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around the segment drivers, so that subsystems need not know what se
driver is used for a memory range. The address space object shown in Figure
linked from the process’s address space and contains pointers to the segmentsth
constitute the address space. :
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Figure 9.7 The Address Space

The address space subsystem manages the following functions:

Duplication of address spaces, for fork ()

Destruction of address spaces, for exit ()
Creation of new segments within an address space
Removal of segments from an address space

Setting and management of page protection for an address space
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Figure 9.8 Virtual Address Space Page Fault Example

5. The segment driver then reads the page in from the backing store by calling
the getpage () function of the backing store’s vnode.

8. The backing store for this segment is the swap device, so the swap device
getpage () function is called to read in the page from the swap device.

Once this process is completed, the process can continue execution. The following
example using the DTrace vm.d script shows the logical flow for a zero-fill on
demand page fault.

¢ 4210
g 42140
8 4211
0 _segat ) 4212
0 -» segvn fault 42313
a ~ > ANOTMAD o ’ 4216
0 -5 anon =) 4218
o <~ Bnon_ 2 4224
o <- ANOTIMED o 2225
s 0 -» ARGN_Array enber 4227

continues
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s_data
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gegvn_free () Executable — DATA
segvn fault ()
segvn_getprot () Exacutable ~ TEXT
segvn_setprot ()
segvn_incore{)

Figure 9.9 Segment Interface

For example, when a file is mapped into an address space Wlth mmap (), the._
address space map routine as_map {) is called with segvn_create () {the vaode
segment driver constructor) as an argument, which in turn calls into the seg_vn
segment driver to create the mapping. The segment object is created and inserted
into the segment list for the address space (struct as), and from that point on, th
address space can perform operations on the mapping without knowing what ih
underlying segment is.

The address space routines can operate on the segment without knowing Wha
type of segment is underlying by calling the segment operation macros. For exam
ple, if the address space layer wants to call the fault handler for a segment, it cal
SEGOP_FAULT (), which invokes the segment-specific page fault method, as shown
below, -

-_@m f1




9.5 SEGMENT DRIVERS

“The Solaris kernel is implemented with a range of segment drivers for various
unctions. The different types of drivers are shown in Table 9.4, Most of the pro-
cess address space mapping—including executable text, data, heap, stack and
memory-mapped files—is performed with the vnode segment driver, seg vn.
Other types of mappings that don’t have vnodes associated with them require dif-
ferent segment drivers. The other segment drivers are typically associated with
kernel memory mappings or hardware devices, such as graphics adapters.

Table 9.5 describes segment driver methods implemented in Solaris 10.

Table 9.4 Sclaris 10 Segment Drivers

. Function -

The vnode mappings into process address spaces are managed with
the seg_vn device driver. Executable text and data, shared libraries,
mapped files, heap and stack (heap and stack are anonymous memory)
are ali mapped with seg_wvn,

seg_kmem

The segment from which the bulk of nenpageable kernel memory is
allocated. (See Chapter 11.)

seg_kp

The segment from which pageable kernel memory is ailocated. Only a
very small amaount of the kernel is pageable; kerne! thread stacks and
TNF buffers are the main consumers of pageable kernel memaoty.

A mapping of all physical memaory into the kernel’s address space on
64-bit systems—to facilitate fast mapping of pages. The file systems use
this facility to read and write to pages to avoid excessive map/unmap
operations.

Shared page table segment driver. Fast System V shared memory is
mapped into process address space from this segment driver. Memory
ailocated from this driver is also known as Intimate Shared Memory (15M).

The kernel uses the seg_map driver to map files (vnodes) into the ker-
nel’s address space, to implement fiie system caching.

_Segmdev

Mapped hardware devices.

Seg_mapdev

Mapping support for mapped hardware devices, through the ddi_
mapdev {3F) interface.

Mapping support far hardware graphics devices that are mapped

between user and kernel address space.

Mapping support for mapped hardware graphics devices.

Nonfaulting kernel memory driver.
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Method S

advise ()

Virtual Mermor,

Table 9.5 Solaris Segment Driver Methods

o Descrtptaon

Provides a hint to optlmlze memory accesses 1o thls segment Fof
example, sequential advice given to mapped files causes read
ahead to occur.

checkprot {}

Checks that the requested access type (read, write, exec) is
allowed within the protection level of the pages within the seg- :
ment. :

dump (}

Dumps the segment to the dump device; used for crash dumps

dup {)

Duplicates the current memory segment, inciuding all of the page
mapping entries fo the new segment pointer provided.

Handies a page fault for a segment. The arguments describe th?
segment, the virtual address of the page fault, and the type of
fault,

Starts a page fauit on a segment and address asynchronously,
Used for read-ahead or prefaulting of data as a performance opti.
mization for 1/O.

Destroys a segment.

getmemid ()

Gets a unique identifier for the memory segment.

getoffset ()

Queries the segment driver for the offset into the underlying
device for the mapping. (Not meaningful on all segment drivers))

getpolicy ()

Get the MPO Lgroup Policy for the supplied address

getprot ()

Asks the segment driver for the protection levels for the memory
range,

gettype (}

Queries the driver for the sharing modes of the mapping.

getvp ()

Gets the vnode pointer for the vnode, if there is one, behind th|
mapping. :

incore ()

Queries to find out how many pages are in physicai memory fora
segment.

kluster ()

Asks the segment driver if it is OK to cluster I/O operations for _;j;: '
pages within this segment. ‘

lockop ()

Locks or unlocks the pages for a range of mermory mapped by a
segment. :

pagelock ()

Locks a single page within the segment,

setpagesize ()

Advises the page size for the address range

contiues:
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Figure 9.10 The seg wvn Segment Driver Vnode Relationship

Having established a valid hardware mapping for our file, we can look at how
dur mapped file is effectively read into the address space. The hardware MM can
fenerate traps for memory accesses to the memory within that segment. These
traps will be routed to our seg_vn driver through the as fault () routine. (See
Section 9.4.4.) The first time we access a memory location within our segment, the
fegvn_fault () page fault handling routine ig called. This fault handler recog-
hizes our segment as a mapped file (by looking in the segvn data structure) and
simply cails into the vnode’s file system {in this case, with ufs getpage()) to
'ead in a page-sized chunk from the file system. The subsequent access to memory
that is now backed by physical memory simply results in a normal memory access,
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Figure 9.11 Anonymous Memoary Data Structures
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When we create a private segment, we reserve swap and allocate anon g 2
tures. At this stage, that’s all that happens until a real memory page is createg ..
a result of & ZFOD or copy-on-write (COW). When a physical page is faulted in_
identified by vnode/offset, which for anonymous memory is the virtual swap cie o
for the page.

Anonymous pages in Solaris are assigned a swapfs vnode and offsets When the
segment driver calls anon alloc() to get a new anonymous page. The ang
alloc() function calls into swapfs through swapfs_getvp () and then g
swapfs_getpage (] to create a new page with swapfs vnode/offset. The aro,
structure members, an_vp and an_of£, which identify the backing store for this
page, are initialized to reference the vnode and offset within the swapfs ’VlI‘tual
gwap device. .

Figure 9.12 shows how the anon slot points into swapfs. At this stage, we st
don’t need any physical swap space—the amount of virtual swap space availabe
was decremented when the segment reserved virtual swap space—but because we
haven’t had to swap the pages out to physical swap, no physical swap space hag
been allocated.

Y

struct anon struct vnode

an_vp v_Dps
an_off v_type
&n_pvp
an_poff

Figure 9.12 Anon Slot Initialized to Virtual Swap before Page-Out

It’s not until the first page-out request occurs-—because the page scanner must
want to push a page to swap—that real swap is assigned. At this time, the page
scanner looks up the vnode for the page and then calls its putpage () methot:
The page’s vnode is a swapfs vnode, and hence swapfs putpage () is called:to
swap this page out to the swap device. The swapfe putpage () routine allocates:
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pag'ewsized block of physical swap and then sets the physical vnode an_pvp and
an poff fields in the anon slot to point to the physical swap device. The page is
ushed to the swap device. At this point we allocate physical swap space. Figure

9,13 shows the anon slot after the page has been swapped out.

¥

struct anon struct vhiode

-an_vp v_ops
an offset v_type
an_pvp
an_poff

¥

struct vnode

v_ops
v_lype

Figure 9.13 Physical Swap after a Page-Out Occurs

When we exhaust physical swap space, we simply ignore the putpage ()
equest for a page, resulting in memory performance problems that are very hard
0 analyze. A failure does not occur when physical swap space fills; during reserva-
1on, we ensured that we had sufficient available virtual gWwap space, comprising
oth physical memory and physical swap space. In this case, the swapfg
Utpage () simply leaves the page in memory and does not push a page to physi-
al swap. This means that once physical swap is 100 percent allocated, we begin
ffectively locking down the remaining pages in physical memory. For this reason,
s often a bad idea to run with 100 percent physical swap allocation (swap -1
hows 0 blocks free) because we might start locking down the wrong pages in

femory and our working set might not correctly match the pages we really want
! memory.
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watchpoint, and the si_code field contains one of TRAP RWATCH, TRAP_WwAféH_
or TRAP XWATCH, indicating read, write, or execute access, respectively. The 51
trapafter field is zero unless WA TRAPAFTER is in effect for this watched: area
nonzeroc indicates that the current instruction is not the instruction that mcuf ed
-the watchpoint trap. The si_pc field contains the virtual address of the inst C
tion that incurred the trap. Figure 9.14 illustrates watchpoint data structures::

struct proc / shruct as
p.as a_segs
a_size
a_nsegs
a_flags
a_hat Libraries
a_tall
&.waichp struct
watched _page
wp_forw
wp_hack
wp_vaddr
wp_prot

struct
waiched_page

wp_forw /
Wp_back 7
wp_vadadr

wp_prot

Executabie - TEXT.

Figure 9.14 Watchpoint Data Structures

9.10 Changes to Support Large Pages

Solaris provides support for large MMU pages, as part of the Multiple Page Sﬁfze
for Solaris (MPSS) infrastructure. In this section, we discuss ‘enhancements
page allocation and segment drivers. '

9.10.1 System View of a Large Page

Solaris implements large pages in way that localizes changes 1o to only a few.laye
of the virtual memory system, and that does not slow down operations and applica
tions not using large pages. The file systems and IO layers need no knowledg'B:O
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10.1 Life Cycle of Physical Memory

allocations. Anonymous memory, the most COIMINON::
the freelist, is used for most of a process’s memory 7

allocation, including heap and stack. Anonymous memory also fulfills shared
memory mappings allocations. A small amount of anonymous memory is also
used in the kernel for items such as thread stacks. Anonymous memory is. .
pageable and is returned to the freelist when it is unmapped or if it is stole

by the page scanner da

ernon.

File system “page cache.” The page cache is used for caching of file data
for file systems other than the ZFS file system. The file system page cache
grows on demand to consume available physical memory as a file cache and _
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10.2 Pages: The Basic Unit of Solaris Memory

Pages are the fundamental unit of physical memory in the Solaris mMemory m
agement subsystem. In this section, we discuss how pages are structured, 1
they are located, and how free lists manage pools of pages within the system, -
Physical memory is divided into pages. Every active (not free) page in the Solarg
kernel is a mapping between a file (vnode) and memory; the page can be idey
fied with a vnode pointer and the page size offset within that vnode. A pag'_é’g
identity is its vnode/offset pair. The vnode/offset pair is the backing store for the
page and represents the file and offset that the page is mapping. The page stri.
ture and associated lists are shown in Figure 10.2. ‘ i
The hardware address translation (HAT) and address space layers manage the
mapping between a physical page and its virtual address space (which is deseribed
in Chapter 12). The key property of the vnode/offset pair is reusability; that is, we
can reuse each physical page for another task by simply synchronizing its conterits
in RAM with its backing store (the vnode and offset} before the page is reused.
For example, we can reuse a page of heap memory from a process by simp
copying the contents to its vnode and offset, which in this case will copy the con-
tents to the swap device. The same mechanism is used for caching files, and we
simply use the vnode/offset pair to reference the file that the page is caching, Ifwe:
were 1o reuse a page of memory that was caching a regular file, then we simply
synchronize the page with its backing store (if the page has been modified) or just:
reuse the page if it is not modified and does not need resyncing with its backin

) backing store
struct page

pmv;odte struct vnode
p_offse

o_hash v.pages J—ﬁwb

0_vpnext
p_vporav vnods offset

p_next
p_prev 1
p_lckent .
p_cowent
p_selock

Global Hash List

Vnode's Page List

Free list or /O List

Flags 1o lock page in memory

Figure 10.2 The Page Structure
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10.2.1 The Page Hash List

The VM system hashes pages with identity (a valid vnode/offset pair) onto a glo-
bal hash list so that they can be located by vnode and offset. Three page functions
earch the global page hash list: page find(), page lookup(), and page
:_lookup nowait {}. These functions take a vnode and offset as arguments and

eturn a pointer to a page structure if found.
The global hash list is an array of pointers to linked lists of pages. The func-
" tions.use a hash to index into the page hash array to locate the list of pages that
“contains the page with the matching vnode/offset pair. Figure 10.3 shows how the
'-_paga_f ind (} function indexes into the page hash array to locate a page match-
-ing a given vnode/offset.

siruct page * page_hash[]
:-._":page__finc’f (vnode, offset) { ]

index = PAGE HASH FUNC (vnode,offset)

- page = PAGE_HASE SEARCH \
- {index, wvnode, offset!}

Figure 10.3 Locating Pages by Their Vnode/Offset [dentity

page find ()locates a page as follows:

1 It calculates the slot in the page hash array containing a list of potential
“'pages by using the PAGE HASH FUNC macro, shown below.

& PAGE_HMASHSZ pade hasm;z
& p HASHJNELEN S
o PAGE HASH ch{m, GEEY A SR
: cpty_ti{off) »>: PAGESHIT‘I‘) R RETR
eri{uinepty bl (o Erize. {PAGE‘SH;FT + PH SBIFG
SRttty (vp) Uas R e N :
Siiudintptr b vplkies {30% PH S%{I"-‘*" sI ZE);
luintper £l VD) > (3 + 2 * PH SHIFT qIZ 5
(PAGE EASESE | Ay : ] o

Gilgee :&m/'page B ;
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memsegs
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struct memseg

pages :;‘ s ~—
epages | - .
pages._base Physical Page List
pages_end
next

Y

struct memseg

pages <

epages *ii: > t::
pages_base Physical Page List
pages_end
next

Figure 10.4 Contiguous Physical Memory Segments

added during system boot. They are also added and deleted dynamically Wﬁén_
physical memory is added and removed while the system is running. Fzgure 10 4
shows the arrangement of the physical page lists into contiguous se i

10.2.5 The PageQLeve! Interfaces

The Solaris virtual memory system implementation has grouped page manage-
ment and manipulation into a central group of functions. These functions are used
by the segment drivers and file systems to create, delete, and modify pages. :'lfhe
major page-level interfaces are shown in Table 10.1.

The page_create va(} function allocates pages. It takes the number of pages
to allocate as an argument and returns a page list linked with the pages that have
been taken from the free list. page_create_va () also takes a virtual address as
an argument so that it can implement page coloring (discussed in Section 10.2:7).
The new page create va () function subsumes the older page create () function
and should be used by all newly developed subsystems because page creata()
may not correctly color the allocated pages. :




11.1 KERNEL VIRTUAL MEMORY LAYOUT

1'1':1.1.6 The Kernel Address Space and Segments

The kernel address space is represented by the address space peinted to by the
system object, kias. The segment drivers manage the manipulation of the seg-
ments within the kernel address space (see Figure 11.2).

Open Boot PROM
Page Tables

struct seq
s_base 64-Bit Kernel Map
5 _size

548 File System Cache
s_free i

S_0ps !
s_data Pageable Kernel Mem.

Cpen Boot PROM
Karnei Debugger

struct seg

5_base
5_Size 32-Bit Kernet Map

s as segkmem32
§_treg Panic Message Buffer

™1 struct as

a_seqgtres
a_size s 05
a“nsegfs s_data
a_flags Large TSB
a_hat
a_Ltail struct seg sundu HAT Siructures
a_watchp s _base Small TSB & Map Biks

§_size Kerre! Data Segment

7 5_as
: 5 tree Kernel Text Segment

i AVL
5.0pS Trap Table
" s_data

Figure 11.2 Kernel Address Space

"The full lst of segment drivers the kernel uses to create and manage kernel
Mappings is shown in Table 11.3. The majority of the kernel segments are mant-
jaHY_ calculated and placed for each platform, with the base address and offset
hard-coded mto a platform-specific header file. See Appendix A for a complete ref-
frence of platform-specific kernel allocation and address maps.
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pége_creat@._va 0 Raw Page ) page create val)
Allocator

Figure 11.3 Different Levels of Memory Allocation

fr_ee and which parts are allocated so that we know where to satisfy new requests.
- To record the information, we use a general-purpose allocator to keep track of the
start and length of the mappings that are allocated from the kernel map area, The
allocator we use is the vimem allocator, which is used extensively for managing the
_ k_emel heap virtual address space, but since vmem is a universal resource allocator,
it is also used for managing ather resources (such as task, resource, and zone IDg).
- We discuss the vmem allocator in detail in Section 11.3,

11.2.2 The Kernel Memory Segment Driver

: The segkmem segment driver performs two major functions. Tt manages the cre-
- ation of general-purpose memory segments in the kernel address space, and it also
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Figure 11.5 Slab Allocator Internal Implementation

T1.2.3.5 The CPU Layer

The CPU layer caches groups of objects to minimize the number of times that an -
allocation will need to go down to the lower layers. This means that we can satisfy

he majority of allocation requests without having to hold any global locks, thus
dr_a_maticaﬁy improving the sealability of the allocator.
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Figure 11.6 Structure of a Vmem Arena

Unfortunately, resource allocators can’t use traditional boundary tags because
e ifesource they're managing may not be memory (and therefore may not be able
to hold information). In vinem we address this by using external boundary tags.
For each segment in the arena we allocate a boundary tag to manage it, as shown
Figure 11.6. We'll see shortly that external boundary tags enable constant-time

?:.3_.4.2 Allocating and Freeing Segments

ach arena has a segment list that links all of its segments in address order, as
shown in Figure 11.6. Every segment also belongs to either a free list or an alloca-

on hash chain, as described below. (The arena’s segment list also includes span

arkers to keep track of span boundaries, so we can easily tell when an imported
pan can be returned to its source.)

- "We keep all free segments on power-of-two free lists; that is, free listin} con-
ing all free segments whose sizes are in the range [2n, 2n+1). To allocate a seg-
_Eii{t we search the appropriate free list for a segment large enough to satisfy the
llocation. This approach, called segregated fit, actually approximates best-fit
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thing about the underlying MMU implementation; the arguments to the HA
functions are machine independent and usually consist of virtual addresse
lengths, page pointers, and protection modes.

Table 12.1 summarizes HAT functions.

Table 12.1 Machine-Independent HAT Functions

hat_alloc Aliocates a HAT structure in the address space.

hat_chgattr () Changes the protections for the supplied virtual address
' range. '

hat clrattz{) Clears the protections for the suppiied virtual addressi_..
range. :

hat free end() Informs the HAT layer that a process has exited.




]2,.2.'='THE ULTRASPARC HAT LAYER

TLB (Hardware)

TLB Miss

(Entries filled from memory) Physical Physical
Page-Size =, Memory Memory
Pieces of = e = Pages )
Virtual
Memory B e e
e e S e Software Structures
e e I
4 _j
[T
; TSB or Page Table Miss
TSB or Page Tabie (in Memory) {Entries filled from software

structures)

Figure 12.3 Virtuat Address Translation Hardware and Software

‘usted by other activity), the virtual-to-physical address is translated on-the-fly. If
the TLB entry had been evicted, a TLB miss occurs, a hardware exception occurs,
and the translation entry is looked up in the larger TSB.

- The TSB is also limited in size, and in extreme circumstances a TSB miss can
beeur, requiring a lengthy search of the software structures linked to the process.

?_1'2.'_2.2 struct hat

The UltraSPARC hat structure is responsible for anchoring all HAT layer infor-
:i_natl'on and structures relating to a single process address space. These include the
Process’ context ID (also known as the context number); a pointer to its a8 strue-
?’f_lll“.e and TSBs; and various flags and status bits to name a few. Lets look at an




