
Logics of Emergent Computation
Meredith L. Patterson

May 30, 2018

Outline
● Background

● Consistency and Paraconsistency

● Kinds of Paraconsistent Logics

● Avenues of Exploration

History: George Boole
● Boolean algebra

○ A set

○ Two binary operators

○ One unary operator

● Basis for algebraic interpretations of logic

History: L. E. J. Brouwer and Arend Heyting
● Classical logic: “What assertions are true?”

● Intuitionistic logic: “What can we construct? Are we justified in doing so?”

● Classical logic: A ^ ~A is always false, A v ~A is always true

● Intuitionistic logic: A ^ ~A is still false, but A v ~A is not necessarily true!

● Classical negation: ~B means “B is false”

● Intuitionistic negation: ~B means “there exists a counterexample for B”

History: The Curry-Howard Correspondence
● Types correspond to axiom schemas

● K combinator: A -> B -> A (compare P ⊃ Q ⊃ P)

● S combinator: (A -> B -> C) -> (A -> B) -> A -> C

(compare (P ⊃ Q ⊃ R) ⊃ (P ⊃ Q) ⊃ P ⊃ R

● Proving a proposition just means constructing a term with the type that

corresponds to the proposition

● Different type theories from different logics!

○ Propositional -> function types (simply typed lambda calculus)

○ Predicate -> dependent types

○ Second-order -> parametric polymorphism

History: Per Martin-Löf and Intuitionistic Type Theory
● Dependent functions -> universal quantifier

● Dependent pairs -> existential quantifier

● BHK interpretation: what constitutes a proof of an assertion?

● Negation ~= “p implies a proposition that can’t be fulfilled”

● MLTT gives rise to mechanised proof assistance

Snapshots from the Langsec Workshop: Bogk and Schöpl (2014)
● “Can we write a verified PDF parser in Coq?”

● Well … kinda.

● A subset terminates. The entire thing doesn’t.

○ “And I’d have gotten away with it, too, if it weren’t for you crazy length fields!”

● Counterexample == nonterminating program on every PDF interpreter!

○ “The illusion that your program is manipulating its data is powerful, but it is an illusion. The data is

controlling your program.”

Snapshots from the Langsec Workshop: Vanegue (2015)
● How do we ask the right questions?

● Well, it helps if you have language to ask them in

● So let’s come up with a semantics for heap allocation

● “All problems in computer science can be solved by another layer of indirection.”

What We Talk About When We Talk About Consistency

A ^ ~A -> B

(traditional notation)

A, ~A ⊢ B

(turnstile notation)

What We Talk About When We Talk About Paraconsistency

Bi-intuitionistic Logic
● Int and co-Int living under the same roof

● Both implication and co-implication

● Both classical negation and paraconsistent negation

Linear Logic
● Substructural logics: remove one or more structural rules

● Forbids contraction and weakening

● Instead of implication/coimplication, new operators!

○ Multiplicative conjunction, ⊗ (“times”) - simultaneous resource use, consumer-directed

○ Additive disjunction, ⊕ (“plus”) - alternative resource use, producer-directed

○ Additive conjunction, & (“with”) - alternative resource use, consumer-directed

○ Multiplicative disjunction, ⅋ (“par”) - simultaneous resource use, producer-directed

○ ! (“of course!”)

○ ? (“why not?”)

● Undecidable :(

○ But affine logic (which adds global weakening) is ok!

○ Ohai Rust

Subtractive Logic
● Subtraction as dual of implication

● A C-H correspondence has been demonstrated (Tristan Crolard)

○ I don’t entirely understand it yet

○ But, it’s an extension of the lambda-calculus, like the other correspondences

● What kinds of computation do these new calculi allow us to model more

effectively?

Now What?
● Get our bearings. Exploits as dual of intended computation -> dualised logics for

reasoning about interaction

○ Not all interaction is exploitative. But introduce interaction, and you introduce that possibility.

● Which maps best fit the territory?

● Category-theoretic interpretations

● Mechanise all the logics

