"Sections are types, linking is policy”

Intra-Process Memory Protection ooy prarus
for Applications on ARM and Julian Bangert
x36: Leveraging the ELF ABI Vimavell oo

SCHWEITZER ENGINEERING LABORATORIES, INC,

NARF INDUSTRIES

The Problem

* Abuggy library can read or corrupt any of your process
memory

* "An image parser just stole my private keys"

"What's your angle?”

* Software is already split into parts

* Libraries, compilation units, functions, ...
“ Their interactions tell a lot about them

“ Linkers/binary toolchains already know a lot about
intended & unintended interactions between these parts

“ But: runtime discards all this information, wastefully

With ELFbac, you can describe

how parts of your application interact
(via ELF metadata)

"Sections are types, linking is policy”

Key architectural 1dea

* ELF sections describe identities & layout of program's
code & data parts in memory

“ Great for policy, but discarded by loaders :(

* Kernel's virtual memory structures describe layout of

process’ parts in memory

* Intent (r?,w?,x?) is enforced via PTEs & page faults

* Connect ELF structs -> VM structs via a "non-torgetful”

loader! Enforce intended code & data interaction

Outline

* Why use ELF ABI for policy

* Unforgetful loader for intra-memory ACLs

* (Case studies:

* OpenSSH policy vs CVE-2016-0777 (roaming bug)

* ICS protocol proxy

* Internals

“ Linux x86 prototype (Julian)
“ ARM prototype (Max)

Background/Motivation

“ File-level policies (e.g., SELinux) fail to capture what happens
inside a process (cf. Heartbleed, etc.)

« CFI, DFI, SF], etc. are good mitigations, but they aren't policy:
they don't describe intended operation of code

“ ELF ABI has plenty of structure to encode intent of a process'’
parts: libraries, code & data sections

“ Already supported by the GCC toolchain!

“ Policy is easy to create, intuitive for C/C++ programmers

Policy vs mitigations

* Both aim to block unintended execution (exploits)

* Mitigations attempt to derive intent

“ E.g., no calls into middles of functions, no returns to non-
call sites, etc.

“ Policy attempts to express intent explicitly

* E.g., no execution from data areas, no syscalls beyond a
whitelist, no access to files not properly labeled

Policy should be relevant & concise (or else it's ignored)

Policy wish list

+ Relevance: describe what matters

* E.g.: SELinux is a "bag of permissions” on file ops.
Can't describe order of ops, number of ops, memory
accesses, any parts of a process

* Once your key is in memory, its file label is irrelevant
“ Brevity: describe only what matters

* E.g.: SELinux makes you describe all file ops; you
need tools to compute allowed data tlows

What matters?

* Composition: a process is no longer "a program’; it's also
many different components & libraries, all in one space,
but with very different purposes & intents

“ Order of things: a process has phases, which have
different purposes & intents

“ Exclusive relationships: pieces of code and data have
exclusive relationships by function & intent

* "This is my data, only I should be using it"

Process phases

Authenticate jms Processlnput
@ w/, HandleError

“ "Phase" ~ code unit ~ EIP range ~ memory section

Access relationships are key to
programmer intent

* Unit semantics ~ Explicit data flows (cf. gmail)

An inspiration: ELF RTLD

| rheadef’ | == JOMNMN R. LEVINE

-«,{ hash |)

i
- ..x/
!

_read- only aﬂ\ dynsym D

Linkers

o |
dynstr
plt &
@ Jfl t o ; 63“8
| 2 dext -
& / { (odam |
\;' \ ud 3 ’
réad.w&'\ i .dlatg (.
R e
%w

John Levine,

ynamlc i .
[~ | "Linkers & loaders"

- BTIE T o e e prem— |
.bss

An inspiration: PaX/GrSec UDEREF

UDEREEF prevents kernel code from accessing userland data
it wasn't meant to access

Poisoned Data

Syscall

Driver

”Some thoughts on security alter ten years
of gmail”, D.]. Bernstein, 2007

< Used process isolation as security boundaries
< Split functionality into many per-process pieces
“* Enforced explicit data flow via process isolation

< "Least privilege was a distraction, but isolation worked”

http:/ / cr.yp.to/qmail / gmailsec-20071101.pdf

Back to our example

SSL initialization app logic

Output

SSL keys Input buffer s

”Sections are types, linking is policy”
“ The idea of a type is "objects with common operations"”

* Methods of a class in OOP, typeclasses in FP, etc.

+ For data sections, their dedicated code sections are their
operations

* It's dual: data accessed by code tells much about code
* Linkers collect similar sections into contiguous pieces

* Linkers see much info, but discard it all

Enforcing: Unforgetful loader

* Modern OS loaders discard section information

+ New architecture:

* 'Unforgetful loader' preserves section identity after
loading

+* Enforcement scheme for intent-level semantics

* Better tools to capture semantics in ABI

Motivating Example

Example policies

“ Web application decompresses a PNG file

+ Mental model

libpng

What attackers see

no-longer-private
key

private key

malicious .PNG PNG file

Bitmap with
leaked data

Or

Bitmap overwrites

Authorized keys critical data

PNG file, with

malicious .PNG exploit

Mapping it into the ABI

ibss| .data

libpng .input

libpng .output

private key

malicious .PNG

Easy to introduce new sections

Each code segment can get
different permissions

Only libssl.text can access
libssl.data

libpng.text can only access
libpng.input and libpng.output

And libpng.input can only be
read by libpng.

ELFbac Policy Case Studies

I. OpenSSH

OpenSSH policy

* OpenSSH attacked via crafted inputs
“ GOBBLES pre-auth RCE 2002 -- CVE-2016-077{7,8}

“ OpenSSH introduced the original privilege drop as a
policy primitive

* "If the process asks for a privileged op after this point,
it's no longer trustworthy; kill it"

“ But accesses to (a) non-raw data by a parser (b) raw data
beyond the parser are also privilege!

OpenSSH policy at a glance

START DATASTART_H EAP

M . DATA.PACKET HEAP

TEXT.START .
Lo .DATA.CRYPTO HEAP
.DATA.START o* o -
TEXT.SHARED Iaa
.DATA.SHARED
\ 4 -
PACKET ¢ : —P CRYPTO
TEXT.PACKET .TEXT.CRYPTO
.DATA.PACKET .DATA.CRYPTO
TEXT.SHARED .TEXT.SHARED

.DATA.SHARED
.TEXT.LIBCRYPTO

.DATA.LIBCRYPTO
.DATA.SENSITIVE_DATA

.DATA.SHARED
.TEXT.ZLIB

.DATA.ZLIB

OpenSSH demo
ELFbac vs CVE-2016-0777

ELFbac for OpenSSH

“ Policies for both the OpenSSH client and server

* Isolate portions of OpenSSH responsible for crypto/key
management from those responsible for processing & parsing
packets

* Create separate sections for sensitive data blobs, allowing for
finer-grained access control

* Control access to libraries used by OpenSSH based on where used

* Prevent direct leaking of sensitive data like private keys from, e.g.,
CVE-2016-0777 (roaming vuln)

“ Separate heaps for dynamic allocations, with specific access
permissions across process phase boundaries

I1. ICS/SCADA proxy

ElLL.Ebac for SCADA/ICS

* DNP3 is a complex ICS protocol; prone to parser errors

+ S4x14: "Robus Master Serial Killer", Crain & Sistrunk

“ Only a small subset of the protocol is used on any single
device. Whitelisting this syntax is natural.

* A filtering proxy is a DNP3 device's best friend
« "Exhaustive syntactic inspection": langsec.org/dnp3/

* ELFbac policy: isolate the parser from the rest of the app

Parser 1solation

* Raw data is (likely) poison; parsing code is the riskiest
part of the app & its only defense

“ Parser must be separated from the rest of the code
* No other section touches raw input

* Parser touches no memory outside of its output area,
where it outputs checked, well-typed objects

* Input => Parser => Well-typed data => Processing code

Our ARM target

UC-8100 Series

Communication-centric RISC computing platform

> ARMv7 Cortex-A8 300/600/1000 MHz processor

> Dual auto-sensing 10/100 Mbps Ethernet ports

> SD socket for storage expansion and 0S installation

> Rich programmable LEDs and a programmable button for easy
installation and maintenance

> Mini PCle socket for cellular module

> Debian ARM 7 open platform

> Cybersecurity

NG @O CEFE

1CS proxy policy at a glance

START === === === INPUTBUFFER

TEXT.START
.DATA.START
.TEXT.SHARED

.DATA.SHARED

DNP3
TEXT.DNP3
Parser DATA.DNP3
TEXT.SHARED
DATA.SHARED

DNP3 cB | Processor

.TEXT.DNP3_CB
.DATA.DNP3_CB

.TEXT.SHARED
.DATA.SHARED

ELFbac & Grsecurity/PaX for ARM

* We worked with the Grsecurity to integrate ELFbac on
ARM with Grsecurity for ICS hardening:
“ Cohesive set of protections for ICS systems on ARM

* PAX_KERNEXEC, PAX_UDEREF PAX_USERCOPY, PAX_CONSTIFY,
PAX_PAGEEXEC, PAX_ASLR, and PAX_MPROTECT

* Available from https://grsecurity.net/ics.php

“ ELFbac + Grsecurity ICS tested with our DNP3 proxy on

a common industrial computer Moxa UC-8100, ARM v7
(Cortex-AR)

Implementation internals

Linux x36 prototype sketch

* Prototype on Linux via virtual memory system

“ Each phase of execution (=policy-labeled code section) sees a
different subset of the address space (=labeled data sections)

* Traps handle phase transitions by changing CR3

“ Each phase has its own page tables that cache part of the
address space, reusing existing TLB invalidation primitives.

* Use PCID on newer processors to reduce TLB misses

Life of a program:
from ELF file to a process

Bridging the gap between ELF program metadata
and kernel's virtual memory structs

ELF sections

ELF consists of sections:

* Code

- Data (RW/RO) libpng.so

* GOT/PLT jump tables for
dynamic linking

* Metadata: Symbols, ...

* Can be controlled from C:

¢

L)

L)

¢

L)

L)

¢

L)

L)

pProgram.o

__section__(section_name)
* Flexible mechanism

4

L)

L)

4

L)

L)

+ ~30 sections in typical file

Sections turn into segments

Linker combines sections & groups them into segments:

text(program.o)
text(libc)
text(libpng)

rodata

.data(program.o)
.data(libc)

program.o .data(libc)
bss (heap)

Only RWX bits enforced

How a process 1s set up

“ Static linking:

“ kernel (binfmt_elf.{c,ko}) reads segments
* calls mmap() for each segment

“ jumps to the entry point

“ Dynamic linking

+ Kernel loads 1d.so (as in the above)
* ld.so parses ELF file again (bugs happen here)
* ld.so opens shared libraries, mmaps and maintains .PLT/.GOT tables

“ One mmap() call per segment

What the kernel does:

» Kernel:

+ task_struct for each thread
* registers, execution context => state
“ pid, uid, capabilities => identity of the process

* mm_struct for address space

task_struct thread 1 task_struct thread 2

mm__Struct

task_struct thread 1 task_struct thread 2

Vm_area_struct

0x40000 /
mmap

text(program.o)
mm_struct text(libc)
text(libpng)
rodata
0x80000 | S
Jfoo

.data(program.o)
.data(libc)

.data(libpng)

Linked list of vm_area_structs

Points to file system or anonymous
memory structure

bss (heap)

task_struct thread 1 task_struct thread 2

vim_area_siruct
0x40000 /

mmap

text(program.o)
text(libc)

mm__Struct
mm_rb

/ text(libpng)
rodata

FS
Jfoo

0x30000 |

.data(program.o)
.data(libc)

.data(libpng)

RB tree for faster lookups

bss (heap)

LRU cache for even faster lookups

What the CPU sees
T

PGD oud_t*[512]

PUD

PMD pte_t*[512] slseulis b omd_t*[512]

\

pte[512] pte_t[512]

PTE

physical address + flag

All three structures have to be kept in sync

Caching

Walking these structures on every memory access
would be prohibitively slow

TLBs cache every level of this hierarchy
Originally invalidated on reload

Tagged TLBs (PCID on intel). ELFbac also had the first
PCID patch for linux. Transparent on AMD

(aches enforce policy!

* NX bit is seen as a mere mitigation

“ Actually it is policy that express intent

“ First implementations of NX used cache state (split TLB)
meant for performance to add semantics

+ ELFbac does the same with TLBs and PCID

It"s all about caching

“ Each VM system layer is a cache
“ And performs checks

“ Checks get semantically less expressive as you get
closer to hardware

“ ELFbac adds another layer of per-phase caching

“ Allows us to enforce a semantically rich policy

Example: Page faults

« If the page table lookup fails, CPU calls the kernel

+ Kernel looks for the vim_area_struct (rb_tree)
* Check: If not present, SIGSEGV

“ Fill in page table, with added semantics
* Swap-in
* Copy-on-write

* (Grow stacks

El.Fbac execution model

* Old n-to-1 relationship:
“ task_struct (n threads) <-> mm_struct (1 process)
* New n-to-m relationship:

+ task_struct (n threads) <-> mm_struct (m ELFbac

phases)

“ Alot of kernel code would have to change to update m
coples

(Caching as a solution

ELFbac states are subsets of the base address space
Base address space still represented by mm

Squint enough, and a subset is like a cache

Only need invalidation instead of mutation

Caches already have to be invalidated (TLB)

Linux: mm_notifier plug-in API (virtualization)

ELFEbac page fault handler

“ If the access would fault on the base page tables
“ Fall back to the old page fault handler

“ Look up the address in ELFbac policy

“ Move process to new phase if necessary

“ Otherwise copy page table entry to allow future
accesses

What each part sees:

task_struct thread 1 task_struct thread 2

base vm_area_Struct

mMm_siruct
page tables

elfbac policy

mm__struct mm_Struct
Authenticate ProcessInput

page tables page tables

Performance overheads

* NGINX benchmarked with a policy isolating all libraries from the
main process:

“ Best case: around ~5% (AMD Opteron Piledriver)
* worst case: ~30% on some Intel platforms

* Too many state transitions on the hot path

“ Policy must be adapted to the application structure

“ Average ~15% when running on KVM

* KVM already incurs performance costs

* KVM optimizes virtual memory handling

Porting to embedded ARM

* Focused on compartmentalizing ELF binaries under

static linking

* Dynamic linking case supportable by creating an
ELFbac-aware ld.so, left to future work

* Policies generated from a JSON descriptor file

“ tool produces both the linker script and the binary
policy

* Binary policy is packed into a special segment, loaded by

the kernel during ELF loading time

Internals of ARM port

* Page fault handler enforces state & transition rules

* Changed to accommodate simpler binary policy

* ARM ASIDs (tagged TLB) reduce overhead between
state transitions

+ FEssential to reduce overhead

Binary Rewriting Tools

Storing policy in an ELF executable as a section requires
binary rewriting

Made our own tool Mithril, currently only implemented
for ELF (github.com/jbangert/mithril)

Translates binaries into a canonical form that is less
context-dependent and can be easily modified

Tested on the entire Debian x86_64 archive, producing a
bootable system

~25GB of packages rewritten, 260 core hours on S3

Drawbacks and TODOs

* Significant performance tuning still outstanding

* Implement an ELFbac-aware malloc

* Methods for easy labeling of anonymous allocations

“ Integration with system call policy mechanisms (e.g.
Capsicum)

“ Provide rich policies for many standard libraries

* ELFbac is not a mitigation, it's a way to design
policies and resilient applications

ELEbac 1s a design style

* "Who cares? That's not how code gets written"

“ Availability of enforcement mechanisms reshapes
programming practice

“ C++ took over the world by making contracts (e.g.,
encapsulation) enforceable (weakly, at compile time)

* Non-enforceable designs are harder to adopt & check

* Only enforceable separation matters; ELFbac makes
program separation into units enforceable

Application design considerations

« "Separating concerns" is good engineering, but has limited
security pay-offs

+ All concerns still live in the same address space
« Separating heaps without ELFbac has limited returns:

* Proximity obstacles to overflows/massaging, but still the
same address space, accessible by all code

« Mitigation, not policy

« With ELFbac, keeping marked, separate heaps becomes
policy: clear intent, enforced w.r.t. code units

Takeaway

Per-process bags of permission are no longer a suitable
basis for security policy

Instead, ABI-level memory objects at process runtime are
the sweet spot for policy

Modern ABIs provide enough granularity to capture
programmers intent w.r.t. code and data units

ELFbac: Intent-level semantics compatible with ABI,
standard build /binary tool chains

Policy Granularity: ABl is the Sweet Spot

security relevance

"sweet spot”

engineering
tractability

T T T

Processes and files binary format sections lines of code,
specific variables

Thank you

“ http://elfbac.org/
“ https://github.com/sergeybratus/elfbac-arm/

