Detection of Rogue APs
Using Clock Skews:
Does it Really Work?

Sergey Bratus Chrisil Arackaparambil ~ Anna Shubina

Dartmouth College

This talk in 30 seconds

» Clock skews are interesting

« usable for fingerprinting devices (kind of)

- available for the asking or listening
(mostly)

* People worked out how to use them
 We can spoof them for 802.11 APs
 How can we detect spoofing?

<r

Clock Skews (NOT to scale!)

Physical devices have inherent, tiny but
consistent drifts in their hardware clocks

Our clock's time

Clock Skews (NOT to scale!)

Different slopes: some clocks are faster

clock skew = slope -1
Devices' clock readings

Slope = Ay/AXx

Drawn to scale:

4e+07 | ,

extract GDDbBEcllDM delta u5|ng L: 2
' [extract_000b86c111e0_delta’ using 1: 2 .-r

35¢+07 - Devices' ClOCkS
3e4+07 | (adJUSted to
2se+07 | STAIT al O)

2e+07 -
1.5e+07

le+07

Our clock’s time (t - 1)

0 se+06 le+07 1.5e+07 2e+407 2.5e+07 3e+07 3.5e+07 4e+0

Se+06

Measuring skews

- Measurements: (¢, T), i=1,2,...,n
- t: local timestamp
- T:: remote timestamp observed
- Clock offsets points: (x, y)
. X = At = (t -t)
« Yy, =AT -At = (T -T)-(t -t)

<r

Use clock-offset points
instead: skew = slope

700

600

500

400

300

200

100

L.

AT - At

| | | | | |
'Jextract 000b86c11041 offsets' using 1:2

'Jextract 000b86c111e0 offsets' using 1:2

+

our clock's time (t -1)

0 5e+06

le+07

1.5e4+07 2e4+07 2.5e+07 3e+07 3.5e+07 4e+0

How to measure skews

 Fitaline y=mx+cC
to the clock-offset points

e m = clock skew

« Examples

. skew(Linksys1) = 0.00000668 = 6.68 ppm

« skew(Linksys2) = - 0.00000785 = -7.85
ppm
» ppm = parts per million (a millionth, 10°)

<r

Who came up with this

« Kohno, Broido, claffy (2005):
"Remote physical device fingerprinting”

Clock skews are useful for remotely
fingerprinting networked devices

- different devices have different skews
» these skews are stable enough over time

<r

Remote fingerprinting

 Have timestamps, can fingerprint!

» Layer 3: can use TCP, ICMP timestamps

* |ICMP timestamp requests (type 13, code 0)

* TCP timestamp option (option 8 in TCP
header)

 "Do these hosts have the same HW
clock?”

» Of possible cloud-mapping interest?

 Statistics to compensate for network
latency, variation

<r

Real-world clock skews

Kohno, Broido, and Claffy data over 12 hours

25

| | |
'kbc-numbers.txt' using 1:2:2:3 ——

ittt

~ Skew range, ppm

20

|11
or IIIIIIII

ot

'5'11 Host #

0 23 30 33

Clock Skews for 802.11 APs

* Jana, Kasera (2008)

"On fast and accurate detection of unauthorized
wireless access points using clock skews”

 Bratus, Cornelius, Peebles, Hansen
"Active 802.11 fingerprinting” @ BH 2008

« Beacons transmitted by APs periodically
(usually 10/sec)

« Beacons contain timestamps!
« Supplied by RF interface chipset clock

<r

~ IEEE 802.11 Beacon frame, Flags: C
Type/Subtype: Beacon frame (8x88)
I Frame Control: 0x8080 (Normal)
Duration: @
Destination address: Broadcast (ff:ff:ff:ff:ff:ff)
Source address: Cisco-Li af:35:b5 (0@:1c:10:af:35:b5)
BSS Id: Cisco-Li af:35:b5 (@@:1c:10:af:35:b5)
Fragment number: ©
Sequence number: 3981
I Frame check sequence: 8x8b8d490a [correct]
w IEEE 8082.11 wireless LAN management frame
~ Fixed parameters (12 _byfe
Timestamp€ 0x000000A415861188
Beacon Interval: 0.182488 [Seconds]
[Capability Information: 8x0481
I Tagged parameters (48 bytes)

$ tshark -r pcapfile -R "wlan.sa==00:1c:10:af:35:b5 &&
wlan.fc.type subtype==0x08" -T fields -e

wlan_mgt.fixed.timestamp

Why fingerprint?

* Protecting a wireless client from an
"evil-twin AP":
 Shmoo, 2004-2005
« Karma (Dino Dai Zovi, ...)
e Johnny Cache, David Maynor @BH 2006
« "Month of kernel bugs” in 802.11

<r

Rogue/Fake APs

* It goes something like this...

Rogue/Fake APs

* It goes something like this...

Rogue/Fake APs

* It goes something like this...

<may | have a Star Wars theme?>

<r

Rogue/Fake APs

* It goes something like this...

Rogue/Fake APs

* It goes something like this...
APs

Rogue/Fake APs

* It goes something like this...

Rogue/Fake APs

* It goes something like this...
Evil AP

Rogue/Fake APs

* It goes something like this...

L@#S

Rogue/Fake APs

* It goes something like this...
Evil AP

Too bad

Rogue/Fake APs

* It goes something like this...
Evil AP

(Beacons with
timestamps)

<r

Rogue/Fake APs

* It goes something like this...

... back to 802.11 monkey business ...

* Wireless nodes maintain a Timing Sync
Function (TSF) timer — 64 bit (microsec)

» Clients adjust their timer from beacon
TSF timestamps to sync with AP timer

* RF chipset inserts timestamp into beacon
at the moment of transmission

 We have a high-precision stream of
timestamps to measure clock skews!

<r

Fast & Accurate Detection
of Rogue Access Points

* Jana—-Kasera results:

Table 6: Clock Skew estimates in residential setting A as measured from laptop?

st Measurement(LPM)

st Measurement(LSF)

Ind Measurement(LPM)

Ind Measurement(LSF)

Linksys]

-64.23 ppm

-64.10 ppm

-64.90 ppm

.77

)

Linksys2

-15.69 ppm

-45.96ppm

-46.94 ppm

--1'. Ip

LinksysJ

-62.05 ppm

-61.84 ppm

Belkinl

-0b.31 ppm

-0b.07 ppm

- Jh 71 ppm

Belkin2

-1105.50 ppm

-1105.6Y ppm

}

}
-62.77 ppm

}

)1

106.29 ppm

I

}
264
]

|

-1106.06

Netgear]

-08.08 ppm

-00.(8 ppm

-.JH.HEJ ppm

Dlinkl

-47.27 ppm

-A7.17 ppm

4780 ppm

Unknownl

-40.91 ppm

}
-40.99 ppm

-41.61 ppm

+/- 0.30-0.70 for the same AP

How hard is it to spoof?

* Supposing we want to set up evil fake AP
that passes the clock skew test?

Do we need special equipment?
» Jana—Kasera: pretty hard

« Constructing beacons to match a known
skew and injecting them in RF monitor
mode gives inconsistent measurements
(est. +/- 100 difference)

« SW RF mode injection is not fast enough:

latency is one problem I

Can we do better?

- Can we spoof clock skews with available
802.11 hardware?

e ... like an Atheros card?

* There are some funny things
to observe about actual
cards+madwifi ...

Monitor Mode

Synchronization

1) Even after switching from STA to
Monitor mode, card continues to update
TSF timer from the AP it used to be
associated with

2) Skew of that AP measured by the card is
Zero

3) BTW, if that AP ceases to transmit
beacons, the TSF timer of the card
begins to drift with its own, actual skew

<r

Monitor Mode

Synchronization

* So an Atheros card continues sync-ing its
timer even after leaving association.

- Madwifi gives us "virtual interfaces” and
can bridge (one interface associated
with an AP, another in Master mode)

 Can we just get it emit beacons and get

AP spoofing for free? I

Monitor Mode
Synchronization

I-.' { If_l' ' -_,'_|' Filde .,
(O

g TSF

Timer
Registers

"Snakes and ladders”

"Snakes and ladders”

 Pity it doesn't work :-(

£

@:Lsuhh’
g .
2 = f e

2

T [Cenkaniong

Something like this:

« MadWifi: multiple virtual
Interfaces (VAPs) on same
hardware card

- AP VAP and STA VAP

« STA VAP associated with real
AP, synchronizing its TSF
timer with AP

AP VAP using same timer to
send spoofing beacons

switch(opmode) {
case IEEE80211 M HOSTAP:
if ((sc->sc nvaps !'= 0) && \
(1c->1c_opmode == IEEE80211 M STA

return NULL; AP VAP needs to
be created before
case IEEE80211 M STA: STA VAP

if (sc->sc nvaps != 0) {
flags |= IEEE80211 USE SW BEACON TIMERS;
SC->SC nostabeacons = 1;
ic opmode = IEEE80211 M HOSTAP; /* Run
with chip in AP mode */
} else {

; Run with chip in STA mode
1C _opmode = opmode;
}

Driver Architecture

ath_pci driver

Tx path and
Rx path ath recv mgt ath beacon send

Hardware Abstraction Layer
[0S REG READ, 0S REG WRITE }

Firmware / Hardware

Ufprdoamtebetalcmoenr ‘ T-Ii-r?]Zr LASETE USRI
into beacon

timestamp Registers

Driver Architecture

* Timer updating logic is inside firmware

* Driver sets firmware to one operating
mode (AP)

« Simulates other modes in software

* TSF timer will not be updated from real
AP beacons

* Need to patch driver

<r

Driver Patch

/*
* Write two regs together. Will use for TSF_L32 and TSF_U32,

* the upper and lower half of the TSF

*/

tsf_dbl _reg_ write(struct ath_softc *sc, u_int reg1, u_int32_t vall, u_int
reg2, u_int32_t val2)

{ HAL register write
ATH HAL LOCK IRQ(sc);

OS _REG_WRITE(sc->sc_ah, regi, vall);
OS_REG_WRITE(sc->sc_ah, reg2, val2);

ATH_HAL_UNLOCK_IRQ(sc);

<r

Driver Patch

Beacon frame received
In ath_recv_mgmt:

.f —
if (subtype == 0x80) { Get timestamp from beacon

+ time = (unsigned long long)le64 to_cpu(ni_or_null->ni_tstamp.tsf);
+ ptr=(u_int32_t *) (&time);
+ tsf_dbl reg write(sc, AR_TSF_L32, ptr[0], AR_TSF_U32, ptr[1]);

Update TSF regs

...and we hit a shake

 Mucking around with the values in the
TSF registers breaks beaconing

» ...beacon scheduling disrupted?

Driver Patch

Beacon frame received
In ath_recv_mgmt:

If (subtype == 0x80) { Get timstamp from beacon
Update TSF regs

+ time = (unsigned long long)le64 to_cpu(ni_or_null->ni_tstamp.tsf);
+ ptr=(u_int32_t *) (&time);
+ tsf_dbl reg write(sc, AR_TSF_L32, ptr[0], AR_TSF_U32, ptr[1]);

Force beacon transmission

+ ath_beacon_send(sc, &needmark, new); *

The Result

o~
n
=
=
)
L
q
n
Q
[
2
o
=
S
=
q
m
[
(O
o
-
L
o
p—]
i

4 G 8
Time since start {(seconds)

16.79 16.78
16.82 16.69
16.80 16.74
16.81 16.78

This is within typical variation of one AP's

(+/- 0.30 — 0.70) clock skew — close enough! *

Can we finesse it?

What If the client hears both fake and real
AP on the same channel?

* Timestamps will collide, screw up skew

 Place the fake AP on a different channel!

<r

Bridging the Fake AP

* Overlapping 802.11 channels

Chan. 9 Chan. 10 Chan. 11

fre:quency >

<r

22 MHz

Staying on an overlapping

channel

* The card will automatically switch to
the channel of the associated AP

« Must keep it on the chosen
neighboring channel instead

Chan. 9 Chan. 10 Chan. 11

fréquency >

22 MHz

Keep card on overlapping

channel

add_channels(struct ieee80211com *ic, // <skipped args>

- int nfreq)
+ int nfreq, struct ieee80211vap *vap)
{
/I <skip> Channel found by scanning

- SS->SS_chans[ss->ss_last++] = C;
+ SS->SS_chans[ss->ss_last++] = vap->iv_des_chan;

Spoofing channel
\ supplied by us

More Patching

leee80211_recv_mgmt()

{

// <snip>

If (scan.chan != scan.bchan &&
ic->ic_phytype = IEEE80211_T FH) {
// <snip>
vap->Iv_stats.is_rx_chanmismatch++;
- return O;

+ /] return O;
) Avoid filtering out
beacons

The Result

Real AP ——
Brideed fake AP

o~
i
=
=
=
&
Q
0]
&
[
&
-
=
S
=
&
{7
G
&
o
-
&
&
—_
2

6 8 10 12 14 16

Time since start (seconds)

17.25 16.49
17.29 17.58
17.26 17.54
17.35 16.29

We are within skew variation most of
the time

<r

Detecting Spoofing

» Effect of beacon interval

 Line fitting error

 Y-intercept of the fitted line (will not pass
through the origin)

e Jitter (how much jumping around)

<r

Effect of Beacon Interval

« Beacon Interval = 100ms (10 beac/sec)

Effect of Beacon Interval

« Beacon Interval = 50ms (20 beac/sec)

Effect of Beacon Interval

« Beacon Interval = 25ms (40 beac/sec)

Effect of Beacon Interval

« Beacon Interval = 200ms (5 beac/sec)

* Timestamp measurements are exciting

 |Interesting papers exist

» Asking "What's the time, please?” may
be a good prelude to closer association

« Unfortunately, AP Beacon timestamps
appear to be spoofable

 We should all try harder! ;-)

<r

Patches to be posted at
http://baffle.cs.dartmouth.edu/

What's the time, please ?

i/
e

A |

— - — Tl
iy /

=
‘u
;.“;‘

y 8

o =
_\;__W";J
| § - o i

Line Fitting Error

Intercept ¢ ——
Jitter gcamma ——

Q
=11
=
11
fm
&
o

e ! L 1 1

200 600 00 300 900

Beacon interwval

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

