Why Wassenaar Arrangement’s Definitions of “Intrusion Software”
and “Controlled Items” Put Security Research and Defense At Risk

Sergey Bratus, Michael Locasto, Anna Shubina
July 23, 2014

1 Definition of “intrusion software” and “controlled items” in
Wassenaar Arrangement

Wassenaar Arrangement (WA) uses a two-step conceptual structure to capture the kinds of surveillance-
related software it purports to control. First, it introduces the concept of “intrusion software”, which it
defines as

Software specially designed or modified to avoid detection by ‘monitoring tools’, or to defeat
‘protective countermeasures’, of a computer or network capable device, and performing any of
the following;:

a. The extraction of data or information, from a computer or network capable device, or the
modification of system or user data; or

b. The modification of the standard execution path of a program or process in order to allow the
execution of externally provided instructions.

This new class of software so defined is very broad and fundamental. As we will show it not only covers
software known in computer security jargon as ezploits and rootkits, but in fact all elementary means of
software instrumentation, construction, and deconstruction outside of the software’s pre-defined interfaces
for these purposes—despite explicitly excepting “hypervisors, debuggers or Software Reverse Engineering
(SRE) tools” in the note to the above definition.

However, WA does not directly control this new class. Instead, it defines a second—controlled—class of
software and systems derived from the “intrusion software” class, namely those associated with “generation,
operation or delivery of, or communication with, ‘intrusion software”’ and those for its “development” and
“production.” In particular, subjected to control are:

4. A. 5. Systems, equipment, and components therefor, specially designed or modified for the
generation, operation or delivery of, or communication with, “intrusion software”.

4. D. 4. “Software” specially designed or modified for the generation, operation or delivery of,
or communication with, “intrusion software”.

4. E. 1. ¢ “Technology” for the “development” of “intrusion software”.

“Software” specially designed or modified for the “development” or “production” of equipment
or “software” specified by 4.A. or 4.D.

“Technology” according to the General Technology Note, for the “development”, “production”
or “use” of equipment or “software” specified by 4.A. or 4.D.

The apparent rationale for this two-step definition is that attempting to control elements of malware
as such would inhibit communication between malware researchers and discovery of new vulnerabilities (a
judgment we agree with), while controlling the second class derived from the first would limit WA’s control
to means of developing and delivering malware.!

LWe take this explanation from https://www.privacyinternational.org/blog/export-controls-and-the-implications-for-security-resea
update



Unfortunately, this two-step structure causes more problems than it solves. By starting with an overbroad
definition of the “intrusion software” class that serves as a basis for the second definition, it subjects to
control the primary known means through which research and engineering progress has been made in all
known aspects of software, including security. These means, as we show in Section 4, are automation of
generation and operation of software elements.

If we recognize that the first class of software, despite containing potential building blocks of malware,
must not be chilled for the same of research and deepening our understanding of software flaws, then we must
recognize that the very means by which it is advanced—automation of generation and operation—should
not be chilled either. Moreover, chilling these means will cause more harm and more power imbalance in the
long run, because freezing engineering progress of software undoubtedly favors existing power players and
protects them from disruptive technologies developed by small private parties.

We first discuss why the (uncontrolled) “intrusion software” class is too broad and why exceptions written
into it don’t help. We then look at why definition the controlled class of technologies based on the present
definition runs against the fundamental trend of engineering progress, and is therefore an ever bigger danger.

2 Why “intrusion software” definition has wrong granularity that
exceptions cannot fix

Wassenaar Arrangement defines “intrusion software” (and thus also “controlled items” for “generation, oper-
ation or delivery of, or communication with” or “development” of “intrusion software”) in terms of fundamen-
tal operations of computer science research and software engineering (generally speaking, as fundamental as
operations such as taking roots, proof-by-contradiction, or variable substitution are to mathematics). These
operations are present in all non-trivial innovative software (see Section 5) and are critical for pushing
state-of-the-art security research (and not only security research) forward; they are especially critical for
improving defense. At the same time, exceptions to these definitions (”Hypervisors, debuggers or Software
Reverse Engineering (SRE) tools; ...”) are at a different, much higher level of whole programs or products
built for a particular purpose.

Complex software is built in multiple levels of aggregation and composition. Innovation entails aggre-
gation and composition in unforeseen combinations, at many levels. Thus WA essentially whitelists some
combinations and compositions (those that are seen as important to software engineering today) but not the
myriad of others (which will become equally or more important tomorrow).

The excepted programs or products contain both components with functionality labeled “intrusive” and
other components. For example, a debugger contains software for “modification of the standard execution
path of a program or process in order to allow the execution of externally provided instructions”—such as a
module that injects breakpoints to divert control of the debugged program or device—and a GUI. Without
a GUI, the breakpointing software component could be considered “intrusion software”; a reasonable judge
who had even practiced debugging with an integrated production debugger may be swayed by the argument
that software that lacks a GUI is not a debugger and thus not excepted.

Yet it is in these execution-modifying (or “execution-hijacking”) components that progress in debugging
tools—and thus in observability and, in turn, in security of software—is made. For example, Microsoft’s
release of its Detours library was a significant step forward. Detours’ description by Microsoft fits both
“intrusion software” and “controlled items” WA language.

“Detours intercepts Win32 functions by re-writing the in-memory code for target functions. The
Detours package also contains utilities to attach arbitrary DLLs and data segments (called pay-
loads) to any Win32 binary.” —http://research.microsoft.com/en-us/projects/detours/

Detours can be used as a component of a debugger or as a part of malware. For example,

Malware authors like Detours, too, and they use the Detours library to perform import table
modification [standard technique of diverting standard execution paths into new code/commands
supplied by a Detours user], attach DLLs to existing program files, and add function hooks to
running processes.



Malware authors most commonly use Detours to add new DLLs [containing their malicious
code/commands] to existing binaries on disk. [discussion of various malware authors’ techniques
follows]

— Practical Malware Analysis, Michael Sikorski and Andrew Honig, No Starch Press, 2012, page
262, Chapter 12.

Detours implements the pattern of modifying the execution path of other programs known as “hooking”.
Hooking is a basic pattern that is used ubiquitously for all kinds of software composition. It is used for
debugging, instrumentation, and performance tuning of software, as well as for patching vulnerabilities in
it, and for upgrading software that has been shipped with no dedicated upgrade mechanism (an important
security capability for legacy software, such as software that runs critical physical infrastructure).

Moreover, Detours is popular with developers, because

the Detours library makes it possible for a developer to make application modifications simply.
—Ibid.

The hooking pattern implements the fundamental software engineering operation of composing software
with other software. For this reason, it is implemented by a great variety of software, with a wide range of
techniques and uses. Often the hooking software is developed and released separately; sometimes it is also
released together with management tools and automation tools.

Detours also includes a management component for its means of modifying the execution path, and
for automating the actions that deploy these means. These components would fit the WA definition of
controlled items, since they help operate, manage, and automate application of Detours’ means of execution
path modifications.

2.1 Bypassing “protective countermeasures”.

Wassenaar language targets “defeat[ing] protective countermeasures”, explained in a footnote as “techniques
designed to ensure the safe execution of code, such as Data Execution Prevention (DEP), Address Space
Layout Randomisation (ASLR) or sandboxing.” But what does “defeating” mean? This language appears
to include any software composition (such as patching or jailbreaking) that work reliably on systems with a
“protective countermeasure” enabled.

ASLR. For example, the point of ASLR is to make the location of various software components when
loaded into the memory of a computer less predictable. To patch such software while it’s running (such
patching is known as hot-patching, used for servers and other devices, including mission-critical devices that
are expected to operate 24/7), the patching software typically scans the computer’s memory and identifies
the addresses (locations) that were “randomized”.

This memory scanning technique is one of the most fundamental research and engineering operations.
Software that performs this non-trivial operation and looks for patterns in memory can be developed and
distributed on its own, or with other components such as pattern-matchers for memory contents or memory
visualizers. In any case, it can be said to “defeat” ASLR, by making available to its operator the information
obscured by ASLR; a reasonable judge familiar with technology would find this statement true at face value.

For example, the F.L.I.LR.T. technology is used by IDA Pro, a reverse engineering tool to locate library
functions, which are obscured by ASLR. F.L.L.R.T. is identified by the tool’s maker as a separate technology.?
Since its publication, other software based on the same principles and dedicated to the task of scanning
memory at runtime has been developed by various parties and has aided in a variety of applications such as
forensics and hot-patching.

The operation of scanning memory to locate specific software components is too fundamental and low-
level to ascribe to it any intent or any specific use; yet it “defeats” the obfuscation imposed by ASLR by
definition.

’https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml



Sandboxing. Sandboxing is a key engineering practice of limiting a program or a device in its access to
system resources. However, since the engineering practice is so generic and ubiquitously used, bypassing the
restrictions of a sandbox is also frequently used.

For example, jailbreaking of mobile phones to bypass manufacturer restrictions “defeats” sandboxing.
To make it easy for non-technical users to jailbreak and “unlock” their iPhones, developers of the jailbreak
delivered the jailbreaking commands through a browser exploit (altering the execution path of the browser
software); the user merely had to navigate to a webpage to get the jailbreak take effect (delivered).

All of these activities, including those allowing users to customize and protect their phones, would be
covered by WA language.

3 Automated Exploit Generation

WA control lists specifically target “generation” and “development” of “intrusion software”. Thus they apply
directly to generation of exploits, which are means of modifying the execution path of software.

Automatic generation of exploits is a rapidly developing direction of security research. The promise
of this field is to identify and prioritize security-critical software bugs so that they can be eliminated.
Prioritization is important, because modern complex software contains a multitude of bugs, many of which
are not exploitable; demonstrating that a bug is exploitable generates the exploit, which scientifically and
incontrovertibly proves this fact. In the words of the leading academic group that coined the term AEG,

The generated exploits unambiguously demonstrate a bug is security- critical. Successful AEG
solutions provide concrete, actionable information to help developers decide which bugs to fix
first.

Although the name “Automatic Exploit Generation” (AEG) does not suggest it, AEG is in fact a task
closely connected with software verification, a research and engineering methodology that uses formal meth-
ods to secure software. Continuing the above quote:

Our research team and others cast AEG as a program-verification task but with a twist [..].
Traditional verification takes a program and a specification of safety as inputs and verifies the
program satisfies the safety specification. The twist is we replace typical safety properties with an
“exploitability” property, and the “verification” process becomes one of finding a program path
where the exploitability property holds. Casting AEG in a verification framework ensures AEG
techniques are based on a firm theoretic foundation. The verification-based approach guarantees
sound analysis, and automatically generating an exploit provides proof that the reported bug is
security-critical.

—Automatic Ezxploit Generation, by Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J. Schwartz, Maverick Woo, and David Brumley, Communications of the ACM, February
2014, Vol. 57, No. 2, p. 74

In a nutshell, AEG is a promising method of containing vulnerabilities that is based on firm theoretic
foundation of proven computer science.

As with fuzzers, development of industry-strength AEG engines starts with prototypes built by individual
researchers or academic groups, but then moves to commercial startups to accommodate the scalability,
performance, and other engineering challenges that require dedicated effort of professional developers. Yet
this is also the stage in which such research produces its most fundamental results and proves its ability to
handle real-world software. Chilling AEG would severely set back defense.

4 Why WA control items will impede progress of software security

We referred earlier to the apparent rationale for the WA language not controlling so-called exploits or rootkits,
but instead controlling the software that is used to “generate” or “operate” or “deliver” exploits, and to
develop all the above.

Several points must be made about this language:



1. Tt presents fundamental obstacles to engineering progress of security tools, and to offensive research in
particular.

2. Its practical application to actual research and engineering artifacts used in offensive research is just
as vague as that of “intrusion software” or potentially even more vague.

This language presumes a clear boundary between programs that implement a particular software func-
tionality and the programs used to create such implementations. In reality, no such clear boundary exists.

The structure of classifying software and the way that software progresses is misconstrued in the under-
lying concepts of the supposed dichotomy. In fact, all of our technical examples above easily fall into the
controlled category of “intrusion software” enablers!

Progress in software engineering is being made by abstracting functionality from products first into
libraries and then into domain-specific languages and development tools. Early computers took a single pro-
gram (modern low-end microcontrollers still do), later computers required a specialized program to operate
other programs; this program is now known as an operating system. Early programs were written in the
basic commands of the computer, and realized basic conceptual elements of programming such as loops and
conditionals in these basic commands; later programs were written directly in terms of these conceptual ele-
ments, and required specialized programs to generate the actual basic commands or to emulate them. These
specialized generating programs became respectively known as compilers, interpreters. A middle ground
was taken up by “virtual machine” programs, such that run automatically generated hybrid “bytecode”
commands for Java and .Net programs and at the same time “operate” them.?

Thus parts of functionality continually move from programs to the libraries (which standardize both
operation and programming) and the “tools”, and specifically by way of tools “learning” how to generate
what used to be code in the main program body.

Without this migration of logic from programs to “development tools”, without thus abstracting away the
complexity, progress in programs is impossible. But under WA logic, this migration would create controlled
items even if the programs themselves are not controlled. Thus abstraction, the key means of deepening our
understanding of both engineering and research issues, will be chilled.

When does code for some functionality stop being a part of an uncontrolled program and becomes a con-
trolled “tool”? Does this happen when it moves to a library? A shared library? A piece of environment that
must be present for the main program to operate? When it moves into a tool to be generated automatically
from an abbreviated instruction or statement or code line in the program?

Moreover, not every code that is automatically generated is generated by a compiler. It may be generated
by several levels of scripts from templates, by a Makefile, or a scripted build, by any part of the build system,
and so on. Present day’s build systems are complex and multi-layered, and each layer creates automatically
generated code. There are no clear boundaries where code templates end and “generated” code begins.

It is only thanks to this progression of automating operation and generation of programs that we were
able to advance from relatively small and simple programs to the present state of software engineering and
research.

Security research follows the general pattern of software engineering. There is broad recognition
among security researchers that the better, more principled kind of defenses that common operating systems
employ now, commercially known as DEP, ASLR, EMET, and others are a result of co-evolution of offensive
research and defensive systems research.

Advancement of offensive research, key to this co-evolution, required substantial engineering investment—
into exactly the kind of “generation” and “operation” aspects of offensive software. In full accord with the
general trend described above, so-called exploits and rootkits went from entirely hand-coded for the occasion
to use of libraries, then to specialized compilers, build systems, interpreters, and remote proxying designs
comparable with production virtual machines emulators.

For example, initial defenses against the Return-Oriented Programming techniques (so known since the
academic publications of 2007-8, but known to offensive researchers since at least 1999-2000) did not take
into account the fact that finding of the snippets of code in the target that were composed by the attacker to
program the target without introducing any binary code could be automated. While it was clear to security

3Such are the Java VMs inside web browsers and inside Android phones.



researchers experienced in offense that automation was possible and likely, and also that a skilled attacker
would need far less than complete automation to bypass existing defenses, the threat was not so clear to
vendors.

It took building actual ROP compilers software to perform these tasks automatically and in a platform-
independent manner to present the defenders with a proper yardstick for testing their actual and proposed
system defenses. Yet ROP compilers clearly fall among the WA controlled items.

FILL Fuzzers?

Automating operation and generation of code is the only way of making progress. Operational
automation and generation of code by tools is how software engineering makes progress. They enable us
to write larger programs, but that is less than half of the story—they also enable us to see what actual
challenges and possibilities come to the forefront when we reach each level of scale and complexity.

It used to be that the job of system administrators was to manually enter commands to operate systems
in their care. Automation of these commands in common operational scenarios was what made Cloud
Computing possible (while dropping costs of hardware made it economically feasible in its present form).
Automation is at the core of every engineering advance; in computing, it is generation of logical commands
or code that gets primarily automated.

Law that creates obstacles to automating operation and generation of software—any software—impedes
the key means by which computing progresses. If the class of software that is broad—as “intrusion software”
as currently defined is, being essentially unapproved composition—then restricting automation of operation
and generation of this kind of software is going to catch all the practical ways to make engineering progress
in this software.

Essentially, such restrictions seeks to freeze the evolution and understanding of the so-called “intrusion
software” in its present state. This will create gaps in understanding and ability between actors who can
afford the chill and those who cannot, such as private parties, small companies, startups, and small groups
of research, and individual researchers.

The proposed approach will fail to protect both security researchers and the basic conditions for progress
in security engineering.

5 Chilling of innovation, a long-term take

In a long-term perspective, all innovative software is “intrusion software”, inasmuch as it relies on composi-
tion. Composition is what people do with software from its inception to application; it defines all interesting
systems. “Intrusion” is unforeseen, unexpected, or unapproved composition—otherwise known as innovation.

In the classic realms of expressive works—copyrighted texts, music, and other arts— “Fair use” is unap-
proved compositional intrusion on pre-existing material, and one of the fundamental exceptions to requiring
prior approval. The realm of systems engineering needs a protection equally strong to evolve.

Engineers and researchers being liable for creating “intrusive” tools branded as violating copyright is
seen as a chilling effect on innovation. Similarly, engineers and researchers working on techniques painted
as intrusive should enjoy similar protections, for similar reasons. Construction of “intrusive” unapproved
mash-ups should be no crime, but an ordinary and protected means of gainful employment (being, as it were,
an engineering discipline right on the innovation trajectory).

The nature of engineering is creative reuse and pushing the limits, unexpected applications of existing
products (not just ideas). Unapproved composition is at the heart of innovation.

Innovation is unapproved composition. In software, we know it as “exploitation”. In software, any
composition for which dedicated interfaces were not foreseen, pre-designed, envisioned, or provided is “ex-
ploitation”. It’s impossible for a designer to foresee all uses of a technology, or most productive uses, or
even the primary use a decade from now — who could have predicted the WWW when designing multiuser
machines? Inventors of the telephone envisioned its profit model as receiving information services from a
central office, not as overwhelmingly a means of private conversations. When a monopoly manages to enforce
an envisioned set of uses for an extended period, stagnation results.

In the case of security and privacy, stagnation at the current point would mean the status quo of ubiquitous
insecurity and institutionalized imbalance of power between the state and the citizens, between well-funded



attack and resource-constrained defense.
Even though a Hollywood view of “exploitation” is that of enabling cinematic attacks, exploitation
enables defense by orders of magnitude stronger.



