
SYSTEMS SECURITY
Editors: Patrick McDaniel, mcdaniel@cse.psu.edu | Sean W. Smith, sws@cs.dartmouth.edu

74 May/June 2015 Copublished by the IEEE Computer and Reliability Societies 1540-7993/15/$31.00 © 2015 IEEE

Bolt-On Security
Extensions for
Industrial Control
System Protocols:
A Case Study of DNP3 SAv5

J. Adam Crain | Automatak
Sergey Bratus | Dartmouth College

I ndustrial control system (ICS)
protocols—key to public utility

operations—have developed along-
side the Internet but are largely iso-
lated from it, carried by dedicated
serial lines between closed networks
with trusted software. However, as
leased lines are replaced with trans-
mission control protocol (TCP) or
wireless connections to serve the
needs of “smarter” energy systems
and as ICS traffic comingles with
other kinds of packets, legacy ICS
protocol design becomes a prob-
lem. Protocols previously designed
for isolated networks must receive
“bolt-on” security extensions, com-
patible with the bulk of legacy
implementations already deployed;
implementations never meant to
be exposed to maliciously mal-
formed input must be hardened to
reject it gracefully. Attempting to
realize visions of smart utilities with

the current ICSs’ attack surfaces
will dramatically increase risks of
their catastrophic failure due to hos-
tile actions.

DNP3 (IEEE Standard 1815-
2012) is widely used in the US
power grid and is a typical repre-
sentative of the supervisory control
and data acquisition (SCADA)/
ICS protocol family.1 As with many
other such protocols, DNP3’s origi-
nal design didn’t include security
features such as authentication.
The recently standardized secure
authentication (SA) extends DNP3
to provide optional and multiuser
authentication services, with char-
acteristic tradeoffs between security
and bandwidth. These extensions
modify the existing DNP3 appli-
cation layer by creating additional
function codes and object types
that selectively apply to a subset of
protocol features, leaving others

unprotected and increasing overall
syntactic complexity.

We believe that this manner of
extension represents a security anti-
pattern—a design that will keep
producing bugs and weaknesses—
and considerably increases the
attack surface associated with pro-
tocol encoding, parsing, and imple-
mentation complexity. Reviews of
SA have overlooked this additional
attack surface, focusing instead on
its cryptographic primitives and
message flows. In this article, we
discuss this increased attack surface
and how to avoid its worst pitfalls.

DNP3 Overview
The DNP3 protocol stack is split
into three layers: link, transport,
and application (see Figure 1). The
protocol is transport agnostic—all
three layers are used regardless of
whether the underlying network is
a serial communications channel or
a TCP stream (with its own open
systems interconnection model lay-
ers below DNP3’s link).

The link layer is concerned
primarily with framing, point-to-
multipoint addressing, and error
detection in a manner similar to
Ethernet datagrams, but it also
includes simple stateless functional-
ity such as heartbeat messages.

The transport layer reassem-
bles multiple link layer frames into
larger application messages. This
reassembly is based on a single-
byte transport header with first,
final, and sequence parameters that
allow for only in-order reassembly.
Unexpected transport segments
are simply dropped, and the reas-
sembly buffer is emptied. The maxi-
mum default size of a reassembled

application layer message is 2,048
octets, although this size is adjust-
able if both ends agree on the value
of using out-of-band configuration.

The application layer handles
messages called application data ser-
vice units (ASDUs) that derive their
semantics from a combination of
function codes and objects. Mes-
sages can consist of zero or more
object headers that follow the main
application layer header (see Fig-
ure 2). Object headers describe the
type and quantity of objects that
follow. The beginning of the next
header is discoverable only by pars-
ing the previous one.

The rules for determining object
payload lengths are complex and
varied. This complexity gives imple-
mentations of the DNP3 applica-
tion layer a large attack surface due
to potential programmer errors. For
example, programmers might fail to
check a payload’s multiple object
lengths for consistency, interpret a
payload’s contents differently than
intended, or assume the presence
of objects that are actually absent
from a maliciously crafted pay-
load. As usual in software exploita-
tion scenarios, acting on incorrect
assumptions while allocating or
copying maliciously crafted payload
data results in memory corruptions,
which attackers can leverage to
crash or control ICS processes.

Most types of valid messages
require at least one object header.
Notable exceptions are confirm,
cold restart, warm restart,
delay measurement , and
record current time, which are
never paired with any objects. The
specification exhaustively defines
which objects can be paired with
which function codes.1

The vast majority of object
headers can be processed indepen-
dently—that is, they aren’t context
sensitive with regard to other ob-
ject headers in the ASDU. Nonse-
cure DNP3 has only one notable
exception to this rule: common

time of occurrence fields and
the measurements with which they
can be paired. This combination of
headers requires a common refer-
ence time header to precede one
or more relative times and acts as
a crude way of compressing what’s
normally 48-bit time stamps on
measurement values.

In any protocol, there’s an inherent
design tradeoff between structural
flexibility and attack surface, which
doesn’t favor cryptography. Indeed,
underlying complexity or ambigu-
ity of encoding gave rise to a variety
of attacks such as Serge Vaudenay’s
and Daniel Bleichenbacher’s as well
as the more recent BEAST, CRIME,
Lucky13, POODLE, BERserk, and
others, which all worked around
the enduring strength of the crypto-
graphic primitives.

With its high level of flexibil-
ity, the DNP3 application layer is a
poor candidate for encoding cryp-
tographic functions. Despite the
constraints placed on function and
object combinations, the number
of valid combinations of objects for
many DNP3 function codes is practi-
cally infinite. The ability to associate
multiple objects to a single function
makes the DNP3 application layer
powerful in terms of flexibility and
bandwidth but also particularly vul-
nerable when it comes to parsing and
processing attacker-supplied input.
By contrast, SCADA protocols of
similar functionality, such as IEC
60870-5-104, have more rigid appli-
cation layer structures in which the
function code completely defines
the type of data that follows, reduc-
ing the combinatorial complexity of
valid inputs (and thus the complex-
ity of the code that must validate
them). Not surprisingly, DNP3’s
complexity is reflected in its distribu-
tion of vulnerabilities.

Fuzzing Vulnerable
Implementations
Vulnerabilities in DNP3 imple-
mentations that arise due to the

protocol’s complexity aren’t theo-
retical. For nearly a decade, such
vulnerabilities in DNP3 and other
SCADA protocol implementations
have been found by fuzzing2,3;
however, little information has been
made publicly available on DNP3
vulnerability specifics. A 2010 US
government–funded report spe-
cifically mentioned the dire need
to improve input parsing routines
in DNP3 implementations without
citing specific failure modes.4

The most comprehensive study
of DNP3 vulnerabilities was con-
ducted by Crain (coauthor of
this article) and Chris Sistrunk
from 2013 to 2014 and resulted in
numerous disclosures coordinated
with vendors and asset owners (www
.automatak.com/robus); a small rep-
resentative fraction of the raw vulner-
ability data was released publicly.5
We recap the results of this study
here, as they pertain to DNP3 secu-
rity extensions.

Examples of Vulnerabilities
Crain and Sistrunk tested the effects
that crafted malformed frames
could have on DNP3 implemen-
tations in master controllers and
outstation (remote) equipment.
Nearly all vendor products were

Figure 1. Abstract DNP3 communication stack. The link
layer has direct access to the communication channel.

Application

Transport

Link

Figure 2. DNP3 application layer messages consist of
a main header and zero or more object headers and
associated data.

Header
(including
function)

Header +
data #1

Header +
data #N

. . .

www.computer.org/security 75

found to be vulnerable to single-
frame attacks for certain frame
types; these types were chosen to
exercise the protocol’s syntactic
complexity and to trigger program-
mer errors that would likely result
from this complexity.

A single crafted frame received
by a vulnerable implementation
could crash the receiving process or
drive it into an infinite loop, render-
ing the entire protocol stack inoper-
able. Moreover, for many vendors,
broadcast frames could trigger such
effects, which doesn’t require any
attacker knowledge about the link
endpoint configurations.

For example, ASDUs that are
too short to contain a valid object
header could be delivered in a frame
with a correct lower-layer cyclic
redundancy check (CRC) value to
cause an unhandled exception in
the receiving code. An infinite loop
could be exploited in another imple-
mentation by setting an object count
to the maximum possible value of
65,535 but failing to provide these
bytes. A response with two control
objects unexpected in such a frame
would cause a buffer overrun and
crash—an example of a payload
that’s syntactically valid according
to the specification but meaning-
less. This creates room for ambiguity
of payload interpretation. In other
cases, malformations in simpler
lower layers caused crashes, for
example, a link frame encapsulating
a single-byte malformed transport
protocol data unit and no applica-
tion protocol data unit (APDU).

A single frame triggering an
unhandled exception can be as sim-
ple as a payload that contains no
APDU under the valid link and trans-
port layer checksums (see Figure 3).

Distribution of
Vulnerabilities
The generational fuzzer used in this
study was designed to stress each
layer of the protocol individually to
expose weaknesses in each layer’s
implementation. The tool was itera-
tively improved using code cover-
age analysis obtained from an open
source implementation of DNP3.

More than 80 percent of discov-
ered vulnerabilities were found in the
application layer. This isn’t surpris-
ing given how DNP3’s complexity
is distributed. The DNP3 specifica-
tion devotes hundreds of pages to
describing the application layer, its
state machine, and the numerous
object encodings, whereas the link
layer is covered in only 21 pages and
the transport layer reassembly gets
a mere seven pages. We find similar
ratios by counting the source lines
of code associated with each layer
in an open source implementation
of the protocol. Simply put, when
it comes to robustness and security,
less is more.

Of the application layer vulner-
abilities, a disproportionate number
were associated with the unsolicited
response functions. A crude way of
explaining this is to analyze the speci-
fication to see how many object types
can be paired with certain function
codes. Performing this analysis on the

Parsing Guideline Tables in IEEE Stan-
dard 1815-2012 reveals that the most
overloaded functions in terms of the
number of possible object types are
read, response, and unsolic-
ited response.1 The near absence
of vulnerabilities in the read function
code is best explained by the fact that
client ASDUs don’t carry data payloads
but merely describe what data is being
requested, resulting in a simpler syn-
tax. Responses and unsolicited
responses can be associated with
the majority of the object headers and
types in the specification, giving these
functions the highest attack surface.

Underrepresentation of
the Application Layer
Despite the majority of the failures
discovered in the application layer,
there’s reason to believe that this
layer is underrepresented in the
results as compared to the link and
transport layers. The open source
package used to verify the fuzzer is
a conservative implementation that
doesn’t include even more complex
protocol feature subsets such as file
transfer, datasets, and device attri-
butes. The fuzzer was developed to
verify this open implementation
and therefore doesn’t model these
optional features. Many of these
features use more complicated
encodings that include variable
length fields, many of which can
be specified in multiple ways and
can be internally inconsistent and
potentially confusing to a parser. It’s
almost certain that significant latent
vulnerabilities exist in these com-
plex but untested areas of the vari-
ous protocol implementations.

Optional Authentication
The SA specification lists a set of
function codes that must always be
authenticated as well as a smaller
subset of function codes that can
be optionally authenticated. This
decision was made to conserve
communication bandwidth.1 How-
ever, selective authentication of

Figure 3. A DNP3 frame with source address 100 and destination address 100. It
contains no application layer payload and caused a fault in a real system owing
to poor input validation. CRC is cyclic redundancy check.

FF C0 1D

100 100

CRC CRC

First/Final
Sequence number = 0

F2 0A

1-byte
payload

05 64 06 44 64 00 64 00

Unconfirmed
user data

76 IEEE Security & Privacy May/June 2015

SYSTEMS SECURITY

application layer messages is a
counterproductive and danger-
ous design pattern, especially in
SCADA. Optional authentication
conveys a false sense of security to
users, fails to address the vulner-
ability threats posed by parsing and
processing payloads, and substan-
tially increases the protocol’s over-
all complexity by requiring security
mechanisms to be protocol aware.

Unauthenticated Closed Loop
The spoofing of measurement data
has been a component of several
major attacks against ICSs, includ-
ing Stuxnet, allowing attackers to
cause more undetected damage or
losses to a process over time than
with a sudden catastrophic event. In
this context, not providing manda-
tory authentication of measurement
data from the field is an impor-
tant oversight. Man-in-the-middle
attackers on an SA link with only
mandatory authentication enabled
can allow authenticated control
information to pass but subtly alter
measurement data in such a way that
gradually degrades the process or
damages equipment.

Lack of Stateless Functionality
Because almost no stateless func-
tionality can be found in the proto-
col, configuring an SA system to not
authenticate any particular func-
tion code is inadvisable. The DNP3
application layer has only a hand-
ful of completely stateless function
codes. The delay measurement
function code, for instance, doesn’t
alter any server-side state in the
outstation when processed. How-
ever, because of the event-oriented
nature of DNP3, a combination
of read and confirm functions
allows attackers with access to the
network to flush all queued event
messages from an outstation if these
functions aren’t authenticated.

DNP3 SAv5 requires the authen-
tication of 21 out of 34 total function
codes, whereas the remaining function

codes can be optionally authenticated
based on the configuration. Manda-
tory function codes—listed in IEEE
Standard 1815-20121—are primar-
ily those that can alter the outstation’s
state and the process’s output state.
A notable exception is the assign
class function code, which can be
used to silence an outstation’s report-
ing mechanism by assigning all event
data in the outstation to class 0. This
would have an effect similar to dis-
able unsolicited but could
be even more harmful because it
would likely persist across device
reboots and remove event data from
responses to normal event polls.

Responses Present the Most
Risk for Exploitation
As we discussed, the most complex
response and unsolicited
res ponse function codes present
the highest attack surface and there-
fore the most risk of exploitation.
Furthermore, remotely compro-
mising a physically well-protected
master from an isolated and less-pro-
tected field asset was until recently
an underdiscussed attack vector.6,7

 The attack model under which
the specification was designed
doesn’t seem to include implemen-
tation defects as a viable threat.
Selectively authenticating subsets
of the protocol by function alone—
and not for complexity—is a major
oversight and should be regarded as
a secure protocol anti-pattern.

Conversely, requiring authentica-
tion prior to parsing these complex
areas of the specification would turn
a preauthentication exploit into one
requiring compromised credentials.

Protocol Complexity
DNP3 is a complex protocol,
mostly due to the way it implements
the transfer of event data using
server-side state. A lot of bookkeep-
ing and additional messages such
as confirms are required to keep
things synchronized. SA adds even
more complexity to the same set of

application layer state machines in a
manner that’s difficult to untangle.
This presents real challenges for
implementers who must now sup-
port both the secure and nonsecure
versions of the protocol.

This complexity also extends
into parsing and ambiguous encod-
ings. Cryptographic protocols
should always defer as much pars-
ing and processing as possible until
after the sender’s identity has been
established to both derive the most
benefit from cryptographic integrity
protections and avoid the so-called
“cryptographic doom principle.”8
Unfortunately, SA’s design contra-
dicts this principle.

Challenge–Response
versus Aggressive Mode
After an initial session key exchange,
normal DNP3 traffic can be authen-
ticated using one of two modes:
challenge–response and aggressive,
which is a form of one-pass authen-
tication using sequence numbers
for replay protection.

The challenge–response mode
introduces two additional messages
into the normal traffic flow and can
substantially impact latency and
throughput for a serial link. This two-
pass authentication mode is more
resistant to replay attacks because
each message is authenticated using
a unique nonce for each challenged
message. In this mode, it’s fairly easy
for the challenging party to treat
everything after the function code
as opaque “payload data” that isn’t
parsed until the remote side authen-
ticates. Figure 4 shows challenge–
response mode’s traffic flow.

Aggressive mode adds a user
object with a sequence number as
the first object header in the ASDU
and a hash message authentication
code (HMAC) value as the last
object header. The purpose of this
mode is to reduce bandwidth and
latency by authenticating messages
in a request–response exchange. Fig-
ure 5 shows the request’s structure.

www.computer.org/security 77

Aggressive Mode Ambiguity
The first issue with aggressive mode
request encoding is the ambigu-
ity of the request. Normally, DNP3
message payloads can be processed
solely based on the function code.
In aggressive mode, the first object
header must be inspected to deter-
mine whether the ASDU is a nor-
mal request or an aggressive mode
request. The lack of a proper envelope
for the payload data requires imple-
menters to perform special-case pars-
ing in multiple places to safely handle
aggressive mode requests.

The most dangerous issue with
aggressive mode encoding is that
many implementers will naively
parse the entire payload data to
reach the HMAC trailer. Recall
that DNP3 object headers can’t
normally be skipped over without
at least some level of light pars-
ing. Numerous vulnerabilities were
identified in the parsing of these
object headers, particularly integer
overflow issues related to handling

object headers that use start and
stop indices. At first blush, it appears
necessary to interpret the inner pay-
load data to be able to determine
the trailing HMAC’s position.

Fortunately, in this case, there’s
a nonintuitive and undocumented
workaround. The HMAC object
and its header are of a known size
and can be speculatively parsed off
the end of the ASDU. Future ver-
sions of the specification should
make explicit recommendations to
implementers to use this methodol-
ogy for reading the aggressive mode
HMAC. We note that the signing
schemes for Linux’s loadable kernel
modules have finally converged on
a similar design in which a fixed-
size signature is simply appended
to the end of the module object
file after a string of unsuccessful
designs that attempted to use more
complex formats and metadata.

Conflicting Encodings
of Length
Many variable-length objects related
to security functionality have incon-
sistent encodings between objects
as well as encodings with multiple
ways of representing the length of
certain fields in a single object. Hav-
ing two sources of truth for lengths
of certain payload elements has been
a common source of implementa-
tion defects in various protocols,
most recently OpenSSL’s Heart-
bleed and the GNU TLS Hello
bug, as well as classic preauthen-
tication bugs such as OpenSSH’s
challenge–response vulnerability.

In DNP3, all variable-length
objects are preceded by a UINT16
length that defines the entire
object’s length. Fixed-length fields
come first in the object, and vari-
able-length fields come last. All
but the last variable-length field
is preceded by its own UINT16
length field. The last field’s length
is implicitly established as the
remainder of the envelope length.
Figure 6 shows this pattern.

In this encoding, message au-
thentication code (MAC) value
length is unambiguous in the sense
that there’s only one way to deter-
mine its value. If the total size of the
object is N and the length of all fields
preceding the MAC value is P, then
the length of the MAC value is N –
P. However, this encoding scheme
isn’t applied consistently. Some ob-
jects have a preceding length field
for the final variable length field, as
Figure 7 shows.

Thus, there are two ways to
determine the master chal-
lenge data field’s length in an
update key change request.
In a valid encoding of this object,
the entire object’s length must agree
with the final field’s explicit length
value. To complicate the issue, the
specification informs implement-
ers that they can use either method
to establish the final field’s length,1
which can lead to implementations
that disagree on the cryptographic
data’s contents. If the protocol
can’t be redesigned to remove such
encoding ambiguities, the pars-
ing recommendation should be to
always check that these two meth-
ods produce the same length value.

D NP3 SA contains a num-
ber of anti-patterns that will

likely serve as a significant source
of bugs. Vendors and standards
bodies adding security to SCADA/
ICS protocols should strongly favor
a layered approach to security in
which legacy protocol issues can
be de coupled from SCADA object
models and semantics.

Acknowledgments
This specification review was performed
as part of the process of implementing
it in a preexisting open source project.
The DHS S&T HOST program award
partially funded this work.

References
1. IEEE Std. 1815-2012, IEEE Stan-

Figure 4. Challenge–response message flow. Parsing of the
message payload can be deferred until after authentication.
HMAC is hash message authentication code.

Normal request

Function + (payload bytes)

Challenge

Function + nonce

Authentication

HMAC (key, request, nonce)

Normal response

Figure 5. In aggressive mode, application data service units
sandwich the payload to be processed inside an ad hoc
envelope consisting of user and sequence information and
a trailing message digest. The challenge sequence number
(CSQ) protects messages from replay attacks.

Normal
function

User ID
and CSQ HMAC

Payload
objects

. . .

78 IEEE Security & Privacy May/June 2015

SYSTEMS SECURITY

dard for Electric Power Systems
Communications-Distributed Net-
work Protocol (DNP3), IEEE, 2012;
https://standards.ieee.org/find
stds/standard/1815-2012.html.

2. G. Devarjaran, “Unraveling SCADA
Protocols: Using Sulley Fuzzer,”
DEFCON 15, 2007; www.dc414
.org/download/confs/defcon15
/Speakers/Devarajan/Presentation
/dc-15-devarajan.pdf.

3. D.G. Peterson, “Iccpsic Assessment
Tool Set Released,” Digital Bond,
2007; www.digitalbond.com/blog
/2007/08/28/iccpsic-assessment
-tool-set-released.

4. NSTB Assessments Summary Report:
Common Industrial Control System
Cyber Security Weaknesses, tech. report
INL/EXT-10-18381, Idaho Nat’l
Laboratory, May 2010; http://fas
.org/sgp/eprint/nstb.pdf.

5. D. Peterson, “S4x14 Video: Crain/
Sistrunk—Project Robus, Mas-
ter Serial Killer,” Digital Bond, 23
Jan. 2014; www.digitalbond.com
/blog/2014/01/23/s4x14-video
- c ra i n s i s t r u n k- p ro j e c t- ro b u s
-master-serial-killer.

6. D. Peterson, “Why Crain/Sistrunk
Vulns Are a Big Deal,” Digital Bond,
2013; www.digitalbond.com/blog
/2013/10/16/why-crain-sistrunk
-vulns-are-a-big-deal.

7. E. Byers, “DNP3 Vulnerabili-
ties Part 1 of 2—NERC’s Elec-
tronic Security Perimeter Is Swiss
Cheese,” Tofino Security, 7 Nov.
2013; www.tofinosecurity.com
/blog/dnp3-vulnerabilities-part
-1-2-nerc%E2%80%99s-electronic
-security-perimeter-swiss-cheese.

8. M. Marlinspike, “The Crypto-
graphic Doom Principle,” Thought
Crime blog, 13 Dec. 2011; www
. t h o u g h t c r i m e.o r g / b l o g / t h e
-cryptographic-doom-principle.

J. Adam Crain is a software engi-
neer, security researcher, and
open source advocate. He’s also
a partner at Automatak, which
aims to improve the penetration
of robust open source software in

the utility space. Contact him at
 jadamcrain@automatak.com.

Sergey Bratus is a research associ-
ate professor in the Computer

Science Department at Dart-
mouth College. His research
interests include Unix security
and wireless networking. Contact
him at sergey@cs.dartmouth.edu.

Figure 6. A session key status object with two variable-length fields, challenge
data, and message authentication code (MAC) value. The MAC value’s length is
the remainder of the length field framing the entire object.1

Key wrap algorithm
Key status
MAC algorithm

Challenge data length

Challenge data

MAC value

Bit position

Octet transmission order

7 6 5 4 3 2 1 0
b0

b0

b0
b0
b0
b0

b31

b15

b7
b7
b7

b15

Key change sequence number

User number

Figure 7. Update key change request with two variable-length fields,
user name and master challenge data. The length of the challenge
data is explicitly encoded in the length field and implicitly encoded as the
remainder of the length field framing the entire object.

Octet transmission order

7 6 5 4 3 2 1 0
b0
b0

b0
b15

b7

b15

User name length

User name

Master challenge data length

Master challenge data

Bit position
Key change method

www.computer.org/security 79

