
Beyond Planted Bugs in “Trusting Trust”: the

Input-processing Frontier

Sergey Bratus, Trey Darley, Michael Locasto, Meredith L. Patterson,
Rebecca ’bx’ Shapiro, Anna Shubina

DRAFT

It’s been nearly thirty years from Ken Thompson’s “Reflections on Trusting Trust” and its
famous verdict that “You can’t trust code that you did not totally create yourself.” If there is one
practical lesson that the Internet taught us since then, it is that one cannot even trust one’s own
code so long as that code meets arbitrary inputs from the Internet. Sooner or later a mixture of
bugs or features turns the connected code into an execution engine for hostile inputs – indeed, it
was sooner rather than later for the original Internet daemons.

Over time, exploitable bugs became more complex, exploit payloads more sophisticated. Their
composition first showed aspects of an art and then of a solid engineering process. Still, with a few
exceptions, code connected to the Internet cannot be trusted.

Even though everything Thompson predicted, including well-placed microcode bugs, has come
to pass, there seems to be no need for a malicious entity to insert bugs into the software most of
us use daily on the Internet. The input-subvertible bugs are already there. When a mechanism
used for subversion is dealt with (as happened to the executable stack and predictable uniform
address space layout), bugs simply seem to migrate to another protocol or layer. Input is still just
as dangerous as it was for early implementations of SMTP and DNS.

1 Every input is a program

Information is instructions. We can conceive of information in two ways. First, we can rely on
our common and traditional notion of information as some kind of inert data object (for example,
think of a multimedia file – our current biases assure us that surely this is the most inert type of
data there can be; after all, it is data about pixels or sound waves, is it not?). Second, and in fact
much closer to objective reality, is that all data is a stream of tokens of almost arbitrary complexity,
and this stream of tokens is actually a sequence of instructions to the parser of that language. We
therefore get the maxim of data operating on code — not code operating on data!

There is a deeply theoretical reason for this: every input is in fact a program for its target. It’s
a program in the same sense as the input being matched to a Regular Expression is the program
for the automaton underlying the implementation of that RegEx: the input drives the automaton
through its states and transitions. It’s also a program in the same sense as the content of a Turing
machine’s tape is a program for that machine as well as its input. Consuming input—any input—
causes the consuming code and the underlying memory and processor to change state, typically on

1



several levels of abstraction at once. In short, input drives the target through a computation. A
program is as a program does.

Some inputs are very simple programs and cause very simple changes of state. Regular expres-
sions are quite manageable: we write them specifically to match inputs and make sure no other
states than those of the regular expression automaton can be entered while matching. But the more
complex the input, and the more ad-hoc the parser code, the less sure we can be of what states the
code is capable of.

In other words, when we are presented with complex enough inputs and ad-hoc code to handle
them, we don’t fully know what kind of an automaton is there inside them and being programmed.
Indeed, exploits are living, pwning proof that the induced computation can stray very far and all
the way to root shell.

The message is the machine. Perhaps a more general way of stating the relationship between
information and code is that every discrete “message” passed between computers, network nodes,
or program elements or components (files, objects, function parameters, network packets or frames)
implicitly follows some grammar. The tokens and constructs of the grammar drive the execution
of the intended functionality present in the processing code.

But besides that programmer-intended functionality, there is also latent functionality that often
holds far more power than the programmer either intended or understands, and it can be trig-
gered by particular alignment of input tokens. This latent functionality exists due to a number of
sources. Two such sources among many others are (1) emergent properties due to the composition
of various code components and (2) compiler- or runtime-inserted artifacts aimed at supplying a
“full–featured” execution environment.

The practical outcome is that programs often have access to much greater computational priv-
ilege than they need, and an attacker is often able to find and expose this latent functionality.
Once the attacker succeeds, there go any security perceptions, testing outcomes, or trustworthiness
assumptions a program’s owner might hold.

From untrusted code to untrusted data. Thus Thompson’s caution that “No amount of
source-level verification or scrutiny will protect you from using untrusted code” (and all the grand
decidability theory behind it) may as well apply to inputs fed to ad-hoc code. Since input may
in fact achieve full Turing-complete power with the help of the code that it drives, no amount of
“verifying” the input prior to it entering the system may help. This spells doom for trust in any
code that is ad-hoc, complex, and connected. This doom is apparently on our doorstep.

Coming back to Ken Thompson’s “Reflections on Trusting Trust”, the trick to restoring trust
in code after these nearly thirty years turns out to be not just avoiding bugs, planted or accidental.
It’s about writing input-handling code in such a way that the effects of any inputs on it can be
verified by examining the inputs (unlike programs, for which it’s generally impossible). This means
starving the input of its power to induce computation in, to exploit the handling code. Only very
simple programs for very simple architectures submit to automatic reasoning about their effects
(for programming languages, such reasoning is called verification, a form of static analysis). Hence
input-handling code and inputs, which are programs for this code, must both be simple in order to
allow such reasoning. Only then we’ll be able to fully trust the inputs as programs not to hijack
the code. Formal language theory conveniently defines some such classes.

2



Verification vs. Validation. This creates an fundamental connection between what theory
calls input validation and code verification. Validation is the process to decide whether input is as
expected; verification is about proving that, granted the expectations, the code will have correct
properties. Validation seems to be easy, but specifying expectations and picking properties can be
hard, because too general propeties of code are known to be impossible to algorithmically prove or
verify. A quandary arises.

Treating input as a program (as exploitation does) leads us out of this quandary. We ask, can
we verify inputs as programs, in terms of their effects on the target? The problem seems harder, but
solving it is necessary to deny exploitation by input. The only answer then is to keep the language
of inputs to a simple enough model — say, to regular expression strength, or to deterministic
context free (equivalently, deterministic pushdown automaton) strength if recursive nesting of data
structures in the input is needed – and to write the code that validates it accordingly. Then the
code will be verified and the input will be validated by that code, without fear of extra states and
of the eloping computation.

Bob is bytecode, too Cryptography has a special place in trust, but systems that use it must
also deal with parsing. Depending on the cryptographic protocol and network transport, some of
this parsing must happen before the actual origin of the message is assured. Thus Bob, or, rather,
Mallory, may try to drive the parser with crafted data, just as any other parser. In other words,
even Bob might be bytecode.

2 Beyond bugs in “trusting trust”

Bugs resulting from unconstrained parsing or incomplete and unsound recognition of data streams
are the most familiar way for software to be untrustworthy, but they are not the only one. Even if
we somehow eliminated all memory corruption bugs in individual input handlers, significant issues
will remain. Not surprisingly, they are also related to computation and recognition.

Destructive disagreements. Simply put, whenever two input parsers are involved, a disagree-
ment between them about an input may destroy trust, although both parsers accept it safely.

This effect is particularly devastating if certificates or signatures are involved. The disagreeing
parsers may reside on different systems, as was the case with X.509 Certificate Authorities and
browsers that saw different domain information in the Certificate Signing Request and the signed
certificate respectively. In that example, the CA’s parser interpreted the CSR to contain an innocent
domain name and signed it, whereas the browser’s SSL client interpreted the same data to be a
high value domain name.

Alternatively, the parsers may reside on the same system as parts of a binary toolchain, such
as the package signature verifier and the package installer in the case of the recent Android Master
Key bugs. The latter featured a Java library cryptographic signature verifier and a C++ installer,
both of which interpreted the compressed archive – but disagreed regarding its contents. As a
result, unsigned content could be installed.

This problem is potentially present in chains of trust wherever signatures of objects must be
checked. For software engineering reasons, both the signature and the signed object tend to be
contained in packages with non-trivial packaging formats. Their respective locations inside the

3



package are computed from the package metadata – and thus correctness of signature verification
depends on the correctness and agreement of metadata interpretation by all components.

It’s entirely natural to break out cryptographic verification into a module or even a tool separate
from other package-related operations; the Unix philosophy of small tools doing one thing well
may even encourage this. Still, separate modules mean separate parsers, and the danger of them
diverging enough to break trust. “What good is a signature, Mr. Anderson, if you can’t really see
the document?”

Metadata malicious, mutable. Since automatic reasoning about code is generally hard, we
simply sign code and later check signatures to convince ourselves that it hasn’t changed since
signed by someone we can trust to not tamper with it. Still, this ignores the engineering reality
that the code will actually be re-written and combined with other modules, which may completely
change the properties of the overall program image.

As software engineering gets more complex (remember statically compiled executables? Try
finding any on your system!1), so do transformations of binary code and data. For example, relo-
cation of binary code used to mean patching of absolute addresses in it to account for loading the
code at a different address than compiled for. Now there are over a dozen types of relocations, and
the GNU/Linux code that applies them closely resembles a VM’s implementation of a bytecode.
On Mac OS X, relocation entries are bytecode, designed to be executed by a virtual machine. In
gets better – perfectly well-formed relocation entries are in fact Turing-complete in a standard
ELF-based GNU/Linux environment, and the same is likely true for Mach-O and PE formats.

Unexpected, powerful execution engines lurk in other standard environments. DWARF-based
exception handling also turns out to be Turing-complete. Perhaps more surprising is the x86
address translation mechanism that composes physical memory frames into the abstraction of a
virtual address space – its logic, fed by page tables, interrupt descriptors (IDT), memory segment
descriptors (GDT) and 32-bit hardware task switching descriptors turns out to be Turing-complete!

All of these “tables”turn out to be programs for their respective interpreter logic (software or
hardware), capable of arbitrarily transforming supposed the signed code supposedly “frozen” in
a trusted state. Unless all these kinds of “table” metadata are watched and can be effectively
reasoned about, the transformed code can hardly be trusted.

This, as before, means that software engineering metadata that goes into composing multiple
pieces of code into a single runtime image must stick to the simplest possible formats – or else
themselves be treated as code, and their immutability assured with strong cryptography and un-
ambiguous ways of locating them and their signatures. Sounds a bit like chicken-and-egg problem,
does is not? Simplifying these data and their respective parsers to verifiable strengths suddenly
sounds like a better deal for trust chains.

The packet is the program. A common source of trust failures resides in the dialects of message
formats, from network packets to package files, that are mutually mis–understood by communicating
programs or layers. Such mutually distinct dialects offer the opportunity to craft messages that
peers will understand differently. The consequences are often devastating for any trust or security
assumptions that rely upon the correct and coordinated perception and processing of these messages.

Interpretation is essentially a computation driven by the message. As bits of a message are
consumed by the code that handles them, computation caused in that code produces whatever

1OpenSolaris simply removed the static compilation option years ago https://blogs.oracle.com/quenelle/

entry/solaris_10_ack_where_did, and Linux distributions such as RedHat/Fedora discourage it.

4



subsequently passes for the message’s meaning. Although different computations may produce the
same result, so far as the consumer of that result is concerned, the safest way to be sure that two
systems interpret a message equivalently is to require that the computations caused by this message
on these systems are equivalent.

For messages that are programs in a Turing-complete language, the problem of checking equiv-
alence is as hard as halting problem. Such messages, a.k.a. programs that can be proved by an
algorithm to cause equivalent computation, must in fact be even simpler than the programs about
which we can decide whether they halt or not. Thus the message format that we want to assuredly
parse the same on different parsers must be simple enough as a language; and so must be its
respective handling code.

There can be no chain-of-trust in Babel. By definition of a chain, we expect the chain of
trust to consist of several links, each a separate piece of hardware or software. Still, they are to
see through the trustworthy execution of the same binary content, even though they have different
views of it, at different depths of interpretation.

When the format of the trusted content allows for ambiguity or implicit assumptions, a Babel-
like explosion of dialects and interpretations becomes a danger. Once that happens, the links of
the trust chain may no longer agree on what content they safeguard, leading to breaches. There
can be no chain of trust in Babel.

This potential for divergent recognition arises in most input processing activities far beyond the
exchange of packets and packages: object serialization, command sequences passed through ioctl’s,
security–processing of event token streams such as system call sequences, or intrusion alerts (i.e.,
SIEM), the parsing and interpretation of input to security proofs or proof infrastructures, etc. A
particularly interesting area is the AI area of “malicious argumentation”, where the goal is for an
adversary to offer specious but well–formed arguments that cause the victim to take an incorrect
or sub-optimal decision.

3 So can we fix it?

5


