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ABSTRACT

Any channel crossing the perimeter of a system provides an
attack surface to the adversary. Standard network inter-
faces, such as TCP/IP stacks, constitute one such channel,
and security researchers and exploit developers have invested
much effort into exploring the attack surfaces and defenses
there. However, channels such as USB have been overlooked,
even though such code is at least as complexly layered as a
network stack, and handles even more complex structures;
drivers are notorious as a breeding ground of bugs copy-
pasted from boilerplate sample code.

This paper maps out the bus-facing attack surface of a mod-
ern operating system, and demonstrates that effective and
efficient injection of traffic into the buses is real and eas-
ily affordable. Further, it presents a simple and inexpen-
sive hardware tool for the job, outlining the architectural
and computation-theoretic challenges to creating a defen-
sive OS/driver architecture comparable to that which has
been achieved for network stacks.

1. INTRODUCTION

Securing a system requires preventing attackers from ex-
ploiting the inevitable vulnerabilities in real-world systems,
particularly commodity embedded devices.

Whether a vulnerability can be exploited depends on the
attacker’s ability to deliver the exploit’s crafted data to the
vulnerable code or data location. Accordingly, practical de-
fense must be based on understanding, in the targeted sys-
tems, the possible data flows that can deliver crafted inputs
to this vulnerability locus.
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For exploits delivered over TCP/IP networks, there exists a
solid understanding of how data flows through TCP/IP net-
works and stacks, which informs the methodologies of net-
work defense. However, we know of no such understanding
or methodology for data delivered over perimeter-crossing
buses. In this paper, we take initial steps to fill this gap
in understanding.

The Network Channel. In particular, attacks on network
stacks depend on the attacker’s ability to craft and inject
packets into a network medium. This fundamental depen-
dency is the reason why network security is characterized
by first-class engineering effort invested in packet crafting
libraries and tools, such as libnet [3], libdnet [2], Scapy [6],
LORCON [4], and many others.

Furthermore, practical defense of networked systems is based
on understanding the paths a packet can take through a
network and on through the target stack, and providing the
defender with the ability to filter packets and their payloads
at multiple locations throughout their paths, with the filter
receiving the fullest possible context at each location.

Linux’s Netfilter serves as a sterling example of this ap-
proach, and is arguably the most successful deployed OS
security architecture. Netfilter provides a combination of
hooks at critical junctures in a packet’s path through the ker-
nel and programmable environments to evaluate per-packet
predicates and more complex history-backed assertions on
a packet’s protocol field values (e.g., filter table rules and
conntrack-based rules respectively). BSD’s Pf provides sim-
ilar functionality.

Most importantly, Netfilter reflects the layered structure of
TCP/IP stacks and can evaluate its rules in many contexts
corresponding to its layers, at the exact spots where a pro-
tocol’s reassembled payload is handed to the next layer for
processing. Netfilter thus avoids a NIDS dilemma of either
having to judge “raw” packets lacking sufficient context cues
to their meaning, or having to rely on a mock-up “lite” stack
for reconstructing these contexts/streams/sessions that does
not fully match the target’s stack and can thus be cheated



into mis-reconstructing the relevant streams.

The Bus Channel. By contrast, popular bus-facing kernel
subsystems have so far received very little attention, despite
being as crucial to a system’s data exchange functionality as
network stacks, and despite exhibiting a stacked structure
that “routes” data to a multitude of potentially vulnerable
kernel modules in the system just like a network stack routes
its payloads to protocol handlers.

Several engineering factors make the bus-facing stacks, and
especially device driver code, attractive to attackers. Firstly,
the closer a driver is to the bus, the more likely it is that its
code is based on a template provided by the hardware vendor
in addition to the chipset or bus controller datasheet. These
templates are treated as “sample code”, and are typically
written by hardware engineers with little knowledge of or
anticipation for potential security issues.

Secondly, bus-facing device-related code is typically debugged
against real devices, and the traffic/message patterns gener-

ated by these devices are implicitly assumed to be the only

possible ones on the bus, i.e., at the receiving boundary of

the software communicating with the bus. Thus, debugging

driver code is biased towards eliminating accidental errors

and device or host requests inappropriate for their receiving

state. As a result of this bias, the community can overlook

the more general problem of safely handling arbitrary binary

input strings.

We observe that although a number of vulnerabilities have
been found with USB fuzzing (see Sec. 8), and device drivers
are commonly known to harbor clusters of vulnerabilities',
we know of no systematic exploration of the USB-reachable
interfaces on the same scale as network interface-facing soft-
ware has been explored. We attribute this to the lack of tools
for easily scripted USB fuzzing; a lack of well-known archi-
tectural models like the OSI model that would help identify
classes of reachable targets may also play a role.

This Paper. Thus, the purpose of this paper is present the
results of our effort to map out the bus-facing attack surface
of a modern operating system, to demonstrate that effec-
tive and efficient injection of traffic into the buses is real
and easily affordable, and to outline the architectural and
computation-theoretic challenges that a defensive OS/driver
architecture will face to bring about an improvement com-
parable to that of Netfilter for network stacks.

The collective experience of security practitioners is well en-
capsulated by the maxim “Security will not get better until
tools for practical exploration of the attack surface are made
available” (formulated by Joshua Wright). In this paper we
provide both tools and models for practical exploration of
the USB-facing attack surface. We apply the lessons learned
in attack surface exploration of networks (such as impor-
tance of scanning, mapping of routed data flows, emphasis
on well-engineered packet crafting, and availability of injec-
tion tools) to buses, and show their relevance.

The Month of Kernel Bugs serves as a great example.

To summarize, we make these initial contributions:

e We present a top-level data flow analysis for the attack
surface within the FreeBSD kernel reachable through
its USB-facing subsystems

e We present a hardware tool and software framework
for efficient crafting and injection of USB packets.

Section 2 provides a technical overview of the common USB
perimeter-crossing bus. Section 3 compares networking to
USB, as attack channels. Section 4 discusses how to repro-
duce the “scanning” step of network security in the context of
USB. Section 5 presents our custom kernel probes to explore
where decisions are taken for USB I/O data traversing the
kernel. Section 6 presents some preliminary attack surface
analysis using these tools. Section 7 presents Facedancer,
our custom hardware board to probe and test this surface.
Sections 8 and 9 review prior work and conclude.

2. OVERVIEW OF USB PROTOCOLS AND
ABSTRACTIONS

This section presents an overview of the USB protocols and
related kernel abstractions for the reader familiar with net-
work security-related design issues but unfamiliar with the
workings of USB. Our goal is to show that techniques which
have become elementary for security analysis of network
stacks are just as relevant for USB stacks. We also argue
that, despite their differences, these stacks have considerable
conceptual similarity in security challenges of safely handling
untrusted inputs.

We realize that comparing USB protocols and layers with
the OSI networking model entities may be criticized as “ap-
ples to oranges.” We argue, however, that challenges of safe
input handling across layers of a layered system apply to all
system and components that accept such input, no matter
what the transport. We counter the criticism with a pro-
gramming maxim attributed to Kernighan and Pike: if one
has found an instance of a bug, it’s critical that one consider
what other parts of the system may have the same bug.

2.1 USB layers and subsystems

USB uses differential signaling on a pair of wires, referred
to as D+ and D-; two others, VBUS and GND, provide
power. USB peripheral controller chips, such as MAX3420,
interpret signals into packets, and allow (host) processors
or (embedded device) microcontrollers to send and receive
packets by writing or reading the controller’s registers over a
simpler protocol, such as SPI. As with network protocols, an
implementor of a higher USB layer can be entirely isolated
from the details of physical signaling.

Unlike most OSI protocols, USB 1.x and 2.0 are strictly
unidirectional: USB nodes are either hosts or devices; de-
vices never speak until spoken to, and must be polled by
the host (master) to send any data to the host. (This
scheme changes for USB 3.0 due to performance limitations
of polling; however, we defer USB 3.0 to follow-on work.)
Due to the wide variation between computational powers of
devices and therefore time needed to produce a response to a



host request, device-mode controllers implement automatic
NAK-ing of host polling requests while a host command is
being processed by the device; when its results are ready, an
ACK is sent, followed by the appropriate response packets.

Hosts start their packets with the 1-byte address of the de-
vice (or 0 for “broadcasts”) and the 1-byte endpoint on the
device that the packet is intended for. All other devices are
assumed to ignore packets for non-zero addresses that are
not theirs; an address is assigned to an attached device, via
a broadcast packet, after the host senses and queries the de-
vice for various device descriptor structures; a well-behaved
device sets its address to the assigned one, and stops re-
sponding to broadcasts.

A USB packet is the basic unit of USB communication,
their closest analogue in the OSI networking world being
a TCP/IP packet fragment. USB packet sizes are typi-
cally subject to stronger physical limitations on size than
in other media; there is also more variability between de-
vices. As a result, protocols do not attempt to align their
data structures with packet boundaries, but rather assem-
ble them from a sequence of packets. The last packet in a
sequence carries a flag to indicate the end of the sequence.

Multiple packets combine to form a single unit of transfer
at the higher layer of abstraction: transactions and trans-
fers. These abstractions are implemented by supporting
data structures and code at the endpoints of a USB con-
nection, and must be maintained in sync.

USB’s unidirectional nature has a particularly important
consequence: the context of any packet sent by a device is
presumed to be set by a previous request from the host, and
thus does not contain any information identifying this con-
text. This is different from OSI networking, where packets,
as a rule, carry data identifying the higher level abstraction
(such as a TCP session’s ports and acknowledgment num-
bers or UDP-based transaction sequence numbers). This
identifying information affects the routing of packet pay-
loads through the kernel to the appropriate consumer mod-
ule; in USB, the routing information resides in the data
structures of the host context and may never be sent on
the wire.

For example, in FreeBSD, I/O operations originate in system
calls, and are routed through its Common Access Method
(CAM) layer, in the form of CAM Control Blocks (CCBs).
These CCBs are eventually translated by the umass module
into USB transfer structs. CCBs do not need to cross the
wire because any response arriving from the USB bus is ex-
pected to be the response to the outstanding I/O request.
This response will be parsed and routed based on the func-
tion code contained in the CCB and the information previ-
ously supplied by the device in the various device descriptor
structures it sent to the host when it was attached.

Despite these differences, the USB subsystem exhibits the
same layered design as OSI stacks: packets are received by
a peripheral controller, which hands them to the CPU (or
device microcontroller) via an interrupt handler and/or a
DMA transaction, and then the payload is passed through a
series of callbacks registered by drivers and subsystems for

CAM subsystem

umass_cam_action

umass_std_transform

umass_<protocol>_transform umass_command_start

usbd_transfer_start

A
USB core
(see usb—core.gv)

umass_cam_cb

xpt_done

CAM subsystem

Figure 1: FreeBSD 9 USB Common Access Method
(CAM) control flow.

further processing.

The callback mechanism design resembles those for register-
ing protocol handlers in TCP/IP stacks, and is subject to
similar assumptions on the part of the implementors, e.g.,
with respect to validity of data passed in to lower layers.

Figures 1 and 2 show the flow graph of the FreeBSD 9 USB
stack functions involved in sending a request to a USB mass
storage device and receiving its response. The FreeBSD
stack unifies handling of USB mass storage device commu-
nications via the CAM layer, which represents headers of
requests sent or pending in a transaction.

3. USB AND NETWORKING COMPARED

In any practical assessment of a network’s ability to handle
inputs safely, the physical abilities of the attacker to cap-
ture traffic, replay captured traffic, and inject crafted traffic
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(with or without the ability to spoof its origin) are the fun-
damental building blocks of attack surface exploration (see,
e.g., [12]). These capabilities can be regarded as primitive
building blocks of attacks. Although the path from any of
these capabilities to a full-fledged attack is rarely trivial,
removing capabilities also eliminated entire sections of the
possible attacks tree. By the same token, the presence of
these capabilities and relative ease with which they can be
leveraged determine the shape of the tree.

In Table 1 we draw the analogies between standard OSI
networking concepts and those of USB, and illustrate how
experience with assessing network environments for incor-
rect assumptions and thus potential vulnerabilities trans-
fers directly to assessing USB for same. This table shows
the non-obvious application of network analysis methods to
USB.

For instance, a USB transfer is analogous to the request-
response pattern widely used in the traditional networking
model. The assumption made by implementors of higher-
level protocols is that the device will respond to the transfer
request with a relevant transfer response. If, however, an
attacker is able to subvert the USB controller, she could hi-
jack the request-response session and surreptitiously modify
state on either the host or the device, with neither being any
wiser.

In the same vein, a USB packet is equivalent in spirit to an

IP packet fragment in that a single USB message (request
or response) may be split into multple USB packets. Like
IP fragments, all USB packets for a given transaction must
be received before they can be reassembled and the transac-
tion can be passed on to a higher processing layer. Also like
IP fragments, the controller and higher layers often assume
that the data actually received conforms to the parameters
claimed in previous metadata. Violating this assumption
could enable an attacker to extract or corrupt data in mem-
ory.

Table 1 highlights these and other similarities between net-
working abstractions and USB abstractions, including how
an attacker could potentially take advantage of them, and
how she could employ them.

4. “PORT SCANNING” FOR USB: IDENTI-
FYING VULNERABLE ENDPOINTS

While measuring the attack surface is most thoroughly per-
formed locally using static analysis techniques or probing, a
real-world attacker would need to perform her own scan of
supported drivers in order to choose an exploit appropriate
to the victim’s operating system and drivers. In this sec-
tion, we discuss methods for performing quick scans of this
surface over the bus, roughly equivalent to what the Nmap
tool does over a traditional network.

Determining the presence or absence of a driver is almost
trivial, just as port scanning is trivial in TCP until perfor-



USB Abstraction | Ethernet Analogy | Assumption Violation Attacker Use
Transfer One round-trip, po- | The intended device will reply to the | Non-compliant Hijack session,
tentially NAKed. transfer. controller. change state un-
der the feet of the
host.
Transaction One set of trans- | The host controller complies with | Hijack session on | Use of trusted ses-
fers, all but the last | the USB specification on transac- | disconnect. sion context.
NAKed. tions.

Packet Packet Fragment Implicit length of concatenated | non-compliant de- | Memory corrup-
frames will match explicit length of | vice tion, info leak.
transaction.

Controller Ethernet Card — — —

Bus D+/D- Pair Electrically legal signals, but in real- | non-compliant Damage frames
ity those widely outside of spec are | controller for session hijack,
accepted. jamming.

Table 1: Mapping between USB and networking concepts and attacks.

mance enhancements are added. Our hardware tool (Sec-
tion 7) performs this by enumerating itself as a suspected
VID and PID, then waiting to see whether the device sends
any packets beyond enumeration.

As memory-corruption exploits are nearly always specific to
a given operating system, it becomes necessary to fingerprint
the target environment in order to know which vulnerability
to exploit and which payload to use. A scanner has a number
of options at its disposal to deduce the identity of an oper-
ating system and its revision. Network tools such as Nmap
must rely upon tricky features such as the predictability of
TCP sequence numbers and behavioral responses to TCP
Explicit Congestion Notifications; in contrast, USB host fin-
gerprinting is considerably easier, thanks to the multitude
of accessible drivers presently available.

For example, Linux and BSD include support for each driver
by every known VID:PID pair, while Windows and Mac
drivers often support just those identifiers which match the
vendor’s hardware. Linux can be distinguished from BSD
by support for rarer hardware, such as particularly poorly
documented wireless cards. Windows can be distinguished
from Mac OS X by the enumeration sequence.

Once the operating system is known, the version can be
deduced by the same method, but this time looking for
VID:PID pairs which have been recently added. A quick
diff of any two kernel revisions will provide plenty of new
and removed pairs within a single module, and the presence
of one combined with the absence of another will uniquely
identify the kernel revision.

S. INSTRUMENTATION AND MODES OF
ANALYSIS

To explore the attack surface exposed via USB, we designed
and implemented an instrumentation framework to probe
the “routing” points of the FreeBSD USB stack, and tools
for interpreting and filtering the traces (which is tricky, due
to the asynchrony and interrupts involved). In other words,
this is a beginning of a proper USB firewall, probing wher-
ever decisions are taken for USB I/O data traversing the
kernel.

To do this, we used the dtrace subsystem in FreeBSD, but
found the standard probes insufficient and in some cases un-
reliable. Therefore, we implemented our own probes to mon-
itor function entry and return events, basic block bound-
aries, and, most importantly, control flow decision points
where multiplexing of payloads occurs. Table 2 describes
the static probes we inserted; Figure 3 gives examples of the
probe primitives we defined.

probe qty | event

FUNC_ENTER(£) 204 | upon function entry
FUNC_RETURN (f) 356 | upon function exit
BB_START(f, n) 1235 | upon starting basic block n
in a given function
BB_FINISH(f, n) | 1235 | upon finishing basic block n
MUX 30 | immediately prior to invoca-
tion of a callback

Table 2: Summary of static probes in our instru-
mentation framework.

char *foo(int bar, char *baz)
{
FUNC_ENTER (foo) ;
BB_START (foo, 0);
BB_FINISH(foo, 0);
if (bar < 10) {

BB_START (foo, 1);

printf ("Error! bar is less than 10.\n");
BB_FINISH(foo, 1);
FUNC_RETURN (foo0) ;

return NULL;

}
BB_START (foo, 2);
toupper (¥baz) ;

BB_FINISH(foo, 2);
FUNC_RETURN (fo0) ;
return baz;

}

Figure 3: Example of a function instrumented with
our static probes.

Our rationale behind focusing on multiplexing points is that,




at these points, “routing” decisions occur with respect to
payloads arriving on the bus. Knowing the provenance of
data that affects these decisions and causes a particular
branch to be taken allows us to construct custom payloads
to take the path we desire for payload delivery. The data
affecting these decisions can come in the packet or, most fre-
quently, is derived from previous transactions with the de-
vice, such as responses to device descriptor requests. Since
we control all phases of device communication, we can shape
future routing decisions. Thus, our instrumentation gives us
a systematic method of constructing and delivering payloads
through the layers and subsystems of the USB-facing kernel
code.

Paths less traveled. Our route tracing capability allows
us to collect data on which paths are frequently traveled,
which are invoked less frequently, and which do not seem to
be taken at all. Using data provenance knowledge at mux
points, we can cover the paths less traveled and therefore
less debugged or assumed impossible by the developer. We
note that exposing such developer assumptions is the bread
and butter of vulnerability development, where a violated
assumption—formally speaking, violation of a contract of
a particular module or APT—are known to frequently yield
exploitable vulnerabilities (c.f. compare the use of contraint
solvers for vulnerability finding [14, 8]).

Tom and Jerry Attacks. In Tom and Jerry cartoons, Jerry
frequently entices Tom with a tasty treat, only to swap it
out at the last second for unpalatable or dangerous objects,
with Tom never expecting the change. In the same way, a
USB host does not expect a USB device to change its state
unless specifically requested. This can lead to vulnerable
assumptions of impossibility of certain payloads that a well-
behaving device would not send based on its supposed cur-
rent state. Our instrumentation, combined with other tools
currently in development, will help expose such assumptions
and play them out using the Facedancer capability to emu-
late any device.

Note that this class of assumptions is broader than the clas-
sic TOCTOU because it need not involve any explicit checks,
just the assumptions on the correct behavior of a device. As
far as we know, such bait-and-switch attacks, when data
structures being worked with by the kernel spontaneously
change, have not been comprehensively studied for kernel
I/O other than network communications—where extensive
literature on protocol analysis exists. Again, we hope to fill
that gap.

6. MEASURING THE EXPOSED USB SUR-
FACE

Using our instrumentation, we gathered execution traces
during operations with a USB thumbdrive on our FreeBSD
test system. We want to sketch out the amount of code
within the FreeBSD kernel reachable from the USB subsys-
tem. These numbers are preliminary, as the tracing tool
discussed above will deliver more accurate results on both
code coverage and reachability in various scenarios. How-
ever, even top-level statistics are useful because rough es-

category | qty
drivers 63
vendors 667
products | 1979

Table 3: Quantity of device drivers, supported ven-
dors and products in FreeBSD USB stack.

timates of bugs per line of this particular code is known.
Thus, we could expect to estimate the size of the attack
surface, even from the number of lines of count involved.
Moreover, our reachability results with valid devices allow
us to estimate code that is not commonly exercised and is
therefore more likely to be buggy.

For our case study of devices we use FreeBSD because we
expect a smaller attack surface.

FreeBSD does not aim for broad device support and takes a
conservative approach on including drivers they need. Pop-
ular Linux distributions, such as Ubuntu, take the opposite
approach by including support for as many USB devices and
device classes as possible. Note that support for USB de-
vices in both systems comes in two flavors: standard classes
of devices (e.g., HID, mass storage) are supported by drivers
based on their class, whereas devices not belonging to stan-
dard classes are supported based on vendor and device id.
FreeBSD uses an additional mechanism called “quirks” to di-
verge handling of standard class devices known to be excep-
tional with special case drivers or handlers. Quirks, in par-
ticular the 217 quirk definitions, affect control flow in drivers
by setting a kernel global variable indicating the function to
use for testing them, thus creating additional routes through
the kernel that our Facedancer framework can leverage.

We note that Linux, the other natural free software choice
for a case study, takes a much more aggressive approach to
including device drivers. To wit, FreeBSD’s USB implemen-
tation is 100k lines of code, whereas Linux 3.4.6 takes over
250k. Table 3 presents a summary of USB devices supported
by FreeBSD; the drivers contain an average of 850 lines of
code each. According to a 2011 study by Coverity [10], the
Linux kernel exhibits 0.62 defects per thousand lines of code.
As the same report notes, however, the industry average is
1.0 defects per KLOC, and we hypothesize that some driver
code is closer to this mark.

A typical path of an I/O bus request is as follows: the filesys-
tem creates a CAM Control Block (CCB) describing the re-
quest in a generic SCSI-like format and passes it to the Com-
mon Access Method (CAM) layer. The CAM layer searches
the list of attached devices to find the physical device that
can fulfill the request, and passes it on to a callback regis-
tered by the device when it was connected. In the case of a
USB mass storage device, the request is routed to the umass
driver, which then translates the CCB to the command pro-
tocol supported by the drive (e.g., ATAPI, SCSI, UFI). The
umass driver wraps this translated command in a structure
describing a USB transfer and hands it off to the controller,
to be notified by hardware interrupt when it is complete.
Figure 4 shows such a path traversal.
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We explored this path in great detail using our instrumen-
tation, and found a total of 30 points at which a routing
decision was made. Additionally, we measured the length of
this path at the granularity of both basic blocks and lines of
code.

Table 4 compares the number of lines of code executed dur-
ing our trace relative to the total number of lines of code in
each module of the FreeBSD USB subsystem. The extensive
amount of unexercised code as shown in this table provides
a potentially fertile ground for attackers in search of vulner-
abilities to exploit, as this code likely receives less attention
from developers and testers.

Table 5 presents, for each function called within each mod-
ule, how many basic blocks were executed against how many
basic blocks exist. That is, the "total basic blocks” does
not include functions that were not called during our tests.
While these percentages are predictably higher than those
for lines of code because so many functions are not reflected,
a non-trivial number of unexercised basic blocks remain.

Figure 5 illustrates the fraction of lines of code executed
within each function called during our testing. We find it
interesting to note that the larger functions typically have
a smaller percentage of their code exercised, whereas the
smaller functions are usually exercised more fully.

7. HARDWARE-SUPPORTED USB INJEC-
TION AND FORWARDING

Our software instrumentation described in Section 5 ana-
lyzed the execution paths inside the target of attack. To
complement this framework, we built a custom hardware
board and supporting software to generate any USB packet
any attacking device might generate.

Using a standard PC as an attack tool was not feasible; be-
cause of the physical-layer properties of USB, timing is ex-
tremely important. Computers often provide host-only USB
abilities, and other electronics (for example, cameras) typi-

module executed | total | percentage
ehci 552 | 3352 16%
umass 385 | 2681 14%
usb_busdma 278 | 949 29%
usb_compat_linux 14 | 1124 1%
usb_controller 45 | 431 10%
usb_dev 19 | 1618 1%
usb_device 734 | 2322 32%
usb_dynamic 3 93 3%
usb_hub 170 | 1789 10%
usb_lookup 11 198 6%
usb_msctest 35| 679 5%
usb_parse 51 | 225 23%
usb_pf 15 | 319 5%
usb_process 44 | 298 15%
usb_quirk 7| 727 1%
usb_request 380 | 1690 22%
usb_transfer 803 | 2559 31%
usb_util 45 207 22%

Table 4: Lines of code executed relative to total lines
of code, per module.

cally act only as devices. In order to interact with computer
as a USB device, an attacker must control the firmware on
a product with a USB-capable chipset.

7.1 Prior Work

Previously-published USB fuzzing work has used either vir-
tualized hardware or standalone boards. While our tool
isn’t intended to replace either of these techniques in a re-
searcher’s toolbox, we believe it to be a better solution for
use in security research.

Simulation tools, such as those added to VMWare and Qemu,
can allow for pure-software USB devices to be attached to
the host operating system. This technique has been used
to to implement a working USB exploit [15], but it is less
than desirable in two ways. First, the resulting exploit runs
only in simulation; it must be manually ported to run in
hardware. Second, the technique is restricted to operat-
ing systems which are amenable to running in a virtualized
environment, such as the Playstation 3 bootloader exploit
distributed as PSGroove [5].

Standalone products such as the Teensy [7] are intended as
USB development boards and onto which attacker-controlled
firmware can be loaded to fuzz or exploit a host. The Teensy
is connected to the programming laptop, reset, and then
flashed with the firmware. It is then unplugged and con-
nected instead to the victim host, where it is enumerated
and runs based on the on-board firmware. The time re-
quired for this round trip is acceptable for developing USB
devices, but it is unacceptably long for fuzz-testing and sys-
tem exploration.

7.2 Our Solution: Facedancer

Here we present the Facedancer board, which provides a
more rapid and flexible approach to prototyping USB de-
vices, specifically with the purpose of fuzzing USB hosts.
The Facedancer, shown in Figure 6, consists of the follow-
ing major components, logically connected in the following



module executed | total | percentage
ehci 109 227 48%
umass 74 | 151 49%
usb_busdma 81| 107 76%
usb_compat_linux 2 3 67%
usb_controller 5 15 33%
usb_dev 4 6 67%
usb_device 130 | 205 63%
usb_dynamic 1 2 50%
usb_hub 33 45 73%
usb_lookup 5 8 62%
usb_msctest 11 24 46%
usb_parse 13 21 62%
usb_pf 2 11 18%
usb_process 7 12 58%
usb_quirk 5 10 50%
usb_request 73 127 57%
usb_transfer 159 | 244 65%
usb_util 12 17 1%

Table 5: Basic blocks executed relative to total num-
ber of basic blocks in functions used during a USB
mass storage device session, per module.

order:

e USB mini-B port for connecting to a USB A port on
the attacker’s host machine.

e USB-to-serial (FTDI) chip which translates the host’s
USB to serial.

e MSP430 microcontroller running firmware from the
GoodFET [1] project, including our maxusb applica-
tion.

e USB Peripheral Controller IC with an SPI interface
(MAX3420).

e USB mini-B port for connecting to a USB A port on
the victim machine (system-under-test).

Our maxusb application firmware is purposefully kept very
basic, merely passing commands between the host and the
MAX3420 chip. This chip provides the digital logic and
analog circuitry necessary to implement a full-speed USB
2.0-compliant peripheral. All advanced logic and the device
emulator itself are written entirely in host-side Python which
provides rapid-development, excellent real-time logging, and
eliminates the need to re-flash the firmware on the interface
device (i.e., the Facedancer).

Our device emulators themselves are written as extensions
of the GoodFETMaxUSB class, exposing nearly all of the
underlying functionality of the chip. We believe that our
use of very few abstractions in the calling convention will
help researchers to discover new tricks on the bus, rather
than complying with the abstraction layers imposed by a
cleaner stack.

Facedancer is a forwarder, router, and rewriter. It can be
fully standalone, but it is easier to drive from another laptop
as it is not self-powered and programming custom payloads
to inject is easier in Python,
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Figure 5: For each function, the number of lines
of code executed while processing an ordinary I/O
request (blue) overlayed on the total number of lines
of code (red). Each point on the x-axis represents a
distinct function within FreeBSD’s USB stack.

Figure 6: Facedancer, a USB device emulator.

8. RELATED WORK

The USB attack surface has been previously explored and
exploited in papers and conference presentations, and in fact
has been compared to TCP [9].

8.1 Attacks Against USB Hosts

Jodeit and Johns [13] implemented a software mutation-
based man-in-the-middle USB fuzzer using the QEMU ma-
chine emulator and virtualizer. Packet modification was per-
formed via Python user-space binding. They presented re-
sults of basic tests which produced four Windows XP kernel
crashes and one application crash.

Davis [11] used a $1,400 hardware USB analyzer and the
Python SendKeys library, in combination with the Frisbee
fuzzing library, to fuzz USB on commercial operating sys-
tems. Although a pieced-together solution, the fuzzing un-
covered bugs including multiple HID-class memory corrup-
tions in Windows 7, a hub-class kernel stack overflow in
Solaris 11 Express, a printer-class kernel stack overflow in
Solaris 11 Express, multiple image-class integer overflows in




the Microsoft Xbox 360, and an interface descriptor memory
corruption in OS X.

CVE-2009-4067 [15] describes a buffer-overflow vulnerability

in a device driver, designed to allow the Auerswald PBX/System

telephone to communicate with Linux systems via USB. The
vulnerability arose due to improper processing of String De-
scriptors, resulting in exploitable stack overflows in the ker-
nel. This proof-of-concept was conducted via QEMU virtu-
alization.

8.2 Attacks Against USB Devices

Although compromising USB hosts may appear to provide
the best value for an attacker and thus the natural focus
of defensive efforts, exploiting USB devices enables truly
automated “sneaker net” propagation attacks. In such an
attack, a compromised device passes both the payload and
a (multi-)device infector to the host, the host in turn in-
fects devices it encounters, which pass the infection to other
hosts, and so on. Thus device exploitation must not be ig-
nored, even though a device’s firmware would seem to be
a poor value-for-effort achievement; indeed, it can enable
autonomous “sneaker net” worms.

The following publicly-demonstrated exploits against ker-
nel/bootloaders on USB devices are known to date:

PSGroove: This famous exploit used a crafted USB hub-
class configuration descriptor take to advantage of a heap
overflow and thus “jailbreak” the Sony Playstation 3. Prior
to delivering the payload, the exploit manipulates the heap
by “plugging” and “unplugging” fake USB devices with large
device descriptors until the device on port 4 misreports its
size, which allows the payload to overwrite one of malloc’s
boundary tags. Related exploit code is publicly available [5].

iPod Touch exploit: Fuzzing all possible USB control
messages of the iPod touch 2G’s DFU mode caused a re-
boot. Further investigation revealed a heap overflow tickled
only when lengths of a specific USB control message exceed
0x100 bytes 3.

iPhone and iPod Touch: A null pointer dereference ex-
ploit was found by fuzzing from the host, and uses the
"0x21,2" USB control message®.

9. CONCLUSIONS

Security researchers and exploit developers have invested a
great deal of effort in exploring the attack surfaces and data
flows in code receiving input from network interfaces, such
as TCP/IP stacks. As a result of this effort we have pow-
erful and flexible defensive architectures such as Netfilter,
which provide the defender with the capabilit and necessary
context to filter traffic flow throughout the kernel. We show
that similar analysis is necessary and in fact critical for code

2See http://ps3wiki.lan.st/index.php?title=
PSJailbreak_Exploit_Reverse_Engineering for more
information.
3http://theiphonewiki.com/wiki/index.php?title=
Usb_control_msg(0xAl, _1) _Exploit

4ht‘cp ://theiphonewiki.com/wiki/index.php7title=
Usb_control_msg(0x21, _2)_Exploit

that receives input data over buses, such as USB. Such code
is just as complexly layered as a network stack and handles
more complex structures; drivers are a notorious breeding
ground for bugs copy-pasted from boilerplate sample code.
Yet a broad view of data flows and attack surface for bus-
facing code is still missing.

Our paper maps out the bus-facing attack surface of a mod-
ern OS, and demonstrates that effective and efficient injec-
tion of arbitrary traffic into the buses is real and easily af-
fordable, and we present a simple and inexpensive hardware
tool for the job. Our hardware and software tools together
will help researchers fuzz intelligently, so that fuzzed pay-
loads don’t fail before the code block/function where they
need to get through kernel routing. The time for assuming
only something special, expensive, and rare can so inject into
USB are over; we provide a tool that makes this exploration
within reach of anyone with Python.
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