-filesystems (e.g., /proc), and
support for different execution domains/ABI. These articles
described the control and data flows through a UNIX kernel’s
component layers and their interfaces in great detail well
before tools like DTrace and KProbes/SystemTap brought
tracing of such flows within common reach.

It is worth noting that the ELF structure of the kernel binary
image, the corresponding structure of the kernel runtime,
and their uses for reliably injecting code into a running
kernel (via writing /dev/kmem or via some kernel memory
corruption primitive). In 1998, the influential Runtime kernel
kmem patching [4] made the point that even though a kernel
may be compiled without loadable kernel module support, it
still is a structured runtime derived from an ELF image file,
in which symbols can be easily recovered, and the linking
functionality can be provided without difficulty by a minimal
userland “linker” as long as it has access to kernel memory.
Subsequently, mature kernel function hooking frameworks
were developed (e.g., IA32 Advanced function hooking [14]).

Dynamic linking and loading of libraries (shared binary
objects) provide another example. This is a prime example
of composition, implicitly relied upon by every modern OS
programmer and user, with several supporting engineering
mechanisms and abstractions (ABI, dynamic symbols, call-
ing conventions). Yet, few resources exist that describe this
key mechanism of interposing computation; in fact, for a
long time hacker publications have been the best resource
for understanding the underlying binary data structures (e.g.,
Backdooring binary objects [13]), the control flow of dynamic
linking (e.g., Cheating the ELF [34] and Understanding Linux
ELF RTLD internals [15]), and the use of these structures for
either binary infection (e.g., the original Unix ELF parasites
and virus) or protection (e.g., Armouring the ELF: Binary
encryption on the UNIX platform [10]).

A similar corpus of articles describing the bit paths and
layer interfaces exists for the network stacks. For the Linux
kernel stack, the Netfilter architecture represents a culmination
of this analysis. By exposing and focusing on specific hooks
(tables, chains), Netfilter presents a clear and concise model
of a packet’s path through the kernel; due to this clarity it
became both the basis of the Linux’s firewall and a long series
of security tools.

Not surprisingly, exploitative modifications of network
stacks follow the same pattern as other systems rootkits.
Passive Covert Channels Implementation in Linux Kernel [26]
is a perfect example: it starts with describing the interfaces



traversed on a packet’s path through the kernel (following the
Netfilter architecture), and then points out the places where a
custom protocol handler can be inserted into that control flow,
using the stack’s native protocol handler interfaces.

g) “Trap-based programming and composition”: In ap-
plication programming, traps and exceptions are typically
not treated as “first-class” programming primitives. Despite
using powerful exception-handling subsystems (such as GCC’s
DWARF-based one, which employs Turing-complete byte-
code), applications are not expected to perform much of
their computation in traps or exceptions and secondary to the
main program flow. Although traps are obviously crucial to
systems programming, even there the system is expected to
exit their handlers quickly, performing as little and as simple
computation as possible, for both performance and context
management reasons.

In exploit programming and reverse engineering (RE), traps
are the first-class programming primitives, and trap handler
overloading is a frequently used technique. The target plat-
form’s trap interfaces, data structures, and contexts are care-
fully studied, described, and modeled, then used for reliably
composing an exploit or a comprehension computation (i.e., a
specialized tracer of debugger) with the target.

The tracing and debugging subsystems in OS kernels have
long been the focus of hacker attention (e.g., Runtime Process
Infection [1] for an in-depth intro to the ptrace() subsys-
tem). Not surprisingly, hackers are the leading purveyors of
specializes debuggers, such as dumBug, Rasta Debugger, and
the Immunity debugger to name a few.

For Linux, a good example is Handling Interrupt Descriptor
Table for fun and profit [12], which serves as both a concise
introduction to the x86 interrupt system and its use on several
composition-critical kernel paths, as well as its role in im-
plementing various OS and debugging abstractions (including
system calls and their place in the IDT). This approach was
followed by a systematic study of particular interrupt handlers,
such as the Hijacking Linux Page Fault Handler [3].

Overloading the page fault handler in particular has become
a popular mechanism for enforcing policy in kernel hardening
patches (e.g., PaX and OpenWall); however, other handlers
have been overloaded as well, providing, e.g., support for en-
hanced debugging not relying on the kernel’s standard facilities
– and thus not conflicting with them and not registering with
them, to counteract anti-debugging tricks. Since both rootkits
(e.g., the proof-of-concept DR Rootkit that uses the x86 debug
registers exclusively as its control flow mechanism) and anti-
RE armored applications (e.g., Skype, cf. Vanilla Skype [6];
also, some commercial DRM products). In particular, the
Rasta Debugger demonstrates such “unorthodox debugging”
trap overloading-based techniques.

Notably, similar trap overloading techniques are used to
expand the semantics of classic debugger breakpoint-able
events. For instance, OllyBone6 manipulated page translation
to catch an instruction fetch from a page just written to, a

6http://www.joestewart.org/ollybone/

typical behavior of a malware unpacker handing execution
to the unpacked code. Note the temporal semantics of this
composed trap, which was at the time beyond the capabilities
of any debugger. A similar use of the x86 facilities, and
in particular the split instruction and data TLBs was used
by the Shadow Walker [33] rootkit to cause code segments
loaded by an antivirus analyzer to be fetched from a different
physical page than the actual code, so that the analyzer could
receive innocent data – a clever demonstration of the actual
vs assumed nature of x86 memory translation mechanism.

IV. CONCLUSION

Exploit engineers will show you the unintended limits of
your system’s functionality. If software engineers want to
reduce this kind of latent functionality, they will have to
begin understanding it as an artifact that supports the exploit
engineer’s workflow.

Software engineers should view their input data as “acting
on code”, not the other way around; indeed, in exploits inputs
serves as a de-facto bytecode for execution environments that
can be composed from the elements of their assumed runtime
environment. Writing an exploit — creating such bytecode —
is as structured a discipline as engineering “normal” software
systems. As a process, it is no more arcane or unapproachable
than the ways we currently use to write large software systems.

Yet, a significant challenge remains. If, as hinted above, we
want to have a practical impact on the challenge of secure
composition, can we actually train software engineers to see
their input parameters and data formats as bytecode even as
they specify it? Even as they bring it into existence, where it
is by definition partially formulated, can they anticipate how
it might be misused? Is this constant and frequent self-check
worth the effort, or should software engineers first build a
system without regard to analyzing anti-security composition
patterns?

REFERENCES

[1] (anonymous author). Runtime Process Infection. Phrack 59:8. http:
//phrack.org/issues.html?issue=59&id=8.

[2] Sergey Bratus, Michael E. Locasto, Meredith L. Patterson, Len Sas-
saman, and Anna Shubina. Exploit programming: from buffer overflows
to “weird machines” and theory of computation. ;login:, December
2011.

[3] buffer. Hijacking Linux Page Fault Handler Exception Table. Phrack
61:7. http://phrack.org/issues.html?issue=61&id=7.

[4] Silvio Cesare. Runtime Kernel kmem Patching. http://althing.cs.
dartmouth.edu/local/vsc07.html.

[5] Silvio Cesare. Shared Library Call Redirection via ELF PLT Infection,
Dec 2000.

[6] Fabrice Desclaux and Kostya Kortchinsky. Vanilla Skype. REcon
2006. http://www.recon.cx/en/f/vskype-part1.pd, http://www.recon.cx/
en/f/vskype-part2.pdf.

[7] Thomas Dullien. Exploitation and state machines: Programming the
”weird machine”, revisited. In Infiltrate Conference, Apr 2011.

[8] Justin Ferguson. Advances in win32 aslr evasion, May 2011.
[9] gera and riq. Advances in Format String Exploitation. Phrack Magazine,

59(7), Jul 2002.
[10] grugq and scut. Armouring the ELF: Binary encryption on the UNIX

platform. Phrack 58:5. http://phrack.org/issues.html?issue=58&id=5.
[11] huku and argp. The Art of Exploitation: Exploiting VLC, a jemalloc

Case Study. Phrack Magazine, 68(13), Apr 2012.

http://www.joestewart.org/ollybone/
http://phrack.org/issues.html?issue=59&id=8
http://phrack.org/issues.html?issue=59&id=8
http://phrack.org/issues.html?issue=61&id=7
http://althing.cs.dartmouth.edu/local/vsc07.html
http://althing.cs.dartmouth.edu/local/vsc07.html
http://www.recon.cx/en/f/vskype-part1.pd
http://www.recon.cx/en/f/vskype-part2.pdf
http://www.recon.cx/en/f/vskype-part2.pdf
http://phrack.org/issues.html?issue=58&id=5


[12] kad. Handling Interrupt Descriptor Table for fun and profit. Phrack
59:4. http://phrack.org/issues.html?issue=59&id=4.

[13] klog. Backdooring Binary Objects. Phrack 56:9. http://phrack.org/
issues.html?issue=56&id=9.

[14] mayhem. IA32 Advanced Function Hooking. Phrack 58:8. http://phrack.
org/issues.html?issue=58&id=8.

[15] mayhem. Understanding Linux ELF RTLD Internals. http://s.
eresi-project.org/inc/articles/elf-rtld.txt.

[16] mayhem. Understanding Linux ELF RTLD internals. http://s.
eresi-project.org/inc/articles/elf-rtld.txt, Dec 2002.

[17] Nergal. The Advanced return-into-lib(c) Exploits: PaX Case Study.
Phrack Magazine, 58(4), Dec 2001.

[18] James Oakley and Sergey Bratus. Exploiting the hard-working dwarf:
Trojan and exploit techniques with no native executable code. In WOOT,
pages 91–102, 2011.

[19] Aleph One. Smashing the Stack for Fun and Profit. Phrack 49:14.
http://phrack.org/issues.html?issue=49&id=14.

[20] palmers. 5 Short Stories about execve (Advances in Kernel Hacking II).
Phrack 59:5. http://phrack.org/issues.html?issue=59&id=5.

[21] palmers. Sub proc root Quando Sumus (Advances in Kernel Hacking).
Phrack 58:6. http://phrack.org/issues.html?issue=58&id=6.

[22] redpantz. The Art of Exploitation: MS IIS 7.5 Remote Heap Overflow.
Phrack Magazine, 68(12), Apr 2012.

[23] Gerardo Richarte. About Exploits Writing. Core Security Technologies
Presentation, 2002.

[24] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-Oriented Programming: Systems, Languages, and Applications,
2009.

[25] Dan Rosenberg. Anatomy of a remote kernel exploit. http://www.cs.
dartmouth.edu/∼sergey/cs108/Dan-Rosenberg-lecture.pdf.

[26] Jonna Rutkowska. Passive Covert Channels Implementation in Linux
Kernel. 21st Chaos Communications Congress, 2004. http://events.ccc.
de/congress/2004/fahrplan/files/319-passive-covert-channels-slides.pdf.

[27] Jan K. Rutkowski. Execution Path Analysis: Finding Kernel Based
Rootkits. Phrack 59:10. http://phrack.org/issues.html?issue=59&id=10.

[28] Len Sassaman, Meredith L. Patterson, Sergey Bratus, Michael E. Lo-
casto, and Anna Shubina. Security applications of formal language
theory. Technical report, Dartmouth College, 2011.

[29] sd and devik. Linux On-the-fly Kernel Patching without LKM, Dec
2001.

[30] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: return-
into-libc without Function Calls. In ACM Conference on Computer and
Communications Security, pages 552–561, 2007.

[31] skape. Locreate: an Anagram for Relocate. Uninformed, 6, Jan 2007.
[32] Alexander Sotirov. Heap feng shui in javascript. In Blackhat 2007,

2007.
[33] Sherri Sparks and Jamie Butler. “Shadow Walker”: Raising The Bar

For Rootkit Detection. BlackHat 2005. http://www.blackhat.com/
presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf.

[34] the grugq. Cheating the ELF: Subversive Dynamic Linking to Libraries.
althing.cs.dartmouth.edu/local/subversiveld.pdf.

http://phrack.org/issues.html?issue=59&id=4
http://phrack.org/issues.html?issue=56&id=9
http://phrack.org/issues.html?issue=56&id=9
http://phrack.org/issues.html?issue=58&id=8
http://phrack.org/issues.html?issue=58&id=8
http://s.eresi-project.org/inc/articles/elf-rtld.txt
http://s.eresi-project.org/inc/articles/elf-rtld.txt
http://s.eresi-project.org/inc/articles/elf-rtld.txt
http://s.eresi-project.org/inc/articles/elf-rtld.txt
http://phrack.org/issues.html?issue=49&id=14
http://phrack.org/issues.html?issue=59&id=5
http://phrack.org/issues.html?issue=58&id=6
http://www.cs.dartmouth.edu/~sergey/cs108/Dan-Rosenberg-lecture.pdf
http://www.cs.dartmouth.edu/~sergey/cs108/Dan-Rosenberg-lecture.pdf
http://events.ccc.de/congress/2004/fahrplan/files/319-passive-covert-channels-slides.pdf
http://events.ccc.de/congress/2004/fahrplan/files/319-passive-covert-channels-slides.pdf
http://phrack.org/issues.html?issue=59&id=10
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
althing.cs.dartmouth.edu/local/subversiveld.pdf

	Introduction
	A Tale of Two Engineering Workflows
	The Software Engineer
	The Exploit Engineer

	Patterns
	Conclusion
	References

