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Abstract

Adversaries get software to do bad things by rewriting memory and changing control flow. Current
approaches to protecting against these attacks leave many exposures; for example, OS-level filesystem
protection and OS/architecture support of the userspace/kernelspace distinction fail to protect corrupted
userspace code from changing userspace data. In this paper we present a new approach: using the
ELF/ABI sections already produced by the standard binary toolchain to define, specify, and enforce
fine-grained policy within an application’s address space. We experimentally show that enforcement
of such policies would stop a large body of current attacks and discuss ways we could extend existing
architecture to more efficiently provide such enforcement. Our approach is designed to work with existing
ELF executables and the GNU build chain, but it can be extended into the compiler toolchains to support
code annotations that take advantage of ELFbac enforcement—while maintaining full compatibility with
the existing ELF ABI.

1 Introduction

This paper presents the design and implementation of ELFbac (ELF behavior access control), a mechanism
that separates different components of a program’s memory space at runtime and polices their interactions
to enforce the intended pattern of these interactions at the granularity compatible with the program’s ABI
format units such as ELF sections.

Modern programs are primarily built by composing libraries, modules, classes, and objects into some
cohesive whole. Each component, composed of code and/or data, has some explicit high-level purpose or
intent. The intended use of a component defines its expected behavior. Most cases of untrustworthy behavior
result from a program’s executable violating the programmers’ intent.

For example, the intended usage of the libpng library is to convert compressed images to bitmaps;
the intent of a table of function pointers is to be set up at the beginning of a process’s execution and
called throughout. The function pointers should not be overwritten by libpng—but that’s what an attack
exploiting a vulnerability in libpng may do.
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Figure 1: Looking at ABI-level code/data granularity hits the “sweet spot”

The standard process of programming takes code through the compiler-linker toolchain into an executable
format, which is then interpreted by the OS loader and maintained by the dynamic linker and OS throughout
the program’s execution. In this paper we focus on ELF, a standard executable and linker format in the
Unix OS family, but our ideas can be applied to other types of executable formats and operating systems.

Our core idea is that data structures in this executable and library format provide a natural, flexible, and
effective venue to express and label code and data components that act as our policy subjects and objects.
We use this idea to develop a prototype of an ABI (application binary interface)-compatible loader and
hardware-assisted runtime mechanism that allows the developer to specify intent-level access semantics for
ABI-described code and data units—and then prototype a way for the kernel to enforce these semantics.

Existing software security mechanisms tend to target a single granularity for objects and enforcement.
Traditional Unix security policies operate on a whole file/process; SELinux policies operate on system calls.
We argue that usable and more expressive security mechanisms must be able to adapt to the complexity
of the software engineering effort and must be able to target the different intents of its components. As
Figure 1 shows, this is the “sweet spot” for policy enforcement as it allows for detailed, yet not burdening
communication of a component’s intent from a programmer to the enforcement mechanism throughout the
binary toolchain.[8]

This Paper Section 2 discusses why previous approaches insufficiently capture the programmers’ essential
intent for interactions between semantically different units of code and data. Section 4 reviews ELF. Section 3
explains our approach to policy. Section 5 presents our design. Section 6 discusses our prototype. Section 7
sketches out ways to evaluate its real-world effectiveness. Section 8 discusses future work, and Section 9
concludes.

2 Prior Approaches to Access Control

2.1 Motivating Example

Large numbers of software vulnerabilities arise because code and data that live within the same process
address space can interact with each other in ways not intended by the developer. We consider a simple
example of unintended interactions to highlight the shortcomings of current approaches to access control.
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static char *encryption_key = "super secret";

void input(){
  int *data = read_data();
  process(data);
}

void process(int *data){
  data[data[0]]= data[1]; 
  /* We have a trivially exploitable 
   * write-1-byte primitive here.
   * In the real world, this would be hidden 
   * or constructed through smaller primitives
   */

  void *encrypted_data = encrypt(data);
  send(encrypted_data);
}

void *encrypt(int *data){ ... }
void send(void *data){
  printf("%s", data);
}

Figure 2: Simple program demonstrating the problem of too-coarse protection granularity: the vulnerability
in process() compromises the secret key used by encrypt(), even if encrypt() is a separate and well-vetted
library.

Figure 2 shows some C source code for a file server that reads in requests for files, fetches the files from
disk, encrypts the files, and sends the encrypted files over the network.

Unfortunately, process() has a buffer overflow bug. Due to this bug, an attacker with control over the
input to the file server can write to arbitrary memory locations. The attacker can use this ability to change
the flow of control in the server. If the server uses defense mechanisms such as the NX-bit preventing code
injection, the attacker can use techniques such as return-oriented-programming [21]; if the server uses the
defense address space layout randomization (ASLR), the attacker can use techniques such as Müller’s [20].

Once the attacker alters the control flow via this bug in process(), the attacker can proceed to the
“crown jewels” in encrypt(), such as disabling encryption or extracting the encryption key.

It is not unreasonable to assume that encrypt() was provided by a well-vetted third-party library.
Finding a vulnerability in such libraries that leaks the cryptographic key material is often quite difficult,
and if such a bug were found, it would garner enough attention that the vulnerability would be fixed quickly
(e.g., as evidenced with the response to the OpenSSH key bug [27]). Nevertheless, because all of these code
and data elements live within the same address space, the key material can also be leaked through exploiting
the process() function, which probably would not have been (and should not have needed to be) analyzed
by the more security-aware engineers who implemented encrypt().

In Section 7.2, we will demonstrate security vulnerabilities that result from treating all code and data
in a process’s address space equally and show how ELFbac prevents these vulnerabilities even with simple
policies.
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2.2 Traditional OS Memory Approaches

In the standard approach to runtime memory protection, the operating system uses the memory management
unit (MMU) to ensure that processes cannot access each other’s code and data by providing each process with
its own virtual memory address space. This mechanism also keeps userspace code from directly accessing
kernelspace code and data. MMU protections can also ensure that page-wide memory regions intended to be
read-only cannot be written, and (more recently) that writable memory cannot be interpreted and executed
as instructions. These memory protections provide a surprising amount of safety for their simplicity; however,
by themselves, they cannot prevent userspace code from illegitimately writing to writable memory within
the same process (as happens in the example from Section 2.1 above).

2.3 Traditional Unix-family File Permissions

Traditionally, Unix system administrators set access control policies at the file granularity: files are access
policy objects, user IDs are subjects (expressed as effective and group IDs as domains), and (in the basic
view) {read,write,execute} are actions. The subjects and objects are labeled with integers representing user
IDs. The operating system itself propagates object labels using a set of strictly-set but easy-to-understand
rules: in the absence of the setuid/setgid bits, a new file’s label is determined by the label (effective user
ID) of the process that created the file. Unix access control rules are typically based on the user ID of the
process, user and group ownership, and permissions of the file. In the most typical case, the user-owned
process accesses the files owned by the user.

Under this initial course-grained model, it up to the system administrator to label users and files in a
way that minimizes the damage a single subject can inflict on the rest of the system. Unfortunately, this
traditional approach does not reach within a process’s fine-grained data structures (as objects) or fine-grained
code structure (as subjects)—thus still permitting the attack of Section 2.1.

However, as we step through the evolution of Unix-family security, we see a trend toward intra-process
controls.

2.4 Traditional Unix-family Process Permissions

Files aren’t the only objects that require access protections or controls. Most other decisions that need to
be made, such as whether a process itself can kill another process, are made by some mandatory access
control logic baked into the kernel that makes a decision based on the processes’ labels. This system of
labeling acts as a low-overhead coarsely-grained sandbox, confining the reach of a subject’s actions.

Again, these types of protections are unable to protect a process from itself, as happens in Section 2.1.

2.5 Newer Unix-Family Approaches

We posit that there are issues with such coarsely-grained protections. For example, whether a process has
access to privileged operations (such as opening privileged ports) is based solely on the process’s label being
that of the administrator (user ID 0). If a process needs to bind to a privileged port, it needs to run as user
ID 0, which gives privileges to perform any privileged task including the ability to read and write to any file.
Thanks to the coarse granularity, the administrator had to decide either to fully trust that piece of software
or to not use the software at all—no middle ground was possible.
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setuid Thus Unix moved in the direction of allowing privileges to be dynamically and systematically
revoked from a subject. Developers started designing software using setuid for dynamic privilege revocation;
after it completed its privileged operations, a process could call setuid to change its user ID to that of a
non-administrative user—thus limiting damage should it be compromised after that point.

The setuid method of privilege management is a sort of intra-process access control in that the capabil-
ities of a given piece of code executing as part of the process could change during the process’ lifetime.

The number of policy controls available to a UNIX administrator eventually grew, allowing for more
flexibility: administrators gained the ability to set filesystem usage quotas by file label—controlling things
such as scheduling priority, maximum number of files that can be open at once by subject label, maximum
number of processes that a process with a particular label can spawn, etc.

SELinux With SELinux [16], administrators were given the ability to label and control access to objects
at an even finer granularity. Not only could files be labeled, but so could file descriptors, filesystems, IPC
message queues, and other objects. Furthermore, different types of files can be treated differently even if
they harbor identical labels: a socket and a directory can share the same label but an administrator could
write rules to allow a given subject to write to the directory but not to the socket. Actions that could be
allowed and disallowed could flexibly depend on the class of object; for example, if the object is a socket,
actions including bind, listen, read, and write can be allowed. All of this was part of a larger vision—to
allow a given subject to perform only the system-related operations it needed for operation and nothing
more, in a label-based low-overhead configurable sandbox.

Administrators were also given more control on the propagation of labels between subjects as well as
between subjects and objects. A subject’s label can only be changed during a call to exec(), but whether
this label transition happens depends on the labels of the subjects and objects involved. By default, newly
created objects (files, etc) inherit labels from their creator, but this behavior can be flexibly overridden in
policy.

Nevertheless, even though SELinux provides administrators with a fine-grained way of controlling how
a process can interact with other objects via system calls, it is not able to protect a process’ data from the
process itself—the problem of Section 2.1 remains.

PRM Solaris’ process rights management (see Chapter 5 in [17]) offers a more fully fleshed-out approach
to fine-grained privilege management. Solaris PRM allows administrators to add and remove a large set
privileges from any user and executable. Privileges that can be managed include: calling exec(), sending
signals to or tracing other processes, accessing the network, changing ownership of files, and binding to
privileged ports. Solaris also provides an API so developers can build privilege-aware applications, allowing
for processes to dynamically enable and disable their own privileges and stepping closer to our goal of not
treating all code and data mapped into a process equally.

However, the privileges that differ between sections of code are only privileges directly associated with
system calls—bind, read, signal, etc. In contrast, our ELFbac is able to restrict privileges beyond those
guarded by system calls.

2.6 Other Prior Work

Access control in the Unix-family has evolved to protect the system from misbehaving applications by limiting
each application’s privileges. But even with these security mechanisms in place, exploits were still able to
cause damage.

In the early 2000s, efforts were also put into preventing application compromise by addressing the mech-
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anisms leveraged by exploits. These efforts included DEP (data execution protection) and ASLR (address
space layout randomization), both pioneered by the PaX project [26]. By preventing writable memory from
being executed, DEP prevents a process from directly executing code masquerading as exploit-injected data.
By randomizing where libraries are loaded in a process’ address space, ASLR makes it harder for an exploit
to reliably depend on libraries in use to execute its payload.

Even with DEP and ASLR in place, any piece of code in a process can access any data in the process’
address space. Various proposals for granular memory protection (e.g., early [4, 12] and more recently MIT’s
Mondrian [29, 30]) leave the fundamental plight of a Unix or Windows engineer who has to use a large
standard library for a small and data-specific task un-addressed in practice: all of the imported library code
implicitly has access to all of the program’s data (including sensitive bits such as keys or certificates). To
the best of our knowledge, we are the first to expose this problem as a matter of severely lacking the right
granularity to express and enforce intent.

UNIX mechanisms such as BSD jails, SELinux, and AppArmor provide system administrators with some
means of specifying “this daemon is only expected to access these files and directories,” but offer no way
for programmers to specify the same thing about a library—because when it comes to security, all code in
a process’ address space is treated equally.

Some developers have taken the route of building sandboxes directly into their software using existing
OS-level protection mechanisms to achieve a level of separation between code units running as separate
processes. The Chromium browser was designed from the ground up to employ this type of sandboxing [5].
ELFbac allows for code and data segments to be isolated from each other without needing to spawn extra
processes or re-engineer code.

In summary, our proposed system describes runtime measurement and enforcement of the programmers’
intent at different levels of granularity, which roughly correspond to the layers at which runtime computation
is engineered. The units used at different layers mesh (are “stacked”) across layers and are intelligible to
the build toolchain and the runtime ABI. To the best of our knowledge, this cross-layer approach has not
been explored in literature. For example, CFI [1] concentrates on one level of modeling software and ignores
the ABI; traditional semantics methods concentrate on a more granular level of programming language
abstractions [15], and so on.

Trusted Computing. Last but not least, several projects combined memory virtualization with Trusted
Computing Group’s (TCG) architecture, segmenting memory into measured regions according and protecting
these regions by means of virtual machines or hypervisors. In a sense, such combination is a necessity, since
the TCG architecture as such does not deal with the essential TOCTOU threat (as we pointed out in [6]),
and must rely on a runtime memory protection mechanism to maintain its integrity. However, we believe
that aligning memory measurement and protection design with the existing ABI is crucial for deployment
prospects of a system; hence we focus our attention on the ABI and OS memory artifacts and memory
trapping rather than on the additional opportunities provided by the TCG architecture (but see [8, 9] for
our discussion of possible ABI-aware TCG-backed policies).

Flicker [19] uses AMD’s Secure Virtual Machine extensions (SVM) to allow an application to verify and
run code in an isolated environment, also making use of the Trusted Platform Module (TPM) sealed storage
to save state between different executions; Flicker leverages SVM and TPM to remove implicit trust in the
OS. A Flickr kernel module offers an interface for applications to make use of the SVM extensions.

Fides [25] builds on the design pioneered by Flicker to develop the concept of protected modules, with
protection enforced by a dedicated hypervisor. Fides uses a program-counter based access control mechanism
that guarantees restricted entry points, protection of module data, as well as mutual authentication by
modules and secure communication between them. Fides also leverages the hardware to exclude most of
the OS from its TCB, which includes the hardware, the Fides architecture itself, and the module and its
communicating peer modules. A module runs in the same address space as its application; the application’s
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code running outside of a module gets only limited access to the module’s memory. Fides’ concept of using
the process counter to characterize the trust level of currently executing code maps well to our concept of
code sections corresponding to process execution states that are governed by different (ABI-aligned) memory
access rules; however, we decouple these states from code sections, so that the same code section may be
executed in different states, depending on the previous history of state transitions in a process.

3 Our Approach

In this prior work, we see a trend of restricting of what an application can do as a whole. However, there is
a clear benefit for, within an application, not treating every segment of code (including all the libraries) as
equal. Just because fork(), exec(), and memcpy() are mapped into a process’s address space doesn’t mean
security-critical code that sanitizes user input should be able to invoke these functions at any time.

We believe the solution is to move toward compartmentalizing segments of code and data inside a process’s
address space. Our approach is to use the code and data granularity already present in the loader format to
specify intra-process security policy, and then to augment the existing software and hardware architectures
to enforce it. We believe that this approach will lend itself to developing policies supported intent-level
semantics.

3.1 Intent-level Semantics

Our goal is to help humans and systems better reason and communicate about trustworthy behavior. A
basic characterization of a trustworthy system is “the system and all of its components behave as intended
and expected.” Thus, to build a trustworthy system, it is crucial to be able to express and communicate
both intentions and expectations as well as verify their congruence (or at least compatibility). One of the
simplest and yet most important elements of this communication is specifying intent of a particular software
component—that is, a high-level description of what it is meant for.

An application’s developers typically have the best understanding of what the intended behaviors of the
application’s code units are, even within large multi-developer applications. An application’s developers are
also best suited for picking out what variables/symbols/data/control flows are most sensitive and important
with regards to security. For example, the developers tend to have the best idea of which sections of code
should be off-limits until a user has authenticated, and which sections of data should be off-limits to external
helper libraries1 throughout the program’s runtime. As a result, we have designed ELFbac with the purpose
of allowing an application’s developers to express an application’s intended behaviors in an ELFbac policy
in a concise yet usable manner.

3.2 Policy Labeling Granularity

The labeling of code and data units for programmer intent/expectation must exist and be enforced on the
same level where the primary act of software engineering—composition—takes place. Security labels must
match the units in which software is written, imported from libraries, and, ultimately, loaded and serviced
at runtime. ELFbac flexibly supports labeling at different granularities, from individual symbols to whole
libraries, so a policy can be expressed at the granularity that makes the most sense to the developer.

These days, it is practically impossible to write a meaningful program without using code from scores

1Attackers leveraged vulnerabilities in popular image and media libraries to get through them at the application’s “crown
jewels” data, even though those libraries were obviously not intended to access such data, only to render generic presentation
material.
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of different external libraries, likely written by third-party developers. Even if the original libraries were
vetted in some way, they will likely be updated or replaced as the underlying operating system and system
configuration changes. Furthermore, even first-party code is likely somehow structured into different modules
each with their own intended uses. For example, consider the modern Firefox browser. While it is running
in Linux, over 100 libraries are mapped into its address space and can be accessed from any code executing
in the context of the Firefox process. Examples of libraries mapped into the Firefox address space include
libFLAC.so (encoding/decoding certain types of audio files), libdrm.so (direct access to video hardware),
libresolv.so (handles DNS lookups), libssl3.so (SSL and other crypto), and libc (standard C library
functions). Each library has its own purpose and is used by Firefox with a certain intent in mind. However, a
bug in one library (for example libdrm.so) can triggered by a second library (for example, libresolv.so)—
even if, from the developer’s point of view, the second library has no business accessing the first library.
Since Firefox uses each of these libraries with a certain intent in mind, it is natural to draw trust boundaries
around each library and within main the executable itself, treating each segment of code and data within a
boundary differently from a security perspective.

There are also other potential natural boundaries at various granularities we can consider—including
functions and object files, as each are created with a certain intent in mind.

However, all these things—functions, object files, libraries—have two key things in common:

• Each is based on a program’s intent-level semantics. 2

• The compiler-linker toolchain has knowledge of each during the build process.

In ELFbac, we use the latter to capture the former.

In this paper we focus on behaviors and relationships that are expressible in the form of behavior access
control at the granularity of ELF/ABI units, such as libraries and memory regions, that have a simply-
defined programmer intent. Examples include “this library function is only meant to work on this kind of
data, type of object, or region of memory”, “this library function is only intended to be executed during
initialization phase of a program or during error-handling,” or “these data are only meant to be accessed in
the initialization phase of a program or during error-handling.”

3.3 Policy Creation

We need to be able to create policies that support intent-level semantics on the appropriate code and data
granularity. To achieve this goal, we rely on a series of insights:

• Code and data are already semantically divided at development.

• These code/data divisions are conveniently carried over to the binary level by the loader format spec-
ification.

• Even if the developer does not explicitly specify a policy, we can often infer an implicit policy from the
code/data divisions already in the executable’s ELF section headers and symbol tables.

Developers tend to structure their applications into different modules and formulate “interface contracts”
between the modules that specify the intent and behavior of each unit of code. Such rules/contracts can be

2In standard theory usage, program semantics are described in terms of predicates, invariants, and various formal logic
statements. Such formal tools, however, are typically outside the reach of an industry programmer, at either developer or
architect levels. We do not intend to use the term in this meaning and instead focus on high-level properties and statements
that match common programmer intuitions.
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explicitly encoded in object-oriented languages such as C++ and Java, where classes, fields, and methods
are marked as public, private, or protected. It is up to the compiler to enforce these rules—unfortunately,
this knowledge is discarded and thus not enforced at runtime.

Since software is designed in terms of libraries, modules and individual symbols, our policy mechanism
targets these as granularity levels. We focus on the binary toolchain because it operates at precisely these
granularities. Libraries and modules correspond to different ELF files, and most compilers allow the program-
mer to arbitrarily group symbols into sections through vendor-specific extensions at granularities that make
the most sense to the developer. For example, in Figure 2, the programmer can write a very fine-grained pol-
icy for security critical components such as the encrypt() function, yet treat the entire process() module
(which in a real world application would consist of many functions) as a single entity.

3.4 Unit Relationships

It’s also important to consider the unit relationships between code and data. In a well-designed program,
exclusive access relationships alone can serve as a good proxy for the unit’s intent—and therefore as a basis
for succinct expression of an enforceable access policy. (As we show later in Section 4, the standard ELF
section structure already expresses a wealth of such relationships.)

Due to the inherent complexity of modern applications, we treat code units as black boxes whose intended
behavior can only be verified by their interaction with other code and data units. Non-trivial semantic
relationships can be extracted from mere annotations of intended accesses, just as a grammatically correct
sentence made of nouns of obscure or undefined meaning nevertheless conveys important information about
the referents of these nouns. A classic example is “the gostak distims the doshes:”3 even though we don’t
know what the gostak or doshes are, we know of their relationships that the gostak is that which distims the
doshes, that distimming is what the gostak does to the doshes, and so on. For all intents and purposes, we
can now define a policy to describe this as an intended behavior, so long as we have labels for gostak, doshes,
and can recognize distimming.

A complex program contains many code units that will likely remain as opaque to a policy mechanism
as the gostak is to English speakers, and whose intended behavior can only be described based on their
relationships with other units. This opacity strongly correlates with the amount of context needed for a code
unit to determine if the data it is about to work on is valid. For a parser (or an input recognizer in general),
it is comparatively easy enough—or should be easy enough with the right messages format design—to check
if a particular input bits or bytes are as the input language grammar specifies, based on locally available
context (e.g., a few bytes previously seen in input or a few bytes of look-ahead).

Unfortunately, not all code units are so comparatively lucky. Consider a typical collection data structure
such as a heap or a hash table of C structs or C++ objects that are chained (via pointers or offsets) internally
and with other objects; and consider code units that follow the pointers and change the collection elements
and their linkages. For such a structure collection to be valid (“as expected”), it does not suffice for just the
bytes of each particular member to be valid—all of the pointer (or offset) linkages must also be valid. Should
a link point to an invalid location, a method that uses that link to mutate its target object will likely mutate
something else, lending itself to exploitation use (as demonstrated by a large amount of hacker research,
e.g., [18, 2, 14] and the most recent [3]).

This poses a conundrum for the programmer writing such code units. To make sure that all the linkages
are correct (for the semantics of data structure), one would potentially need to walk them all, which is
unrealistic, inefficient, and would explode a simple task such as adding or deleting an element from a heap
free list or a hash table’s collision list into verifying a lot of things about the entire table first. In other
words, the context needed to verify the data being worked on is too large and non-local. So this is not how

3The phrase was coined in 1903 by Andrew Ingraham, and popularized by C.K. Ogden and I.A. Richards in their book The
Meaning of Meaning.
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such code is written. This brings us to how it’s actually done.

A typical accompanying expectation for these code units is that they are substantially isolated from
(properly validated) inputs—otherwise maliciously crafted input easily leads to numerous heap meta-data
and object store exploits that make exploit primitives out of innocent object maintenance routines. Therefore,
when programmers write such code, they make believe that all the previous invocations of related code units
have left the data units in valid linkage states, and no other code units have touched it. In other words,
the programmer’s expectation of input validity are not checked byte-for-byte, but rather are based on the
isolation of the data and its orderly access only by specifically allowed code units working in concert with
the one being written—that is, it is based on exclusive access relationships of code and data units.

Broadly speaking, programmers conceive both intent and trustworthiness of these code units in terms of
data flows from and to these units. Although a simple input parser would know if the next byte is wrong
because of the previous bytes, a data collection maintenance method such as a heap manager or hash table
manager method cannot realistically visit and check all the bytes that matter for determination of validity.
So the granularity level of programmer expectation is, “no other code has touched this heap segment”.4

This expression also has an attractive relational duality5) in its expression of intent semantics: intent
of code is defined by the data it is expected to access, and vice versa. To the best of our knowledge, this
approach has long been neglected (at least since the demise of segment-based programming models and
tagged architectures), with the recent exception of SegSlice [7].

Coming back to our gostak example, an intent-level policy would play the role of the grammar to express
the ubiquitous programmer expectations described above—expectations ubiquitously ignored at runtime.
Only the labeled gostak may distim the labeled doshes, and it’s only the doshes that are being acted on by
the gostak. This is all we know, and it is enough for maintaining a level of programmer intent. All of these
entities are opaque, as well as their intended actions, but we trust the whole so long as no other actors and
actions are in the picture. A heap metadata chunk is only to be operated on by heap manager, and a heap
manager is what operates on heap metadata chunk. If it distims the doshes, it’s the gostak, and the gostak
is what distims the doshes. Should drokes or duskats attempt to act on the doshes, we know something gets
untrustworthy about the doshery.6

We can draw an analogy to what’s called duck-typing: if it read/writes duck data, it’s a duck, and that’s
all we know. Then we describe the duck code to the runtime reference monitor in these very reduction
terms: enforce such relations, keep non-duck-labeled code from touching duck-labeled data, let only the
marked gostak distim the labeled doshes.

3.5 Memory Flow Barriers between Code Sections

One important aspect of enforcing the exclusive relationships between code and data section is isolating code
from data that it is not expected or intended to consume. Indeed, programmers assume such isolation when
they first apply sanity checks and transformations to input data, and then write subsequent code under the
assumption that the data now has been “cleared” and can be operated on safely. The attacker’s potential
ability to slip in other, un-cleared data to code that expects cleared data likely breaks its explicit or implicit
assumptions and leads to exploitation by maliciously crafted data payloads. Indeed, effective lack of such
isolation underlies most modern “no-code” exploitation scenarios for binary executable targets.

4Note that hardened heaps such as Microsoft’s Low Fragmentation Heap use canaries and XOR-ed check areas within the
heap to create local validation contexts for heap manipulator code units that comprise the heap manager, as tell-tales of other
code units’ forbidden access; the security assumption there that such an unexpected access will trip the tell-tale and will
invalidate the few bytes close (and check-able) to the pointers or offsets being mutated by the manager code unit. Thus these
hardened heaps bring granularity of checkable local context back towards the parsers’ end of the spectrum.

5“Show me your flowcharts and conceal your tables, and I shall continue to be mystified. Show me your tables, and I won’t
usually need your flowcharts; they’ll be obvious.” (F.P. Brooks, The Mythical Man-Month [10]

6These additional entities appear in the interactive fiction “The Gostak” by Carl Muckenhoupt; it is freely available online
at several interactive fiction sites.
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As an example, consider a parser that is intended to scan the input data and either “sanitize” or “nor-
malize” it, or to reconstitute it and build trusted data structures for further processing. Once that parser
is done, none of the raw data in its input buffers should be accessible by subsequent parts of the process if
these are meant to consume only “sanitized” and reconstituted data. However, in multi-stage exploitation
scenarios that rely on parser bugs for their initial stage(s), that raw input data contains payloads for further
stages. These payloads are brought into play by triggering the initial parser bug; blocking the data flow
from raw buffers to vulnerable code would break the execution of the exploit.

Such a “memory wall” was introduced by The UDEREF part of the GrSecurity’s PaX7 hardening patch
for the Linux kernel. Empirically, this wall has dramatically reduced the incidence of privilege elevation
attacks. The kernel programmers’ clear intention is for the kernel code to access only such user memory
contents that have been validated, e.g., passed the appropriate checks at the start of a system call; lower
layers of the system call’s implementation rely on such checking ensuring coherent and well-formed data
structures. Consequently, exposing kernel code to data structures constructed by the attacker in userland
led to exploits: kernel code executing at the highest privilege corrupted kernel memory while operating on the
crafted userland data. UDEREF8 prevented a large number of such unintended data flows by blocking the
kernel from accessing most of userland memory pages; the result was a dramatic reduction in exploitability
of the hardened kernel. Notably, the new SMAP feature of x86 processors opens a way to more efficient
implementations of UDEREF.9

ELFbac applies the same principle to the ABI-granular, intention-level semantic division of a process’
code and data units.

3.6 “Forgetful loaders” Discard Implicit Intent-level ELF Semantics

Loader formats such as ELF already have implicit intention-level access semantics at the granularity of
their code, data, and metadata sections. In ELF, these semantic relationships are partially expressed in
the section header table fields (e.g., in ELF’s Info and Link section entry fields), and partially implied by
standard section name pairings (such as .init and .ctors, .fini and .dtors, .plt and .got, and others).

Unfortunately, under the current UNIX implementation conventions, the OS loader forgets all this infor-
mation once it creates the process’ runtime virtual address space. We call this the forgetful loader problem.
In particular, the OS loader is driven by the segment header table rather than by the section header table.
Segments aggregate many semantically different sections based merely on their memory read/write/execute
profiles, and ignore other semantic differences.

For example, in ELF, the .text section is often grouped with the .rodata section into the same “R-X”
segment because both sections are expected to be non-writable (and an attempt to write them indicates
untrustworthy behavior); however, this is just about the only thing they have in common, semantically. The
one important exception to this is the two segments that serve dynamic linking: the short .interp segment
that contains the path to the dynamic linker-loader, and the .dynamic segment that indexes all sections
referenced by the dynamic linker in its runtime operation.

Thus the loader, as it is currently conceived of, is the weak link in the chain of semantic information
on ELF units from the source code pragmas, though assembler’s and linker’s native support of custom
target sections. This appears to be a decision influenced by the paucity of OS/kernel and MMU support for
discriminating between different program semantics units at runtime.

However, technically there is nothing preventing the OS loader and kernel from being as aware of ELF
sections as the components of the development toolchain or the dynamic linker: the section header table is

7http://pax.grsecurity.net/, http://pax.grsecurity.net/docs/
8For the discussion of UDEREF’s implementation details and efficacy, see http://grsecurity.net/~spender/uderef.txt
9See “Supervisor Mode Access Prevention for PaX”, http://forums.grsecurity.net/viewtopic.php?f=7&t=3046
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Figure 3: The ELFbac architecture

either typically mapped into the runtime address space, or can be trivially mapped so. Should the sections
be relocated, this table could also easily be patched by means of the standard relocator implementation.

In fact, crucial section information is replicated in the dynamic symbol tables accessible to the dynamic
linker through the dynamic segment, and is so made available in its context. This decision probably reflects
the conceptual gap between the legacy, limited OS loader/kernel’s view of the runtime process semantic
structure, and the more recent dynamic linker/loader’s view of this structure (which the latter manages).

However, these is no reason why we should stick to this disparity between an older and a newer design
and keep the OS loader to a dumbed-down and forgetful view. Our vision is outlined in the next section.

3.7 Vision

Unforgetful Loader. Figure 3 sketches our resulting vision. Code chunks and libraries carry with them
policies specified in terms of their loader formats. Developers can explicitly specify these policies to express
their intentions—but for legacy code, we can also use the intentional policies already implicit in the loader
format. Our unforgetful loader remembers this information, and a modified kernel enforces it.

4 The ELF Story

We quickly review loader formats in general and ELF in particular, for the reader unfamiliar with these
topics.
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4.1 Loader Formats

Binary executable formats have been designed to present a minimal description of the functionally different
kinds of data (including compiled code) required for the OS to construct the process runtime image. These
formats include special sections of metadata describing the extents and function of subsequent binary sections;
these metadata sections serve as the instructions for the OS loader specifying the address ranges to copy the
sections to, and the desired protections of the underlying memory pages.

By default, the loader performs a byte-for-byte copy of a continuous extent of bytes from the file to
their appropriate places in RAM. When a simple byte-for-byte copy of the file’s contiguous contexts does not
suffice and an additional transformation of the loaded bytes is needed, other metadata in the file being loaded
is needed to complete the loading process. For example, if some library code contains absolute addresses but
the OS cannot load some library code at the starting address specified in its metadata, then the loader will
need to transform the code by patching those addresses.

Binary formats evolved towards

• adding new types of functionally different data (so that the loader could be informed of the bytes’
purpose and choose appropriate action), and

• including more detailed descriptions for internals of binary sections to enable more complex transfor-
mations.

Thus the binary format metadata evolved from mere loader copy instructions towards representing the
semantics of sections by their intended runtime functionality, such as code for “initialization”, “tear-down”,
“relocation”, “dynamic linking”, and the data to needed drive this code.

4.2 ELF

As the engineering of the Unix process’ runtime became more sophisticated, ELF accommodated this trend
by defining the necessary new metadata structures. In parallel, ELF added features to support more advanced
debugging and exception-handling mechanisms. As a result of this co-evolution, a typical ELF executable
binary contains over 30 sections, each which correspond to code and data units with different runtime
semantics—expected behavior defined in relation to other sections.

This trend towards more detailed internal descriptions allowed ELF to unify the representation of binaries-
to-be-loaded, and various intermediary stages of compilation and runtime. In particular, ELF is used to
represent the compiler’s object code files (“.o”), shared libraries (a.k.a. shared objects, “.so”), and even core
dump files.

ELF files are largely composed of ELF sections. An ELF section is simply a set of contiguous bytes in a
ELF file and is described by an ELF section header, of which ELF maintains a table. Some ELF sections
contain or describe the code and data of the program proper (text rodata, data). Others, such as bss,
take no space in the file besides the entry in the section table. The bss section in particular describes the
necessary allocation size for the program’s uninitialized global variables. Other sections contain code and
the necessary supporting data to be executed before the start of the main program or after its end (regular
or forced) to set up or tear down the runtime. Examples of such sections are ctors, dtors, init, and fini,
which control the calling of the constructor and destructor code for the objects in the runtime address space,
including the necessary initialization of the runtime’s own structures. (Here and later, we use the term object
for a semantically distinct ELF code or data unit, rather than in pure OO or C++ ABI sense)..

The contemporary ELF design separates both the special purpose code and its data into separate ELF
sections, named according to their semantics. This design decision creates a special and exclusive relationship
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between these sections. A violation of this relationship at runtime is likely the sign that the process should
no longer be trusted. If the implicit read, write, and execute relationships between these ELF sections were
enforced, a number of exploitation techniques that use the contents of these sections contrary to their intended
use and place in the process timeline would become infeasible. For a case in point, the data contained in
ctors and dtors is only meant to be interpreted and acted upon by init and fini, respectively. A deviation
from this access pattern may be a sign of runtime loss of trustworthiness. For example, Bello Rivas [23]
demonstrates a method of exploiting a GCC-compiled program by making an entry in dtors that points to
malicious code located outside the fini section.

Although this decomposition may have been originally motivated by abstracting away the algorithmically
common part and the program-specific data part of the simple setup or teardown (“loop over a table of
function pointers to constructors/destructors, calling each one in order”), the contents of .init need not
be limited to a single simple loop, nor the contents of .ctors to a simple function pointer table, and the
same for .fini and .dtors. As long as the contents of these sections agree, they will be true to their
ELF-semantic roles with a more complex algorithm and more complicated data structures to drive them.
This same argument can be applied more generally to any set or related code and data units.

PLT and GOT The got (global offset table) and plt (procedure linkage table) also show the special
relationship between code and data ELF sections. The plt contains call stubs to external library functions
to be linked at runtime by the dynamic linker, whereas the got contains the addresses through which these
functions are indirectly called.

Initially indirectly calling a function through its got entry gives control to the dynamic linker which,
with the help of this stub, is provided with an index of the function’s dynamic linking symbol, including its
name. After the dynamic linker resolves the symbol name and loads the appropriate libraries, it rewrites the
got entry to point directly to the address where the function is loaded, so that further indirect calls through
the plt result in calling that function with just a single indirection (through its got entry).

Although only plt is expected to read the got while dispatching through it, the dynamic linker is expected
to write its entries. However, the rest of the code in the process’ address space should not write got entries;
in fact, any of its code unit doing so likely indicates a dynamic code hijacking [11, 28]. Notice also that any
given got entry is meant to be written only once.

5 Design

Historically, the focus of ELF has been on the phases of a process’ lifetime handled by various parts of
the OS. However, the intent-related section specialization and typing need not stop at the OS view of the
process. We believe section specialization can and should also express the developer’s view of the intent
of different program phases and their respective code and data segments, as well as the intent of any code
borrowed from external libraries. We see this as the only possible foundation of a systems policy that is not
blind to the programmer’s knowledge of the expected and trustworthy program behavior.

The same ELF mechanisms used to describe loading-related data and code units are easily expressing
the program-centric view of runtime, detailing the sequence and access expectations of the various parts of
the program corresponding to phases of its process runtime.

As we discussed in Section 4.2, the ELF section table of a binary executable file contains a wealth of
information about the semantics of its code and data units, such as the expected data access behavior of
code units and the expected access profile of data by the code units. This behavioral information encoded
in the ELF section table can be a basis of a policy enforcement mechanism enforcing these and similar kinds
of expected behavior. In particular, a programmer interested in expressing behaviors such as “this code unit
only accesses this data unit” or “this data unit is only accessed by this code unit at this particular phase
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of the program’s runtime” can easily put the relevant code and data units into specialized ELF sections.
(The GNU GCC toolchain already supports creation of custom sections with the GCC extensions pragma
section in the C/C++ source code.) With the minimal assistance of the loader, the memory management

unit (MMU), and the operating system’s MMU-generated fault handler these policies can then be enforced
during runtime.

Section 5.1 presents our policy language. Section 5.2 discusses an ELFbac policy for our example from
Section 2.1. Section 5.3 presents tools to assist a programmer in creating a policy.

5.1 ELFbac Policy

ELFbac policies are expressed as finite state machines (FSMs). Each state is a label representing a particular
abstract phase of program execution that a given section of code in the program or library drives. The inputs
to the automaton are memory accesses of the program. The policy defines a set of transitions between these
states (such that there is at most one transition for each pair of state and memory address), and the allowed
unit-level memory accesses for each state.

In particular, for each state in an ELFbac policy, there is a set of rules that specify what data and
code can be used, and how these sections can be used in terms of read, write, and execute permissions. In
this manner we are able to treat different sections of executing code within a single process differently with
respect to security. These rules also need to specify what state to transition to after a given memory access,
which often is the same state the process was in prior to the memory access. In a graph representation of
the FSM, the transitions that do not change state correspond to loops, whereas those that do correspond to
non-loop edges, so all information is encoded in the edges of the graph. In fact, the statements of our policy
language are isomorphic to directed edges of the FSM.

policy statement :=

data rule | call rule

An ELFbac policy distinguishes between two kinds of rules: memory access rules and function call rules.
Each policy rule is a transition in the finite state machine, so we call them “data transition” and “call
transition” respectively. Each transition specifies a source and destination state and the interval of virtual
addresses that trigger it. In any given state, there is exactly one rule that specifies how to handle a memory
access to a given offset. If no rule is explicitly specified, the memory access is denied, which usually results in
a segmentation violation and the (logged) termination of the program. If a rule does not specify a destination
state, it is assumed that the destination state equals the source state.

data rule :=

from state (-> to state)

{read,write,exec}
from symbol (to end symbol)

Data transitions allow the program to read, write or execute the specified memory address. We expect
most rules regarding data accesses to not cause state transitions—for example, “Code executed while in
state cryptography is allowed to read memory labeled key material.” However, rules that transition to a
different state on a memory access attempt are also valid. If only a single symbol or address is specified,
this corresponds to the implicit ’size’ of the referenced object, as determined by the ELF symbol tables and
headers. (“Code executing while state is input may trigger a transition to state cryptography when reading
memory labeled key material”). Our current prototype has some restrictions on data rules that trigger state
transitions, as detailed in Section 8.1.
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call rule :=

source state -> dest state

call symbol (return) (paraminfo)

A call transition does not allow memory accesses, yet its semantics make expressing transitions between states
more convenient. It triggers on an instruction fetch from a single virtual address, usually corresponding to
the entry point of a function. In addition to syntactic convenience features for parameter passing (which
we elaborate in Section 8.2), call rules can also allow a one-time return transition back to the source state.
Return transitions allow access to the instruction after the jump that went to the faulting instruction,
corresponding to a function return.

If function returns were not treated differently, then a widely-used function (for example, in the C library)
would have to be allowed to jump to the instruction following every call to it, which would give an attacker
threatening flexibility in changing the control flow.

However, both the call and return transitions are merely convenience features and can be replaced by
multiple states with data transitions when reasoning about the policy. For example, suppose we have states
X,Y,Z with:

• X exec x func

• Y -> X call x func

• Z->X call x func

We can then equivalently create two states X 1,X 2 with:

• X 1 exec x func

• X 2 exec x func

• Y -> X 1 exec x func-x func

• Y -> X 2 exec x func-x func.

If this call rule had return transitions, those would correspond to

• X 1 -> Y exec y ret

• X 2 -> Z exec z ret

where y ret and z ret are the instructions following calls to x func.

By removing these convenience features, the ELFbac policy can be reduced to a regular expression
matching the memory accesses of a program. While it is very hard at best to make any useful statements
about the machine code itself (being Turing-complete), we can make statements about the policy, as it’s a
weaker finite state machine. For example, it would be very convenient to be able to prove a statement such as
“Data from the filesystem must be encrypted before being sent over the network.” In general, proving such
a statement about a program itself is undecidable by the Rice-Shapiro theorem [22]. However, assuming we
can trust our cryptography and authentication code, we can put all code writing to the network in one state
and then verify that all transitions leading to that state occur from the cryptography state. ELFbac then
guarantees that all data will have been passed through the cryptography module before it is sent, reducing
the amount of code that has to be formally verified.
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5.2 Policy Example

Our example program in Figure 2 can be naturally divided into four phases: input, processing, encryption and
output. In a reasonably well-designed program, these four phases would be in different modules, functions
or classes, depending on the language in which the program was implemented. (We posit that, for programs
in general, security-relevant progressing steps can be similarly separated into such stages.)

Figure 5 is such an ELFbac policy as the programmer creates it. Figure 4 shows this policy as a finite
state machine. Each arrow label corresponds to one transition, which is triggered by access to a particular
region in memory. Without ELFbac, only writable data and executable code are separated by the memory
system, as shown by the shaded boxes.

The four states are only allowed to execute one of the code modules at once. Similarly, each has different
access permissions with regard to the three data areas10. The input stage is allowed to access system
calls11 and write to the unencrypted heap area. The processing phase, which contains the critical security
vulnerability, can only read or write to the unencrypted heap and neither affect the key material or cause
sensitive data to be sent unencrypted.

5.3 Policy Creation Tool

Although we are actively working on more advanced ELFbac policy creation tools, we have a set of prelimi-
nary scripts that isolate a binary and the libraries with which it is dynamically linked. The policy this tool
creates usually has two states, one for the dynamically linked libraries and one for the main binaries.12 This
tool analyzes ELF symbol tables to determine which imported library functions get called and creates a call
rule for each of those. So far, the programmer manually needs to allow callbacks and other instances where
the library should be allowed to call a function in the main program.

Because it is difficult to determine control flow within ELF sections or which data should be accessible
by which code from binary code alone, more advanced tools are under development.

6 Prototype

6.1 Overview

We have implemented a software ELFbac prototype on AMD64 Linux, although we designed it to be readily
portable across operating systems and architectures. To achieve this portability, we have created wrappers
for kernel-specific primitives so that only a single header file needs to be changed to port our system to a new
kernel or architecture. Furthermore, we believe our prototype could be easily adapted to other conceptually
similar executable/linker formats like Microsoft’s PE or Apple’s Mach O.

Our implementation is based on existing virtual memory capabilities in Intel processors. We create a
separate virtual memory context for each policy state so that memory accesses relevant to our policy cause
page faults which we intercept in the kernel. Just as threading adds a one-to-many relationship of memory
contexts to execution flows, we create a many-to-many relationship—since each execution flow can now
change its memory context with each FSM state transition.

10As will be discussed in Section 8.2, implementing the HEAP command shown in this example will require additional work
with the dynamic allocator, which is underway.

11System call restrictions were not used in our results section, as we are currently developing mechanisms that are portable
between architectures and do not impact the existing kernel design.

12Every library should have its own state, and if the user specifies this, such a policy can be created. However, some libraries
(such as pthreads, dl and libc) interact in ways not obvious from ELF symbols.
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HEAP unencrypted_heap, encrypted_heap
input_phase exec input
input_phase read,write unencrypted_heap
input_phase syscalls * //Allow all syscalls
input_phase -> processing_phase call process

processing_phase read,write unencrypted_heap
processing_phase exec process
processing_phase -> crypto_phase call encrypt

crypto_phase exec encrypt
crypto_phase read .encryption_key
crypto_phase read unencrypted_heap
crypto_phase read,write encrypted_heap
crypto_phase -> output_phase call output

output_phase exec output
output_phase syscalls *
output_phase read encrypted_heap

Figure 5: Source code of the sample ELFbac policy.

6.2 Implementation

Per-state shadow memory contexts. Our prototype replaces the kernel’s view of a process’ virtual
memory context with a collection of “shadow” contexts, one per each policy FSM state. Each shadow
context only maps those regions of memory which can be accessed in the current state without violating the
policy (which corresponds to loops in FSM). Any other access is trapped; the trap either causes a transition
to another allowed FSM policy state, or is a policy violation.13 On a legitimate state transition, the virtual
memory context is changed; on a violation, appropriate handling logic (e.g., logging of the violation event
and process termination) is invoked.

These state-specific memory contexts are only used by the page fault handler and in context switching
routines. For the rest of the kernel functionality, the original virtual memory context still serves as a global
view of the process address space (of which each of the shadow contexts makes a subset accessible). Therefore,
we do not need to change any other subsystems in the kernel or any userspace code, as they can continue to
use the system calls and kernel APIs to modify the address space, without impacting ELFbac enforcement.

The state-specific shadow contexts are lazily filled—every state starts empty and is filled by the page
fault handler. Initially, an empty shadow virtual memory context is created for every state in the policy and
the context corresponding to the initial state is activated. Whenever the process accesses an address not
mapped in this context, the MMU raises a page fault, which ELFbac intercepts. If the access is allowed by
the policy and does not result in a state transition, the corresponding memory mappings (and page table
entries) are copied to the shadow context, so they will not cause a fault when accessed in the future from
the same state. If, on the other hand, the access results in a state transition, the shadow virtual memory
context corresponding to the new state is activated.

Whenever a region in the original memory context is changed, it is unmapped in all the shadow context,
so the next access to this area will again be validated against the policy.

Additions to the Process Descriptor. Our implementation adds only three pointers to the Linux kernel
task structure (task struct).

13This implementation makes it hard to implement “once-only” access of a memory region as a policy primitive; see Section 8
for discussion of future work.
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First, a pointer (elf policy mm) to a per-state separate virtual memory context is added. As explained
above, this pointer is only used by the page fault handler and in context switching routines, so that the
remaining large portion of the kernel, which accesses the traditional virtual memory context pointer (tsk->mm
in Linux) to manipulate mappings, address holes or for accounting purposes, retains the illusion of a single
address space per process. This reference also makes sure that the same address is never re-used and allows
familiar debugging tools to work unmodified with the ptrace system call.

Secondly, a pointer (elfp current) to the policy currently in effect for a process is stored. The policy is
stored as a digraph of states, where each node stores a binary search tree of edges to other states.

Thirdly, a stack of userspace stack pointers is stored in the elfp stack pointer, which is used to implement
the stack-changing mechanism described in 8.2.

Per-state shadow spaces as a new caching layer. In theory, the policy is verified on every memory
access by hooking the page fault handler. As trapping every memory access would be catastrophic for
performance, we add a layer of “caching” on top of the existing hardware caching layers.

Consider a memory access policy in standard UNIX. The authoritative view of memory is given by the
mm struct struct of a process. The actual page tables (pointed to by CR3 on x86) serve as a “just-in-time
compiled” expression of the policy, since the appropriate PDE/PTE entries are created as needed by mmap

and other system calls. Thus, the page table serves as a “caching layer” for the actual policy expressed in
vma structs. Moreover, page table look-ups are cached by the TLB structures (separate for instruction and
data paths on x86).

We generalize this architecture by adding another layer of shadow memory for each process, within which
different code sections (corresponding to the phases of the process or policy FSM states) receive different
views of memory via different page tables—and must therefore generalize the caching accordingly. Namely,
the shadow contexts create an extra load on the TLBs, as it would cause them to be flushed on every FSM
state change. To somewhat reduce this impact, we use our “lazy” design for filling per-state shadow contexts,
in which each policy state starts with an empty page table and gets the appropriate mappings copied into
each on each valid access. This design emulates the relationship of between the page tables and the TLB:
just like the TLB, the policy state’s page table accumulates successfully accessed mappings.

As soon as the addresses are unmapped in the global context, they are deleted from each page table as
well. The page table associated with the current state is loaded on each context switch.

On newer architectures, we additionally reduce the performance impact of shadow contexts by using
PCID tags. As an architectural desiderata, we posit that since caching is heavily involved on the path of
enforcing a memory access policy, it should in fact become an actor in enforcing this policy. This means, in
particular, that cache entry invalidation must be elevated from the status of a heuristic to that of a policy
primitive.

Per-state syscall checking. In addition to the above virtual memory maniputation, the current state—
i.e. the label of the code unit (ELFbac section) currently executing—is verified on every syscall. Each
policy state either allows or disallows each syscall; more fine-grained checking can be delegated to userspace
wrapper functions.

Policy entry points and loading. All Unix-family processes (after init) are originally created through
a fork()-type syscall. This syscall preserves the ELF policy of the parent process.14 When a new executable
is loaded with the exec() call, the policy is replaced with the policy of the new executable.

14 If a fork should be treated as a special policy event, the fork() library function can be wrapped to provide the transition
just after the fork. Access to the fork() system call from any other policy state should then be prohibited.
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On dynamic binaries, we use the linker to set up the policy. If the ELF binary is dynamically linked,
the kernel first loads a statically linked interpreter binary15, whose policy will be loaded initially. The main
executable is then relocated and set up by the interpreter. Since the ELFbac policy is just another ELF
object, the linker is already equipped to relocate the policy as needed. Before control transfers to the main
program, the interpreter calls a special system call that loads the relocated policy. Thereafter, this system
call is disabled until a new binary is set up. Hence, neither the policy parser nor any other part of the kernel
have to worry about how the address space was set up, e.g. by ASLR.

7 Evaluation

7.1 Need for Performance Evaluation

There is a difficulty in estimating the performance impact of ELFbac, which is inherent in the measurement
of any security primitive: it ultimately depends on the software it is used to protect how often and on what
code paths it is going to be hit. Our hypothesis is that well-designed software already exhibits sufficient
modularity and locality to make frequent (and costly) ELFbac context switching unnecessary, and amortizing
the cost of these switches over the productive sections and states of the program.

We are currently evaluating the architectures of several popular Linux daemons for the study of ELFbac
policies. Since we believe the performance impact of ELFbac policies depends on the design of the software
and the granularity of the specific policy, we defer performance evaluations until we can enforce a policy on
a piece of well-modularized software such as the Nginx web server.

7.2 Security: implicit flows eliminated

The primary advantage of protecting systems with ELFbac is lessening the impact of an attacker. By
preserving and enforcing intent-level semantics, an attacker who has gained code execution or an information
leak in one part of the application can no longer compromise other parts. Among other benefits, ELFbac
makes attack techniques like return-oriented programming much more difficult.

In order to assess the efficacy of our system, we sampled four recent vulnerabilities from the Common
Vulnerabilities and Exposures database16 that could result in code execution 17. Because either the software
was not available in the first place or adequate vulnerability details were not disclosed, we did not attempt to
write an actual ELFbac policy for the relevant software. Instead we consider how a sensible default ELFbac
policy, such as generated by our preliminary tools, would limit the exposure from each vulnerability.

CVE-2012-3455 In this vulnerability, a heap buffer overflow in the Word processor permits an attacker
to craft evil input which subverts the main KOffice process.

ELFbac could be used to separate the Word parser and the main KOffice process. If an attacker crafts
a document that can perform computation with the parser, he will no longer be able to read arbitrary files
or spawn a shell, but limited to using the internal KOffice API.

CVE-2012-3639, CVE-2012-2334 In CVE-2012-3639, a bug in WebKit allows an adversary to subvert
an entire browser; in CVE-2012-2334, a bug in an image library allows an adversary to subvert an entire

15On Linux, this is usually /lib/ld.so.
16http://cve.mitre.org
17http://cvedetails.com
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office suite.

In both vulnerabilities, an application uses a parser for display formats (HTML and PNG, respectively).
However, both parsers only require minimal interaction with the remaining components of a program. Other
browsers such as Google’s Chrome [5] already demonstrate that WebKit only requires a handful of calls to
render bitmaps and consume input events. A PNG parser should only be able to read an input buffer and
write an output buffer. Neither require access to any system calls or other program data structures.

ELFbac could stop both vulnerabilities by confining the parser to exactly what it needs to touch, thus
preventing a compromised parser from subverting the rest of the application. As opposed to the Chrome
security model, ELFbac does not require re-engineering of existing code and the same policy mechanism can
be ported across different operating systems.

CVE-2012-0199 In this vulnerability, a bug in the processing of SQL database queries lets the attacker
subvert the rest of the application.

Usually, SQL injection attacks result from input text fragments being copied into a SQL query without
proper escaping. To mitigate this, various database frameworks, such as Microsoft .NET, use dedicated
query builder mechanisms. With ELFbac we can assure that no code but the query builder can send data to
the SQL client API, defending both against inadvertent SQL injection vulnerabilities and against the SQL
layer being used after another exploitation.

8 Next Steps

8.1 Code Improvements

Our initial next steps include some improvements to the basic code.

Right now, our trapping mechanism implementation does not allow once-only accesses, although these
could be implemented on the existing MMU with debugging mechanisms.

Similarly, we are working actively to implement system call restrictions in a portable and flexible manner,
so untrusted code cannot perform IO operations by directly accessing kernel functions.

Furthermore, we are actively working on creating better policy tools and languages. We envision a system
that analyzes binary code, programmer annotations and header files or source code if they are available,
combines them with limited programmer annotations and creates a policy, which can then be manually
extended for security relevant portions of a program.

8.2 Design Extensions

Improving Stack Changing ELFbac permits different FSM states to use different stacks, since stacks
store both activation records and local variables which contain security-critical information.

Due to limitations in our implementation, we can only trap on a page-level granularity. Therefore, the
entire stack, which usually is only one or two pages large, will be treated as one policy object. Even if we
had more granular trapping, the stack’s layout is changing with every function call and it would at least be
severely inconvenient to keep track of current stack semantics in the kernel-level enforcement logic.

Therefore, we allow each policy state to have a separate stack and then copy parameters and relevant
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data between stacks during state transitions. This cost is acceptable, because parameter records are usually
short and modern ABIs like AMD64 are optimized to pass many parameters in registers.

While the current prototype requires the user to manually specify the number of parameter and return
bytes to be copied between stacks, we believe this information could be deduced automatically by the policy
tool. The first approach is to analyze metadata left by the compiler (e.g. in the DWARF format [13]) that
specifies parameter information. Some other languages, like C++, encode parameter details in the function
signature. If this information is not present or incomplete, the last instructions before the return instruction
in a function or the assembly instructions immediately before a call could be analyzed.

The second approach would be to analyze header files with already accessible tools like CTAGS to find
parameter information; this would be especially useful for libraries, where the header files are usually available
to the programmer even if the source code is not.

However, a big issue with all these approaches is that some functions—e.g. printf()—consume a variable
number of arguments. In practice, though, variable arguments are often used to implement some variation
of string formatting, where tools already exist (for example, in the gcc -Wformat feature) to deduce the
required number of parameters from the call site.

In any case, we could always copy a “safe” upper bound of parameters to the called stack. It might be
safe to assume in a given program that no function has more than 256 bytes of parameters, so we just copy
that much data if we cannot deduce specifics. This might leak sensitive stack information to called libraries
and thereby reduce the added protection offered by ELFbac, but the called function at least will not be able
to overwrite this data, because it only has access to a copy of the data.

Better Heap Security Dynamically allocated memory also needs to have different semantics based on
what data it contains. Therefore, we will implement multiple heap areas which can be treated differently by
an ELFbac policy and add a mechanism to the allocator that decides from which heap to serve an allocation
request and thereby how that memory should be treated.

Another instance of a memory area that changes semantics dynamically is the heap. The heap contains
both data and meta-data used by the dynamic allocator. Usually, a runtime only has a single heap that
contains all objects dynamically allocated by every piece of code.

Just as with the stack, we change the runtime to include multiple heaps in disjoint memory. On modern
64-bit systems, the virtual memory range is large enough to accommodate a distinct 4 Gigabyte heap for
216 security labels, but on 32-bit systems, the number of semantically different heaps is much more limited
and every heap needs to be manually sized.

A modern kernel exposes two dynamic allocation schemes: the brk() and mmap() system calls. In Linux,
brk() is implemented very similarly to mmap(), but with fewer parameters, so the same concepts apply. The
mmap() syscall knows two modes of operation, which have subtly different semantics for our policy. The first
mode (probably more familiar to a programmer) maps the contents of a file into a region of memory. An
alternative view of this operation is to allocate a new object in memory whose contents are pre-initialized
(and optionally automatically saved by the kernel periodically). The second mode (the anonymous map)
allocates a region of memory (typically backed by swap, not a named file, hence “anonymous”) into the
memory space and is used by modern allocators to satisfy large allocations and fill their internal pools.

Both of these modes introduce new memory objects (which should have semantics) into the address
space. As our policy is defined in terms of memory ranges, the allocators need to return an address in the
correct range depending on the semantics. Therefore, a separate policy for malloc() and mmap() has to be
introduced. The easiest way to express this policy is to rewrite program source and pass an explicit label
to every malloc() call. As this is hugely impractical with legacy applications, we propose multiple ways of
dynamically labeling legacy allocations.
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The first such way is to give every policy state a default security label. For example, in the input
stage of our example, all allocations could be sent to a “parser-token” heap, which would be readable by
the process stage. The second approach is to tag allocations based on size. A sizable portion of dynamic
allocations allocate a fixed data structure or class. Different object types tend to have different sizes, so we
can deduce the type of data (and thereby its intent) from the allocation size. In cases where this does not
apply (i.e. buffers of multiple elements or of varying length), we need to revert to source level analysis and
rewrite each call (for example, creating a new wrapper symbol like malloc packet buffer that tags malloc
appropriately).

8.3 Extensions

Userspace Implementation Because our implementation is rather loosely coupled to the kernel and its
memory system, it is possible to implement ELFbac in the userspace as well—if one is willing to tolerate
reduced security and performance. Instead of manipulating paging structures and handlers directly, one
can just as well use the mprotect() system call and install a handler for SIGSEGV (in the same manner as
the User Mode Linux18 uses SIGSEGV to emulate MMU memory traps). The obvious security concern is
that an attacker who can get any segment to perform a mmap() or mprotect() system call can completely
circumvent the enforcing logic.

FlexTrap In our initial prototype, we will make creative use of the existing x86 virtual memory system
to trap on fairly complicated conditions. However, this implementation will suffer in performance because
the hardware features are rather tailored to their legacy usage patterns (some going as far back as 386).
Also, the existing system offers little flexibility for security policies, being originally designed for the narrow
OS-specific purpose of virtual memory support.

We envision a new x86 memory subsystem with a microcoded trapping system we call FlexTrap. Cur-
rently, most processors have one or more TLBs, each of which associates a page of virtual memory with a
physical address. Because the TLB is minuscule compared to the size of the virtual memory space, the TLB
is filled on demand from a page table, either with software routines (on SPARC and MIPS) or with dedicated
hardware (Intel). However, every TLB line contains information about exactly one page of memory (modern
Intel processors have two TLBs, one for small 4Kb pages and one for larger pages).

We suggest to replace this fixed-width TLB with a variable-granularity cache (in short, vTLB). Whenever
the processor fails to find a TLB entry for a given virtual address mode, it switches to a special “FlexTrap”
mode of operation, in which it executes regular x86 instructions starting from an address specified in a
control register (similar to the page fault handler) with a separate register set, but does not perform address
translation. The FlexTrap handler uses physical memory and the virtual address to compute a new entry to
be placed in the vTLB and returns from the fault.

With appropriate optimization, we believe performance nearly equal to the current hardware/microcode
page table handler is possible (as page table lookups are likely to be memory-bound instead of compute
bound).

In the modern platform, the TLB is no longer an obscure aid to OS virtual memory translation; rather,
it has become and must be treated as a security policy object. In fact, TLBs have been used for attack
purposes (e.g., ShadowWalker [24]) and some defensive schemes(e.g. PaX[26]); We need to level the playing
field.

18http://user-mode-linux.sourceforge.net/
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9 Conclusion

Prior work in application security has put much emphasis on restricting a program’s access to a system
resources (such as files), and system calls. We have argued that this should be taken a step further to specify
and enforce intent-level semantics of different units of code, restricting how they interact with each other.
By reusing existing ELF infrastructure, we maintain compatibility with legacy code and binaries, which we
have shown to be vulnerable because code units can violate their intent. Thereby we have noticeably raised
the barrier to successful exploitation.
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A ELFBac kernel structures

/∗ These s t r u c t u r e s d e s c r i b e an ELFbac p o l i c y in k e r n e l memory . They
are c r e a t e d at runtime from the e l f p d e s c s t r u c t u r e s found in the
. e l f b a c s e c t i o n . This header f i l e i s in tended to be used in a l l
ELFbac ports , so per−k e r n e l a l i a s e s from e l f b a c−l i n u x . h are used . ∗/

struct e l f p o l i c y {
struct e l f p s t a t e ∗ s t a t e s ;
struct e l f p s t a c k ∗ s t a ck s ;
e l f p a t o m i c c t r t r e f s ; /∗ shou ld be made a t o m i c t ∗/

} ;
struct e l f p s t a t e {

e l f p c o n t e x t t ∗ context ; /∗ This memory c o n t e x t maps a s u b s e t o f the
p r o c e s s e s t a b l e s and i s f i l l e d on demand ∗/

e l f p t r e e r o o t c a l l s ; /∗Maps to OS t r e e implementat ion ∗/
e l f p t r e e r o o t data ;
struct e l f p s t a t e ∗prev ,∗ next ; /∗ Linked l i s t o f s t a t e s ∗/
struct e l f p o l i c y ∗ p o l i c y ; /∗ P o l i c y t h i s s t a t e b e l o n g s to ∗/
struct e l f p s t a c k ∗ s tack ; /∗ Last c a l l t r a n s i t i o n taken ∗/
e l f p i d t id ; /∗ i d o f t h i s s t a t e in the p o l i c y . Used f o r p ars ing

p o l i c y s ta tements ∗/
} ;
struct e l f p s t a c k {

struct e l f p s t a c k ∗prev ,∗ next ;
e l f p i d t id ;
u i n t p t r t low , high ;
e l f p o s s t a c k os ;

} ;
struct e l f p c a l l t r a n s i t i o n {

e l f p t r e e n o d e t r e e ; /∗ Wraps OS rb−t r e e implementat ion ∗/
struct e l f p s t a t e ∗ from ,∗ to ;
u i n t p t r t o f f s e t ; /∗ Ca l l ed address ∗/
short parambytes ; /∗ b y t e s copied from c a l l e r to c a l l e e ∗/
short r e turnbyte s ; /∗ b y t e s copied from c a l l e e to c a l l e r . <0 to

d i s a l l o w i m p l i c i t re turn ∗/
} ;
struct e l f p d a t a t r a n s i t i o n {

e l f p t r e e n o d e t r e e ;
struct e l f p s t a t e ∗ from ,∗ to ;
u i n t p t r t low , high ;
unsigned short type ; /∗ READ / WRITE f l a g s ∗/

} ;
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