PATH OF A PACKET IN THE LINUX
KERNEL STACK

Ashwin Kumar Chimata
ashwinc@ittc.ku.edu
University of Kansas

July 11, 2005

Contents

1 INTRODUCTION

2 TCP/IP - Overview

3 When Data is sent through socket

3.1
3.2
3.3
3.4
3.5

Application Layer L oL
The Socket Interface
TransportLayer
Network layer IP)
DataLink Layer

4 When data is received from the Medium

4.1
4.2
4.3
4.4
4.5

Physical layer
Network Layer-1P
TransportLayer
ApplicationLayer
Conclusions L

1 INTRODUCTION

The flow of the packet through the linux network stack is quite intriguing and
has been a topic for research, with an eye for performance enhancement in end
systems. This document is based on the TCP/IP protocol suite in the linux kernel
version 2.6.11 - the kernel core prevalent at the time of writing this document. The
sole purpose of this document is to take the reader through the path of a network
packet in the kernel with pointers to LXR targets where one can have a look at the
functions in the kernel which do the actual magic.

This document can serve as a ready look up for understanding the network
stack, and its discussion includes KURT DSKI instrumentation points, which are
highly useful in monitoring the packet behavior in the kernel.

We base our discussion on the scenario where data is written to a socket and the
path of the resulting packet is traced in a code walk through sense

2 TCP/P - Overview

TCP/IP is the most ubiquitous network protocol one can find in today’s net-
work. The protocol has its roots in the 70’s even before the formulation of the
ISO OSI standards. Therefore, there are four well defined layers in the TCP/IP
protocol suite which encapsulate the popular seven layered architecture, within it.

Relating TCP/IP to the OSI model - The application layer in the TCP/IP pro-
tocol suite comprises of the application, presentation and the sessions layer of the
ISO OSI model.

The socket layer acts as the interface to and from the application layer to the
transport layer. This layer is also called as the Transport Layer Interface. It
is worth mentioning that there are two kinds of sockets which operate in this
layer, namely the connection oriented (streaming sockets) and the connectionless
(datagram sockets).

The next layer which exists in the stack is the Transport Layer which encapsu-
lates the TCP and UDP functionality within it. This forms Layer 4 of the TCP/IP

protocol stack in the kernel. The Network Layer in the TCP/IP protocol suite is
called IP layer as this layer contains the information about the Network topology,
and this forms Layer 3 of the TCP/IP protocol stack. This layer also understands
the addressing schemes and the routing protocols.

Link Layer forms Layer 2 of the stack and takes care of the error correction
routines which are required for error free and reliable data transfer.

The last layer is the Physical Layer which is responsible for the various mod-
ulation and electrical details of data communication.

3 When Data is sent through socket

Let us examine the packet flow through a TCP socket as a model, to visual-
ize the Network Stack operations in the linux kernel.

NOTE: All bold faced text are LXR search strings and the
corresponding files are mostly mentioned alongside each LXR target.
In the event of file names not being mentioned, an identifier search
with the LXR targets will lead to the correct location which is in
context.

3.1 Application Layer

The journey of the network packet starts at the application layer where data is
written to the socket by a user program. The user program mostly uses the socket
API which provides the system calls for the user to perform the read & write
operations to the socket. Most operations on a socket will be simlilar to those
with a normal file descriptor, but all the main functionality are well abstracted in
the kernel.

The API provides a rich set of options for the user to interact with the network,
some of the common calls are send, sendto, sendmsg, write, writev. Out of these,
send, write and writev only work with connected sockets, because they do not
allow the caller to specify the destination address. The write system call takes in
three arguments

write(socket,buffer,length);

The writev call performs the same function as the write call, except that it uses
a “gather write” form, which allows an application program to write a message
without copying the data to contiguous bytes of memory.

writev(socket, iovector, vectorlen);

Where iovector gives the address of an array of type iovec that contains a se-
quence of pointers to the blocks of bytes that form the message.

When a message sending call like send, write etc is made, the control reaches
the sock_sendmsg system call which is in net/socket.c, irrespective of the kind
of system call. This checks if the user buffer is readable and if so, it obtains the
sock struct by using the socket descriptor available from the user-level program
which is issuing the call. It then creates the message header based on the message
transmitted and a socket control message which has information about the UID,
PID and GID of the process. All these operations are carried out in the process
context.

The control calls the __sock_sendmsg, which traverses to the protocol specific
sendmsg function. The protocol options are consulted, through the sendmsg field
of the proto_ops structure and the, protocol specific function is invoked. Thus,
if it is a TCP socket then the tcp_sendmsg function is called and if it is a UDP
socket then the udp_sendmsg function is called. These decisions are made after
the control passes over the Transport Layer Interface and a decision is made on
which protocol specific function to call.

The tep_sendmsg function, defined in file linux/net/ipv4/tcp.c is finally invoked
whenever any user-level message sending is invoked on an open SOCK_STREAM
type socket.

3.2 The Socket Interface

The Socket Interface layer is sometimes called the glue layer as it acts as an in-
terface between the Application layer and the lower Transport Layer. This is also

called the Transport Layer Interface and is responsible for extracting the sock
structure and checking if it is functional. In effect this layer invokes the appro-
priate protocol for the connection. This function is carried out in inet_sendmsg
which is in net/ipv4/af_inet.c

The other relevant operations which take place at this layer are the system call
translation for the various socket creation routines. The main functionality corre-
sponding to socket creation takes place in the net/socket.c. This is the region in
the kernel where all the translations for the various socket related system calls like
bind, listen, accept, connect, send & recv are present.

In a KURT enabled kernel, we can find various instrumentation points which
can be turned on to give an elaborate narrative of when and how each of these
system calls are being called. Some of the instrumentation points we can find in
this layer are:

EVENT_SOCKET -> when a socket is created.

EVENT_BIND -> Event when a socket is bound to an address.

EVENT_LISTEN -> Event when socket listen is called.

EVENT_CONNECT -> Event when the connect system call is called
from a client machine.

EVENT_ACCEPT -> Event when the server accepts the connection
from a client.

EVENT_SOCK_SENDMSG -> When a message is written to the socket.

EVENT_SOCK_RECVMSG -> When a message is read from a socket.

There are some more instrumentation points in this level, which have been omit-
ted in this discussion for the sake of clarity. For a list of all instrumentation points
please refer network.ns in kernel/scripts/dski/network.ns

The Socket layer is responsible for identifying the type of the protocol and for
directing the control to the appropriate protocol specific function. The protocol

registration takes place here and the appropriate transport layer routines are in-
voked.

3.3 Transport Layer

When the protocol specific routines for sending message is called, the opera-
tions which take place now are in the Transport Layer of the Network stack. The
function pointer which would have been set in the proto structure will direct to
tcp_sendmsg or udp_sendmsg as the case may be.

As we are dealing with the TCP case, let us examine the tcp_sendmsg routine.
The tep_sendmsg is defined in linux/net/ipv4/tcp.c which performs the TCP spe-
cific work on the packet. It waits till the connection is established, as TCP cannot
send data till a connection is established. This section of code is shown below,
here it is checking if the connection is established before the timeout occurs.

/* Wait for a connection to finish. */
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
goto out_err;

The other operation which the tcp_sendmsg takes care of is setting up the Max-
imum Segment Size for the connection.

Once the connection is established, and other TCP specific operations are per-
formed, the actual sending of message takes place. This is done through the 10
vector structure, which is a mechanism for transferring data from the user space
into the kernel space. This is the place where the struct sk_buff *skb is created
and the user data gets copied from the user space to the socket buffers in this
function part of the code.

The tcp_sendmsg checks if there is buffer space available in the previously
allocated buffers. If so, it writes the user data on to that. Else a new buffer
is requested for the write operation. Basically this structure, tries to copy user
information into available socket buffers, if none are available, new allocation is
made for the purpose.

Once the socket buffer is filled with data, tcp_sendmsg copies the data from
user space to kernel space by calling the skb_copy_to_page function, which in-
ternally calls checksum routines before copying data into kernel space. There are

other page fault handling functionality which is incorporated in the tcp_sendmsg
code which can be looked up in the function. These are routines which take care
of allocating pages when message copy routines need them and so on. This
function finally calls the tcp_push_one function which is one of the paths to
tcp_transmit_skb function, which is the main function which transmits the TCP
segments. The other ways by which the tcp_transmit_skb can be called are
through:

extern int tcp_write_xmit(struct sock *, int nonagle);
extern int tcp_retransmit_skb(struct sock *, struct sk_buff
extern void tcp_xmit_retransmit_queue(struct sock *);
extern void tcp_simple_retransmit(struct sock *);

and so on ...

The tep_transmit_skb does the actual packet transmission to the IP Layer. This
function builds the TCP header and sends the packet to the IP layer. Building
the header in effect means that the source and destination ip addresses, the TCP
sequence number are all set up. The important data structures which are relevant in
this section are tcphdr - which stores the header information, tecp_skb _cb - is the
TCP control buffer structure which contains the flags for the partially generated
TCP header.

This function also takes care of the TCP scaling options and the advertised
window options are also determined here. Checksum calculations accompany any
data additions to the header or the data section. Finally the queue_xmit function
is called as shown below, this queues the packet to its destination. It can either be
an internal destination or an external destination, but these are decided on the next
layer.

err = tp—>af_specific->queue_xmit(skb, 0);
if (err <= 0)
return err
/* where tp is the tcp_sock structure */

A return value less than zero in this case indicates that the packet has been
dropped. The relevant instrumentation points in a KURT enabled kernel are:

EVENT_TCP_SENDMSG -> When tcp_send_msg is called
EVENT_TCP_WRITEXMIT -> when tcp_write_xmit is called
EVENT_TCP_TRANSKB -> when tcp_transmit_skb is called
EVENT_TCP_RECVMSG -> the tcp receive message event
EVENT_TCP_DATA_QUEUE -> when tcp_data_queue is called

These instrumentation points are placed in the different stages of data & header
formation. The EVENT_TCP_TRANSKB is the instrumentation point which is
placed in the tcp_transmit_skb function. All these functions are still executed in
process context.

3.4 Network layer (IP)

The IP layer receives the packet and builds the IP header for the packet. This
layer takes care of the route lookup for the packets and also maintains the Time To
live (TTL for these packets). In addition to IP, the ICMP and IGMP also go hand
in hand with the IP layer. Therefore these protocols can also be thought of as a
part of IP. This layer handles the route look up for incoming and outgoing packets
in the same way. If it is an external address it is delivered to the lower Link Layer
else if it is meant for local delivery (incoming packet) then it is delivered to the
higher layer.

When the queue_xmit function is called from within the tep _sock structure, the
control passes to the IP Layer where the function ip_queue_xmit which is defined
in /net/ipv4/ip_output.c is called.

The mechanisms of forwarding and routing are also incorporated in this rou-
tine, by using the Forwarding Information Base(FIB), which mainly handled by
using the kern_rta structure. The discussion about forwarding and routing is not
included in this document.

The routing information is checked for possible routing at this level by using the
__sk_dst_check The packet is fragmented, if needed, by calling the ip_fragment
function.

After the checks are performed the function ip_route_output_flow is called,
which is the main function which takes care of routing the packets by making use
of the flowi structure, which stores the flow information. The ip_route_output_flow
which is defined in /net/ipv4/route.c, calls the __ip_route_output_key function
which finds a route and checks if the flowi structure is non-zero. The
_ip_route_output_key first searches the route cache (an area where recently ac-
cessed routes are stored) for fast route retrieval. If a route is found it is used, else
it tries to find a route by searching the FIB.

The above function is meant for fast route retrieval, if it fails to find a route
from either the route cache or the Forwarding Information Base then the slow
route look up function,ip_route_output_slow is called, which is the main output
route resolving function. These controls still happens in the process context.

The complexities which reside in the route look up code and the depth of for-
warding has been omitted in this document to preserve clarity.

To state in simple terms, all the packet routing is done by setting up the output
field of the neighbour cache structure. Once all the processing of an output packet
is done one of the three things can happen:

o [f the packet is meant to be forwarded then the output pointer of the neigh-
bour cache structure will point to ip_forward.

e [f there is an unresolved route for a packet even after all the processing is
done, then the output pointer points to ip_output function.

o [fthere is aresolved route after at this stage, then the output function pointer
of the neighbour cache function will point to the dev_queue_xmit function.

We will forward our discussion with the assumption that a route is resolved and
the dev_queue_xmit function is called.

3.5 Data Link Layer

The Data Link Layer is responsible for a large set of operations apart from just
handing over the packet to the device. This layer is sometimes referred to as the
queuing layer as most of the queuing disciple implementation takes place in this

10

region. Apart from queue disciples, traffic shaping functions are also carried out
in this layer.

The dev_queue_xmit is the data link layer function which is called for any
packet which is meant to be delivered to an external destination. This function
checks if the device registered with the socket buffer, has an existing queue disci-
ple. This function disables all local bottom halves before obtaining the devices’
queue locks.

Here we find the DSKI instrumentation which identifies the event when a packet
is about to be queued into its corresponding device queue. This event is named
as EVENT_DEV _QUEUE and is placed right before the actual packet enqueuing
takes place. The dev_queue_xmit calls the qdisc_run routine, in a vanilla kernel.
This function first runs in the process context and checks if the device has packets
which need to be transmitted. If there are packets present then it initiates the
transmission. If the device is not free, then the same function is executed again in
the Soft IRQ context, to initiate the transmission.

When queue_disc is called in the process context, it checks the state of the de-
vice with the netif_queue_stopped function. If the function confirms that the de-
vice state to be up, then it calls the qdisc_restart function which tries to transmits
the packet in process context. It first tries to obtain the xmit_lock for the device, if
it is successful then it calls the dev->hard_start_xmit which transmits the packet
out of the system. This routine is a device specific routine and is implemented in
the device driver code of the device.

The packet is sent out into the medium by calling a set of I/O instructions to
copy the packet to harware and start transmitting. After the packet transmission
is completed, the device frees the sk_buff space occupied by the packet in the
hardware and records the time when the transmission took place.

If this transmission fails for any reason, then the packet is requeued again for
processing at a future time. This is done from the error handling routines in the
qdisc_restart function. If for some reason the packet transmission could not oc-
cur, then it calls the netif_schedule function, which schedules the packet tranmis-
sion in the Soft IRQ context.

11

The netif_schedule function calls the __netif_schedule function, which raises
the NET_TX_SOFTIRQ for this transmission. The DSKI event which is inserted
at this part of the packet transmission is called EVENT_NET _TX_SOFTIRQ.

After the packet transmission is scheduled again and completed in the next
available time, the device frees the space occupied by the sk_buff structure and
calls the netif_wake_queue which informs that the device is free and can take in
more packets for transmission. This function also raises a SOFT IRQ to schedule
the next packet sending.

This completes the discussion on how a packet is sent from the applicationm
layer to the medium. The next section deals with the process when a packet is
received from the medium into the system.

4 When data is received from the Medium

In this section we deal with the path of a network packet from the physical
medium up to the application layer. The receive side is more complicated than the
send side as the control flow does not follow a linear path.

4.1 Physical layer

When a packet arrives at the Network Interface Card of the machine, the card
receives the packet and the packet is transferred into a rx_ring through DMA.
The rx_ring is a ring in the kernel memory where the network card transfers the
incoming packet through DMA. The raw data which is stored in the rx_ring struc-
ture is either copied into a sk_buff structure.

After the packet is transferred to the kernel memory, the card interrupts the
CPU, to inform about the availability of a new packet. The CPU then transfers
the control to the core ISR which will take care of the packet processing. As
the processing in the interrupt context should be as low as possible, the Interrupt
Service Routine initiates the NET_RX_SOFTIRQ which will take the packet pro-
cessing further. The interrupt handler calls the netif_rx_schedule function which
is defined in (include/linux/netdevice.h), Which in turn calls __netif_rx_schedule.

12

The __netif_rx_schedule function puts a reference to the device into the soft-
net_data poll list, and schedules the NET_RX_SOFTIRQ. From now on, further
processing of the packet is taken care of in the soft irq context.

Whenever the NET_RX_SOFTIRQ is scheduled by the scheduler, it executes
its registered handler function which is the net_rx_action which is defined in
net/core/dev.c. In a kurt enabled kernel we can find the NET_DEVICE_LAYER FAM
instrumentation point named as EVENT _NET_RX_ACTION which appears ev-
erytime the net_rx_action function is called.

The net_rx_action function, disables the interrupts, till all the packets in the
rx_ring of each of the devices are handled by the Soft IRQ. This function polls
each of the registered devices and processes the rx_ring of each of the devices.
The net_device structure defined in (include/linux/netdevice.h) has a function pointer
for poll which points to which process_backlog function which is defined in
(/net/core/dev.c).

The backlog_dev is a pseudo device which is added to the poll list, whenever
netif_rx function is called, from the device driver, if it is not already present in the
poll list. This is the mechanism, which is used to remove a packet which has been
enqueued into the input_pkt_queue by the network drivers. The poll function
of the backlog_device, which points to process_backlog, is used to remove the
packets from the input queue, and to process each of them.

Therefore, when net_rx_action polls each of the devices, ultimately the pro-
cess_backlog function gets called for each of the packets, enqueued by each of
the devices.

The process_backlog function dequeues the packet from the input queue of
the device by calling the __skb_dequeue function, into a sk_buff structure. Here
we will have access to the actual device, from the sk_buff of the packet and the
netif_receive_skb function is called for further processing.

The netif_receive_skb function, classifies the packet according to its type, and
directs it to the appropriate packet handler function, for instance, in the case of IP
the function ip_rev is the registered packet handler.

13

4.2 Network Layer - IP

The main function which receives the packet from the net device layer is the
ip_rev function. This function checks the packet for errors and discards the IP
header, defragments the packet if necessary. The packet passes through the pre-
routing net filter hook and then reaches ip_rcv_finish function, which is defined
in net/ipv4/ip _input.c.

In a KURT enabled kernel we will find the IP_LAYER FAM family event
EVENT_IP_RCYV, which corresponds to the instance when a packet is received
at the IP layer.

The ip_rev_finish does the route look up for this packet and decides if the packet
is to be delivered locally or is to be forwarded and finally calls the dst_input
function.The dst_input function in turn calls the ip_local _deliver function, if the
packet is meant to be delivered locally.

In a KURT enabled kernel the IP_LAYER _FAM event,
EVENT_IP_LOCAL_DELIVER is present at this stage of packet delivery. The
ip_local_deliver function defined in /net/ipv4/ip _input.c, de-fragments the packet
if necessary and calls the ip_local_deliver _finish function which inturn calls the
protocol specific functions to process the packet.

The ip_local_deliver _finish function strips the packet of its IP header and finds
the protocol associated with the packet by using a hash function which hashes
based on the protocol number. Based on the protocol identification number, the
appropriate packet handlers for each protocol gets called.

If it is the TCP protocol then the tcp_v4 _rev function gets called. This signifies
the transition to the transport layer of the network stack, during packet reception.

4.3 Transport Layer

TCP associates a handler function, by initializing an instance of the inet_protocol
structure. This handler field is set to tep_v4_rev function. Therefore, tep _v4 rev,
defined in linux/net/ipv4/tcp_ipv4.c, is called from ipv4 when the protocol type in
the IP header contains the protocol number for TCP.

14

This function checks if the packet has a valid TCP header, by calling the pskb_may _pull
function, which checks if the packet header field has a complete header. The
tcp_v4 _rcv function then initializes the checksum extracts required field from the
TCP header, which is used for fast path processing.

This function internally uses a macro called TCP_SKB_CB to get to the TCP
control buffer from the socket buffer. The TCP control buffer maintains state
regarding parameters like selective acknowledgement, the tcp sequence number
etc.

The next step for this function is to find an open socket for this incoming packet,
this is done by calling the __tcp_v4_lookup, in the following segment of code:

sk = __tcp_v4_lookup(skb->nh.iph->saddr, th->source,
skb->nh.iph->daddr, ntohs(th->dest),
tcp_v4_iif(skb));

If no TCP socket is found by this call, then the packet is discarded at this
stage. If a valid TCP socket is found then we continue with the processing of
the packet. The IP security parameters are checked in this routine and the connec-
tion is checked to see if it is in the TCP_TIME_WAIT state. If this is the case,
then delayed TCP segments are discarded.

The socket is checked if it is in the locked state, in top-half context, if so it
cannot accept packets and so the other incoming packets are added to the backlog
device. One the other hand if the socket is not in the locked state, then the packets
are put in the prequeue struture. Once the packets are in the prequeue then the
packets can be processed in the process context rather than in the kernel context.
This transfer from kernel to user space is done by the function tcp_prequeue
which is called from the tep_v4_rev function. If the tep_prequeue returns zero,
which meants that there was no current user task which was associated with the
socket in hand, then tcp_v4_do_rcv is called which is the slow packet delivery
path.

We will continue our discussion based on the tcp_prequeue semantics initially.
The tcp_prequeue is defined as an inline function in include/net/tcp.h, and is the
main function which is responsible for queuing up the buffers for any waiting user

15

process. When a user level socket is woken up and a read is issued on the socket
application, the tcp_prequeue immediately processes the socket’s prequeue. This
function checks if a user task is waiting for data from a socket, and processes the
prequeue buffer. The following portion of code copies the socket buffer to the
user’s address space:

if (!sysctl_tcp_low_latency && tp->ucopy.task) {
__skb_queue_tail (&tp->ucopy.prequeue, skb);
tp—>ucopy.memory += skb->truesize;

When the slow packet transfer path is taken, that is, when tcp_v4_do_rcv func-
tion is called, then the following semantics is followed. When tcp_v4_do_rcv is
called, it checks if the TCP connection is in established state, by examining the
state variable to be TCP_ESTABLISHED. If the connection is established then
the tep_rcv_established function is called.

The tep_rev_established function starts processing the packet with the assump-
tion that the packets are to be processed in the fast path. If options are set in
the packet then the packet processing is diverted to the slow path. This function
checks to see if the packet sequence number is in order and then direct the packet
to fast or slow path based on options set up in the packet.

If this function detects a fast path the packet is copied directly to the user space
after checking to see if the global current is the same as the task that has requested
the service. The following code segment is the place where this is done:

if (tp->ucopy.task == current &&
tp—>copied_seq == tp->rcv_nxt &&
len - tcp_header_len <= tp->ucopy.len &&
sock_owned_by_user(sk)) {
__set_current_state(TASK_RUNNING) ;

The slow path processing, if taken does various checks based on options and
branches out depending on the options, after sucessful packet reception ACK is

16

sent and finally the tcp_data_queue function is called which queues the data seg-
ments in the socket’s normal receive queue.

For segments in the socket’s receive queue, processing is done when the appli-
cation calls the read system call, which in turn calls the tcp_recvmsg function.

In a KURT enabled system, this stage of processing is symbolized by the
EVENT_TCP_RCV_MESSAGE instrumentation point.

4.4 Application Layer

Whenever an user application issues an API call like read, recvfrom, they are
mapped onto system calls sys_recv defined in /net/socket.c which gets translated
into the sys_recvfrom call.

The sys_recvfrom and other recv system calls gets translated into the sock _recvimsg
function defined in /net/socket.c. In the case of INET sockets, the inet_recvmsg
defined in /net/ipv4/af_inet.c is called, which calls the protocol specific receive
function. In the case of TCP the tcp_recvimsg is called.

All system calls get translated into the tcp_recvmsg function at the socket layer
which is defined in linux/net/ipv4/tcp.c This is the function which copies data
from an open socket buffer into a user buffer. The KURT instrumentation point
EVENT_TCP_RECVMSG can be found in this function.

This function also includes processing, when an urgent data processing need is
communicated through the SIGURG signal by any process. The basic mechanism
involved in this function is, a target byte size is check and this is used for limiting
the size of data transferred from the socket buffer to the user space.

This completes the path of the packet from the medium to the user applica-
tion. The packet path can be visualized by the network instrumentation diagram
attached at the end of the document. The diagram illustrates the salient instru-
mentation points at the different layers of the Network stack we have discussed
till now. A pass through the diagram while going through the document can be
very educational.

17

The Diagram is an illustration of a stimulus response loop which exists between
a Master and a client(slave) machine. The path of the stimulus corresponds to the
path of any network packet, in the TCP/IP network stack.

Client

Master
1 22 12 11
Stimulusi Response Response l Stimulus
5| EVENT CEVENT. | - SOCKET LAYER EVENT EVENT- |00
SENDTO RECVFROM 21 13 SENDTO RECVFROM
3 E\slger)R}ljs%P EVENT_UDP | | . TRANSPORT EVENT_UDP EVENT_UDP | g
- + {RECVMSG 20 LAYER 14 | _SENDMSG _RECVMSG
EVENT_IP_ % *
4 | queue xmrr| | EVENTP NETWORK LAYER EVENT_IP_ EVENTIP | 8
_RCV 19 15 | QUEUE_xMIT -RCv
‘ EVENT_DEV EVENT_ NET DEVICE EVENT DEV EVENT_
_XMIT NETIFRX | g LAYER 16 XMIT NETIF_RX 7
A A
17 v
100 Mbps Ethernet
6

Figure 1: Linux Network Stack Instrumentation Points

18

4.5 Conclusions

The document presented a detailed flow through the linux TCP network pro-
tocol stack, for both the send and receive sides of the transmission. Though the
document can be appreciated better by making LXR references pointed out in this
document, following the document even otherwise is very helpful.

References

[1] The Linux TCP/IP Stack: Networking for Embedded Systems by
THOMAS F. HERBERT

[2] Badri Subramanian. Real-Time Networking for Quality of Service
on TDM based Ethernet Master’s Thesis., University of Kansas,
2005

[3] Hariprasad Sampathkumar. Using Time Division Multiplexing to
support Real-time Networking on Ethernet Master’s Thesis., Uni-
versity of Kansas, 2005

[4] Ashwin Kumar Chimata & Senthil Shanmugham. Stimulus Re-
sponse Characteristics of Ethernet TDM using star Topology Ad-
vanced Operating Systems, Semester Project, June 2005.

19

