Intent Semantics in the ABI

Sergey Bratus, Julian Bangert

Outline

From faulty classic policies to a new sweet spot
ABl-level objects and security policy

ABl-level policy examples

Why this works on x86

Future directions

Traditional Security

e [raditional security models assume:
* One process does one thing

e Static bag of permissions for the
entire process

 Usable at any point, in any order,
any number of times

fJS Is your OS5, what is your
reference monitor?

e |syour data in objects you can label?

* Doesit even touch any filesystem?

Valuable

o | Objects
e |fitis, can you trap on access to it?

* Doesit ever go through a syscall or ?
VM lookup?

Virtual memory

 ForDOM: Is Same Origin even the right
labelling scheme?

MMU

A Process IS a process Is a
DroCess

Fora "task’, the "bag of permissions’ model is
adequate. For a "process’, it isn't

A "process” goes through changes over time
Yetin policy we treat it as just a "task”, monolithic
Thisis wrong and counter-intuitive

What are the "units’ or ‘phases” of a process?

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

//www.tomdalling.com/blog/software-design/solid-class-design-the-liskov-substitution-principle

http://www.tomdalling.com/blog/software-design/solid-class-design-the-liskov-substitution-principle/

Process phases

>
HandleError
@ /

 'Phase’ ~ code unit ~ EIP range ~ memory section

'Some thoughts on security after ten
vears of gmail’, D.J. Bernstein, 2007

Used process isolation as security boundaries

o Splitfunctionality into many per-process pieces
Enforced explicit data flow via process isolation
Avoided in-process parsing

Least privilege was a distraction, but isolation worked

http://cr.yp.to/gmail/gmailsec-20071101.pdf

Traditional Security vs.
Modern Software

e Softwareis complicated, integrates many functions
e "The ™ Shopping App Now Backs Up Your Photos"

* Highengineering costs to manually isolate
components/functional units a-la gmail

e Semantic subdivision occurs at ABI section level
e Code & data sections reflect different intent

e Functionalunits ~ ABI semantic units

Policy Granularity: ABI is the
Sweet Spot

security relevance

"sweet spot”

engineering
tractability

T ! T

Processes and files binary format sections lines of code,

specific variables

INntent-level semantics

* "The gostak distims the doshes’
-- Andrew Ingraham, 1903

* Non-dictionary words, English grammar
e Semantics == relationships between terms

* Relationships between code & data sections
reflect their intent, often uniquely

Access relationships are key
to programmer intent

* Unitsemantics ~ Explicit data flows (cf. gmail)

Separation of concerns in
OS engineering practice

 Sections describe the intent of code and data
 Example: Dynamic linker/loader operates on

e GOT inELF, function stubs in PLT

* |AT, import & export data tables in PE

Enforcing

e Modern OS loaders discard section information
e New architecture:

* 'Unforgetful loader’ preserves section identity
after loading

e Enforcement scheme for intent-level semantics

e Bettertools to capture semantics in ABI

Motivating Example

Example policies

* Web application decompresses a PNG file

e Mental model

libpng

What attackers see

no-longer-private

private key g

malicious .PNG PNGfile

lib oNg Bitmap with leaked
data
w/ bugs

Or

Bitmap overwrites

Authorized keys critical data

PNG file, with

malicious .PNG exploit

Mapping it into the ABI

libssl|.data private key

ibpng .input BEElEEENENE

ibpng .outpu

 Easyto introduce new sections

Each code segment can get
different permissions

Only libssl.text can access
ibssl.data

ilbpng.text can only access
ilbpng.input and libpng.output

And libpng.input can only be
read by libpng.

Back to our example

<
libpng app logic

SSL keys Input buffer Output buffer

Self-Operating Napkin

The Implementation

http://upload.wikimedia.org/wikipedia/commons/a/a6/Professor_Lucifer_Butts.gif

Implementation on X86

Prototype on Linux with X86 virtual memory

Each state of execution sees a different subset of the
address space

Traps handle state transitions by changing CR3
Each state has its own page tables that cache part of
the address space, reusing existing TLB invalidation

primitives.

Use PCID on newer processors to reduce TLB misses

Prototype:
Cloud to the rescue!

* Performance hit still rather bad: 30% on simple
NGINX benchmark isolating all libraries

* Joomany state transitions on the hot path
* Policy must be adapted to application structure
e [essoverhead (~15%) when running on KVM

« KVM already incurs performance costs, so we
don't have to suffer them

« KVMalso optimizes virtual memory handling

Binary Rewriting lools

* Policyinjection through metadata rewriting:
* Mithril, currently only implemented for ELF

 [ranslates binaries into a canonical form that is less
context-dependent and can be easily moditied

 Jestedon the entire Debian x86_64 archive,
producing a bootable system

« ~25GB of packages

Future directions

* Working on enforcing ELFBac-style policies with CFl
* Implementationto ARM (because phones rule!):

 Domain Control Register: 16 sub-spaces that can
be disabled/enabled without flushing caches

e Canhandle a sub-lattice of an ELFbac policy
to reduce supervisor entries.

« Would have to run all user space under virtualiz ,L.’Z"
In kernel mode

lakeaway

* Per-processbags of permission are no longer a
suitable basis tfor policy

* |nstead, ABl-level memory objects at process
runtime are the sweet spot for security policy

* Modern ABls provide enough granularity to capture
programmers intent w.r.t. code and data units

* |Intent-level semantics compatible with ABI,
standard build/binary tool chains

