Chapter 14 File System Framgy,

The framework provides a single set of well-defined interfaces that are il ¢ s |
tem independent; the implementation details of each file system are hidden behing
these interfaces. Two key objects represent these interfaces: the virtual file, o1
vnode, and the virtual file system, or vfs objects. The vnode interfaces ml?lemen '
file-reiated functions, and the vis interfaces implement file system maﬂagemeng
functions. The vnode and vfs interfaces direct functions to specific file systemg
depending on the type of file system being operated on. Figure 14.1 shows the filg
system layers. File-related functions are initiated through a system call or froy,
another kernel subsystem and are directed to the appropriate file system by the
vnode /vEs layern

System Call interface ’
VNODE GPERATIONS VFS OPERATIONS

7

rename {)
unlink{}
ioctl ()
creat ()
unount {1}
statfs ()

VES: File-System-independent Layer {VFS and YVNODE INTERFACES)

PROCFS

SENON=

Figure 14.1 Solaris File System Framework

S—

14.2 Process-Level File Abstractions

Within a process, a file is referenced through a file descriptor. An integer space of -
file descriptors per process is shared by multiple threads within each process. A’
file descriptor is a value in an integer space. It is assigned when a file is first:
opened and freed when g file is closed.

4.2 PROCESS-LEVEL FILE ABSTRACTIONS

* Fach process has a list of active file descriptors, which are an index into a per-
process file table. Each file table entry holds process-specific data including the
carrent file’s seek offset and has a reference to a systemwide virtual file node
wnode). The list of open file descriptors is kept inside a process’s user area (struct
er) in an £i list array indexed by the file descriptor number. The £i_list is
an array of uf entry t structures, each with its own lock and a pointer to the
corresponding £ile t file table entry. '
" Although multiple file table entries might reference the same file, there is a sin-
gle ynode entry, as Figure 14.2 highlights. The vnode holds systemwide informa-
tion about a file, including its type, size, and containing file system.

fi tlist References
- from other
processes

ur_iie
uf_flag
uf_refont
T e Retired
uf_flag File N
uf_refent Descriptors
SN I
uf_flag

uf _refent

L fi_fist
“Active File ur_Tie }
-Descriptors uf_flag i
‘index into uf_refent _ T_vnode o]V AGS

filst — W E f_offset v_type
i " | uf_fiag f_cred v_count

uf_refent i count v_data
e file _t
uf_entry uf_flag vnodes
uf_refont

Per System File System
Process Wide Implementation Specific

Figure 14.2 Structures Used for File Access

Chapter 14 File System Frameygy,

14.2.3 Allocating and Deallocating File Descriptors

One of the central functions is that of managing the file descriptor integer spacq
The £fd_find(file_t *, int minfd) and £d_resexve() fanctions are the primayy
interface into the file descriptor integer space management code. The fd_fing(,
function locates the next lowest available file descriptor number, starting wit,
minfd, to support fentl (fd, F_DUPFD, minfd). The £4 reserve () funetiop
either reserves or unreserves an entry by passing a 1 or -1 as an argument.

Beginning with Solaris 8, a significantly revised algorithm manages the integer
space. The file descriptor integer space is a binary tree of per-process file entrieg
(uf_entry) structures.

The algorithm is as follows. Keep all file descriptors in an infix binary tree iy
which each node records the number of descriptors allocated in its right subtree,
including itself. Starting at minfd, ascend the tree until a non-fully allocated right
subtree is found. Then descend that subtree in a binary search for the smallest £4
Finally, ascend the tree again to increment the allocation count of every subtree
containing the newly allocated fd. Freeing an fd requires only the last step:
Ascend the tree to decrement allocation counts. Each of these three steps (ascentty
find non-full subtree, descent to find lowest £4, ascent to update allocation counts)
is O(log n); thus the algorithm as a whole is Odlog n).

We don’t implement the £d tree by using the customary lefi/right/parent point-
ers, but instead take advantage of the glorious mathematics of full infix binary
trees. For reference, here’s an illustration of the logical structure of such a tree,
rooted at 4 (binary 100), covering the range 1-7 (binary 001-111) Qur canonical
trees do not include £d 0; we deal with that later.

We make the following observations, all of which are easily proven by induction
on the depth of the tree:

= (T1). The lowest-set bit (LSB) of any node is equal to its level in the tree. In
our example, nodes 001, 011, 101, and 111 are at ievel 0; nodes 010 and 110
are at level 1; and node 100 is at level 2 (see Figure 14.3).

011 101

Figure 14.3 File Descriptor Integer Space as an Infix Binary Tree

.14.2" PROCESS-LEVEL FILE ABSTRACTIONS

. {T2). The child size (CSIZE) of node N-that is, the total number of rzght—
- . branch descendants in 2 child of node N, including itself—is given by clear-
L ing all but the lowest-set bit of N. This follows immediately from (T1). Apply-
i ing this rule to our example, we see that CSIZE({100) = 100, CSIZE(x10) = 10,
- and CSTZE(xx1) =

" {T3). The nearest left ancestor (LPARENT) of node N—that is, the nearest
ancestor containing node N in its right child—is given by clearing the LSB of
N. For example, LPARENT(111) = 110 and LPARENTY110) = 100. Clearing
the LSB of nodes 001, 010, or 100 yields zero, reflecting the fact that these
are leftmost nodes. Note that this algorithm automatically skips generations
as necessary. For example, the parent of node 101 i 110, which is a right
‘- ancestor (not what we want); but its grandparent is 100, which is a left ances-
tor. Clearing the LSB of 101 gets us to 100 directly, skipping right past the
. uninteresting generation (110).
Note that since LPARENT clears the LSB, whereas CSIZE clears all but
the LSB, we can express LPARENTY(} nicely in terms of CSIZE():

LPARENTIN) = N ~ CSIZE(N)
(T4). The nearest right ancestor (RPARENT) of node N is given by
RPARENT(N} = N + CSIZE(N)

: _ (T5). For every interior node, the children differ from their parent by
CSIZE(parent) / 2. In our example, CSIZE(100}/ 2 = 2 = 10 hinary, and
indeed, the children of 100 are 100 + 16 = 010 and 110,

: ;N_ext, we need a few two's-complement math tricks. Suppose a number, N, has
the following form:

That ig, the hinary representation of N consists of some string of bits, then a 1,
t?l:én all §s. This amountg to nothing more than saying that N has a lowest-get bit,
which is true for any N = 0. If we look at N and N — 1 together, we see that we can
eombine them in useful ways:

N -1 =xxxx01...1;

N & (N -~ 1) = xxxx000000
N (N ~1)=xxxxI11111
- NANN-1)= 111111

Chapter 14 Fite Systemn Frameygy

In particular, this suggests several easy ways to clear all but the LSB, Which};
(T2) is exactly what we need to determine CSIZE(N) = 10...0. We opt for thig fo_y
mulation:

(C1) CSIZE(N) =(N -~ 1) ~ (N | (N~1))

Similarly, we have an easy way to determine LPARENT(N), which requireg that
we clear the LSB of N: ’

(L1) LPARENT(N) =N & (N -1)

We note in the above relations that (N { (N - 1)) -~ N = CSIZE(N) ~ 1. When cop
bhined with (T4), this vields an easy way to compute RPARENT(N):

(R1) RPARENT(N) = (N | (N~ 1)) + I

Finally, to accommodate £d 0, we must adjust all of our results by = 1 to moye
the £d range from [1, 2*n) to {0, 2%n - 1), This is straightforward, so there’s g
need to belabor the algebra; the revised relations become

(Cla) CSIZENN) =N » (N | (N + 1))
(T ia) LPARENTIN) = IN& (N + 1)) -1
(Rila) RPARENT(N) =N | (N + 1)

This completes the mathematical framework. We now have all the tools we need
toimplement £& find{} and £d_reserve ().

The £d_£find(fip, minfd) function finds the smallest available file descripto
z minfd. It does not actually allocate the deseriptor; that's done by £4_reserve ()

fd_find () proceeds in two steps:

1. Find the leftmost subtree that contains a descriptor = minfd. We start at the
right subtree rooted at minfd. If this subtree is not full-if £ip->£i_
list [minfd] .uf_alloc != CSIZE(minfd)-—then step 1is done. Other- .
wise, we know that all £ds in this subtree are taken, so we ascend {0 RPAR-
ENT (minfd) using (Rla). We repeat this process until we either finda
candidate subtree or exceed fip->fi nfiles. We use (Cla) to compute
CSIZE(),

Find the smallest £4 in the subtree discovered by step 1. Starting at the root:,
of this subtree, we descend to find the smallest available £d. Since the left -
children have the smaller £ds, we descend rightward only when the left child
is full.

We begin by comparing the number of allocated £ds in the root to the number df
allocated £ds in its right child; if they differ by exactly CSIZE(child), we know the
left subtree is full, so we descend right; that is, the righ‘t child becomes the search

4.2 PROCESS-LEVEL FILE ABSTRACTIONS

root. Otherwise, we leave the root alone and start following the right child’s left
hildren. As fortune would have it, this is simple computatienally: by (T5), the
right child of £3 is just £d + size, where size = CSIZE (£d) /2. Applying (T5) again, .
we find that the right child’s left child is £d + size — {size / 2) = £ + {size / 2); ils
ft child is £d + (size / 2) - (zize / 4) = £ + (size / 4), and so on. In general, £ds
right child’s leftmost nth descendant is £& + (size >> n). Thus, to follow the right
child’s left descendants, we just halve the size in each iteration of the search.
When we descend leftward, we must keep track of the number of £ds that
ere allocated in all the right subtrees we rejected so that we know how many of
the root £d’s allocations are in the remaining (as yet unexplored) leftmost part of
s right subtree. When we encounter a fully allocated left child—that is, when we
find that fip->£i list[fdl.uf_alloc == ralloc + size—we descend right
{as described earlier), resetting rallcc to zero.
. The £ d_reserve(fip, £4, incr) function either allocates or frees fd,
depending on whether incr is 1 or -1. Starting at £d, £d_reserve () ascends the
leftmost ancestors (see (T3)) and updates the allocation counts. At each step we
e {Lla) to compute LPARENT(}, the next left ancestor.,

2.4 File Descriptor Limits

Each process has a hard and soft limit for the number of files it can have opened at
any'time; these limits are administered through the Resource Controls infrastruc-
ture by process.max- file-descriptor (gsee Section 7.5 for a description of
Resource Controls). The limits are checked during falloc(). Limits can be
viewsd with the prctl command.

Chapter 14 File System Framey, .'%('

14.5.6 vfg Information Available with MDB

The mounted list of vEs objects is linked as shown in Figure 14.6.

recivis

Lo

vis_fstype
vis_op

sfruet vis #
vis_next

o ————e

struct vis

struct vis

vfs_next

vis next

vis_fstype

vis_op

fsmap

struet
visops * ufs_vfsops

ufs mount ()

ufg umount {}

ufs_root ()

ufs statvis()

ufa_gync ()

ufs wget ()

ufs_mountroot

v_data

struect

visops * nfs_visops
nfs_mount {]
nfe_umount {)
nfs root {}
nis_statvis{)
nfs_sync il
nfs_wgst ()
nfs mountroot{

Figure 14.6 The Mounted viEs List

You can traverse the list with an mdb walker. Below is the output of such a_

traversal.

s0ll04 mdb -~k -

> 2iwalk vEE.
EEEEFfEfEDCTATAl

.ffifffFbec'?aEGO

> 1r1walk, vfs iR 1E£sinfo -y

. VFSP F8
bR "_ fnc?a?ao-ufs

./czev/ass«“/cjdlso

o
e

.O:_remounb,rw intr, laraeiﬁles, oggiag{noquota[xattrrnodfratime ;

'_iff;fffffbnaaso'_ devis -
- /dev1ces :

_ 80129300'-ct£s o

R R Ctfs

: _--ffffffffamzﬂzqo'_pr_o'c_
VR Cprog

SR '/dev;Lcef‘ o

< Vevstem/o

ontract

Chapter 14 File System Framewm.{(

VREG - Regular File
VDIR - Direciory

VBLK — Block Device
VCHR - Character Device
VLNK ~ Link

struet vnode

v_flags
v_lype o

v_op struct

v_path e Hint of vnode's path name %
vop_open{)

o TesaT
VoD write (V]
| vop close (V]
| vop_icctl ()]
| vop create]
struct inode ' "vep link() |

v_data

(UFS inode shown
in this example)

f_flag
{ vnoda
{ ofiset

Figure 14.7 The vnode Object

= Functions to implement file methods, A structure of pointers to file-
system-dependent functions to implement file functions such as cpen(},
close (), read (), and write{).

File-system-specific data. Data that is used internally by each file system
implementation: typically, the in-memory inode that represents the vnode

on the underlying file system. UFS uses an incde, NFS uses an rnede, and
tmpfs uses a tmpnode.

74.6.1 Obiject Interface

The kernel uses wrapper functions to call vnode functions. In that way, it can per-
form vnode operations (for example, read (), write (), open{), closs ()} with-
out knowing what the underlying file system containing the vnoede is. For

14.7 FILE SYSTEM IO

14.7 File System 1/O

Two distincet methods perform file system /o

s read(),write (), and related system calls

» Memory-mapping of a file into the process’s address space

Both methods are implemented in a similar way: Pages of a file are mapped into
an address space, and then paged I/0 is performed on the pages within the mapped
address space. Although it may be obvious that memory mapping is performed
when we memory-map a file into a process’s address space, it is less obvious that
the read () and write () system calls also map a file before reading or writing it.
The major differences between these two methods lie in where the file is mapped
and who does the mapping; a process calls mmap () to map the file into its address
space for memory mapped /O, and the kernel maps the file into the kernels
address space for read and write. The two methods are contrasted in Figure 14.9.

writel)
raad()

A Process Address
Space

] (S|
A mmap () 1

Kernel Address
Space

[
| "
| S ' : |
segkpm [T i C S
MAPPING s ! } Binary {Text)
[
_i I mg___ 4 Binary {Text)
sagkpm provides - :
access to al File Segment Vnode Segment
physical pages Driver {seg_map) Driver (seg_vn}
within this segment. Iy i Y
¥ i i
Paged Ynode VM Core

{File System Cache and Page Cache)

Figure 149 The read () /write () Vs. mmap () Methods for File 1/0

Chapter 14 File System Framewgy,

Process Address
Kerel Address
Space Space

Eﬂheﬁi:fi segkpm provides
¥ access to
physical memory

within this mapping

|

Heap (Text}

segkp i - ; BioCopy TP
mapping | addr } [+ 4 sl Binary (Text)
Kﬁraréebiig? o .[Binary (Tex) :
(seg_kpm) TR write?
i
I
!

read
hat_kpm_page2va(page} A (
gst mapped addr ¥

Mappings for
physical pages File Segment
Driver
{seg_map)

segmap_getman()

Figure 14.10 File System Data Movement with seg map/zeg_kpm

14.7.3 The seg_kpm Driver

The seg kpm driver provides a fast mapping for physical pages within the ker-
nel's address space. It is used by file systems to provide a virtual address when
copying data to and from the user’s address space for file system I/0. The use of-
this seg kpm mapping facility is new for Sclaris 10,

Since the available virtual address range in a 64-bit kernel is always larger than
physical memory size, the entire physical memory can be mapped into the kernel,
This eliminates the need to map/unmap pages every time they are accessed through
segmap, significantly reducing code path and the need for TLB shoot-downs. In
addition, seg kpm can use large TLB mappings to minimize TLB miss overhead.

14.7.4 The seg map Driver

The seg map driver maintains the relationship between pieces of files into the
kernel address space and is used only by the file systems. Bvery time a read of
write system call occurs, the seg_map segment driver locates the virtual address
space where the page of the file can be mapped. The system call can then copy the
data to or from the user address space.

The seg map segment provides a full set of segment driver interfaces (see
Section 9.5); however, the file system directly uses a small subset of these inter-

Chapter 14 File System Frameys

= sm_bitmap. Bitmap to maintain translation locking

v sm_refent. The number of references to this mapping caused by COncurrent
reads

The important fields in the smap structure are the file and offset fields, an v
and sm_off. These fields identify which page of a file is represented by each slot in
the segment. .

An example of the interaction between a file system read and segmap is Show
in Figure 14.11.

read(myfile, 16384) et read{) i vop read

1. vop_read asks seg_map
for a kernel mapping for
the requested range.

‘w_‘-“_"—\..

16K of file in
karne! address
16K of heap space space

i process

2. seg_map checks to see If
ihe requested range already
has a known address in the
seg. Kpm segment,

3a, i seg_map finds the pages
then i simply refurns ihe
addrass.

3D, 1f seg_map does not find
the addrasses, it creates

a slot and then calls
vop_getpage to bring in

the pages.

4, The page cache Is checked to
see if it has the requested pages.

Sa. B vop_getpage finds the
pages in page cache, then it
simply returns to seg_map.

- 5h. If vop_getpage does not
higwe the pages, then it asks
ufs_biman for the disk address
of the pages and brings them
in from storage,

6. The file systam copies the 16K
of file data from the kernel
adtiress space fo user

address space.

7. s8Q_map releases the
virtual address space onto its
irae-list.

-User Process Address Space | | Kernel Address Space

Figure 14.11 vop_read () segmép Interaction

14,70 THE DIRECTORY NAME LOOKUP CACHE

dnle_lookup
finds nc's by i A :
hash iookup ' R " treslist rotor

N

DNLC entries are
taken from the

first entry with

a reference couni=1,
starting from the end
of the chain.

nc_hashi] T e viOGE
+ e dir. vRode

1 name

Figure 14.13 Solaris DNLC

* Solaris 7 DNLC structure, shown in Figure 14.13, note that the name field has
. changed from a static structure o a pointer.
“The number of entries in the DNLC is controlled by the ncsize parameter,
which is initialized to 4 * (max_nprocs + maxusers) + 320 at system boot.
“"Most of the DNLC work is done with two functions: dnlc _enter{) and dnlc_
tookup (). When a file system wants to look up the name of a file, it first checks
. the DNLC with the dnlc lcckup() function, which queries the DNLC for an
~entry that matches the specified file name and directory vnode. If no entry is
found, dnic_Iookup fails and the file system reads the directory from disk. When
- the file name is found, it is entered into the DNLC with the dnlc_enter () func-
tion, The DNLC stores entries on a hashed list (nc_hash([]) by file name and
 directory vnode pointer. Once the correct nc_hash chain is identified, the chain is
searched linearly until the correct entry is found.
‘The original BSD DNLC had 8 nc_hash entries, which was increased to 64 in
SunOS 4.x. Solaris 2.0 sized the nc_hash list at boot, attempting to make the
~average length of each chain no more than 4 entries. It used the total DNLC size,
‘nesize, divided by the average length to establish the number of nc _hash
_ entries. Solaris 2.3 had the average length of the chain dropped to 2 in an attempt
‘to'increase DNLC performance; however, other problems, related to the LRU list
~locking and described below, adversely affected performance.
- Each entry in the DNLC is also linked to an LRU list, in order of last use. When
. dnew entry is added into the DNLC, the algorithm replaces the oldest entry from
+ the LRU list with the new file name and directory vnode. Each time a lookup is

