
Intent Semantics in the ABI
Sergey Bratus, Julian Bangert

Outline
• From faulty classic policies to a new sweet spot

• ABI-level objects and security policy

• ABI-level policy examples

• Why this works on x86

• Future directions

Traditional Security
• Traditional security models assume:

• One process does one thing

• Static bag of permissions for the
entire process

• Usable at any point, in any order,
any number of times

If JS is your OS, what is your
reference monitor?

• Is your data in objects you can label?

• Does it even touch any filesystem?

• If it is, can you trap on access to it?

• Does it ever go through a syscall or
VM lookup?

• For DOM: Is Same Origin even the right
labelling scheme?

Virtual memory

Valuable  
Objects

?

MMU

A process is a process is a
process

• For a "task", the "bag of permissions" model is
adequate. For a "process", it isn't

• A "process" goes through changes over time

• Yet in policy we treat it as just a "task", monolithic

• This is wrong and counter-intuitive

• What are the "units" or "phases" of a process?

http://www.tomdalling.com/blog/software-design/solid-class-design-the-liskov-substitution-principle/

http://www.tomdalling.com/blog/software-design/solid-class-design-the-liskov-substitution-principle/

Process phases

• "Phase" ~ code unit ~ EIP range ~ memory section

"Some thoughts on security after ten
years of qmail", D.J. Bernstein, 2007

• Used process isolation as security boundaries

• Split functionality into many per-process pieces

• Enforced explicit data flow via process isolation

• Avoided in-process parsing

• Least privilege was a distraction, but isolation worked

 http://cr.yp.to/qmail/qmailsec-20071101.pdf

Traditional Security vs.
Modern Software

• Software is complicated, integrates many functions

• "The *** Shopping App Now Backs Up Your Photos"

• High engineering costs to manually isolate
components/functional units a-la qmail

• Semantic subdivision occurs at ABI section level

• Code & data sections reflect different intent!

• Functional units ~ ABI semantic units

Policy Granularity: ABI is the
Sweet Spot

ABI

Intent-level semantics
• "The gostak distims the doshes"  

 -- Andrew Ingraham, 1903

• Non-dictionary words, English grammar

• Semantics == relationships between terms

• Relationships between code & data sections
reflect their intent, often uniquely

Access relationships are key
to programmer intent

• Unit semantics ~ Explicit data flows (cf. qmail)

Separation of concerns in
OS engineering practice

• Sections describe the intent of code and data

• Example: Dynamic linker/loader operates on

• GOT in ELF, function stubs in PLT

• IAT, import & export data tables in PE

Enforcing
• Modern OS loaders discard section information

• New architecture:

• 'Unforgetful loader' preserves section identity
after loading

• Enforcement scheme for intent-level semantics

• Better tools to capture semantics in ABI

Motivating Example

Example policies
• Web application decompresses a PNG file

• Mental model

.PNG file

Bitmap

libpng

What attackers see

malicious .PNG

Bitmap with leaked
data

.PNG file

private key

libpng
w/ bugs

no-longer-private
key

Or

malicious .PNG

Bitmap overwrites
critical data

.PNG file, with
exploit

libpng
w/ bugs

Authorized keys

Mapping it into the ABI

malicious .PNG

private keylibssl .data

bitmap

libpng .input

libpng .output

• Easy to introduce new sections

• Each code segment can get
different permissions

• Only libssl.text can access
libssl.data

• libpng.text can only access
libpng.input and libpng.output

• And libpng.input can only be
read by libpng.

Back to our example
SSL initialization SSL libpng app logic

SSL keys Input buffer Output buffer

RW R RW R W RW

The Implementation
http://upload.wikimedia.org/wikipedia/commons/a/a6/Professor_Lucifer_Butts.gif

Implementation on X86
• Prototype on Linux with X86 virtual memory

• Each state of execution sees a different subset of the
address space!

• Traps handle state transitions by changing CR3!

• Each state has its own page tables that cache part of
the address space, reusing existing TLB invalidation
primitives.

• Use PCID on newer processors to reduce TLB misses

• Performance hit still rather bad: 30% on simple
NGINX benchmark isolating all libraries

• Too many state transitions on the hot path

• Policy must be adapted to application structure

• Less overhead (~15%) when running on KVM

• KVM already incurs performance costs, so we
don't have to suffer them

• KVM also optimizes virtual memory handling

Prototype: 
 Cloud to the rescue!

Binary Rewriting Tools
• Policy injection through metadata rewriting:

• Mithril, currently only implemented for ELF

• Translates binaries into a canonical form that is less
context-dependent and can be easily modified

• Tested on the entire Debian x86_64 archive,
producing a bootable system

• ~25GB of packages

Future directions
• Working on enforcing ELFBac-style policies with CFI

• Implementation to ARM (because phones rule!):

• Domain Control Register: 16 sub-spaces that can
be disabled/enabled without flushing caches

• Can handle a sub-lattice of an ELFbac policy  
to reduce supervisor entries.

• Would have to run all user space under virtualization,
in kernel mode

Takeaway
• Per-process bags of permission are no longer a

suitable basis for policy

• Instead, ABI-level memory objects at process
runtime are the sweet spot for security policy

• Modern ABIs provide enough granularity to capture
programmers intent w.r.t. code and data units

• Intent-level semantics compatible with ABI,
standard build/binary tool chains

