
Regulating your
nose to spite your

face
Sergey Bratus

offence vs defence

What is their relationship?

it's co-evolution, but
what is (co-)evolving?

it's co-evolution, but
what is (co-)evolving?

• Is the co-evolution of offensive and defensive
computing "random" & meaningless?

• Is it about adapting to some "random" external
conditions?

• Does it improve our understanding of how to build
computers we could finally trust?

"The security elephant"

Pentests!

AppStore!

Firewalls!

Crypto!

UX!

Policy!

"The real security elephant"

http://davidmengart.blogspot.de/2014/03/of-elephants-and-blind-men.html

http://davidmengart.blogspot.de/2014/03/of-elephants-and-blind-men.html

offensive computing
• Problem: we build computing systems with behaviors we

don't understand & cannot predict

• Emergent computation kills security & trust

• Offensive computing has higher goals that merely
annoying defenders:

• revealing mechanisms of emergent computation

• revealing actual impact of features & bugs

• systematically explores unexpected/illegal states

"what can this compute?"

• This core question of computer
science is daily, empirically
explored by offense

• Goes back to Hilbert's 10th
problem, Church, and Turing

• Undecidability lurks, emergent
Turing completeness abounds

Exploits are proofs

• Exploits are proofs by construction that
unexpected computation and its supporting
automata exist within the target

• Sometimes these are Universal Turing machines

• Our current exploit/proof methods are neither
methodical nor precise; only our results are

• "Can't argue with root shell"

Methods

three tales of co-
evolution

• When first introduced, security measures will be
misunderstood & mislabeled. Their actual value
will become clear when they are circumvented.

• Offensive proof-of-concept release enables detection
of similar technique already in the wild.

• Security-critical features start outside of security
domain & get understood as such only when
successfully attacked.

Hacker research becomes an
industry standard: DEP+ASLR
• Standard function prologues and epilogues are an automaton,

distributed through code, stack frames are its programs

• This automaton realizes the “control flow graph”

• Programmed since Aleph One’s Phrack 49:14 ("reuse of a RET")

• OpenWall & PaX enforce/emulate non-executable stacks

• Solar Designer, Tim Newsham, gera, Nergal, and others discover stack
frame-chaining programming techniques, 1997-2001

• PaX mitigates with ASLR: http://pax.grsecurity.net/docs/aslr.txt

• Known as ROP (named by Hovav Shacham) since 2007

• DEP+ASLR -- pioneered by hackers! -- become an industry standard

DEP in WinXP SP2: a "buffer
overflow" protection

https://support.microsoft.com/en-us/kb/889741

Return of the Bootkit

• Vbootkit, PoC bootkit for Vista, BlackHat USA 2007

• Merbroot, first modern bootkit in the wild, 2007

• Vbootkit x64, Stoned, BH 2009: PoC bypass digital signature check

• Olmarik (TDL4), 2010: first x64 sign. check bypass in the wild

Adventures of SMM

• Security-critical features start as power management,
performance, admin/inventorying, etc. - outside of
the security domain

• Attackers expose their actual execution models

• Seeing these models, defenders understand the
features' actual worth, and invest in (re)designing
them properly

• New security models eventually result

Adventures of SMM
• Duflot, 2006: payload in SMM to bypass OpenBSD secure levels

• BSDaemon et al., Phrack 65:7, "System Management Mode Hacks:
Using SMM for Other Purposes", 2008

• Sherry Sparks, 2008: "SMM Rootkits: A New Breed of OS Independent
Malware"

• Filip Wecherowski, Phrack 66:11, "A Real SMM Rootkit: Reversing
and Hooking BIOS SMI Handlers", 2009

• Joanna Rutkowska, 2009, "Attacking SMM Memory via Intel® CPU
Cache Poisoning"

• Intel's SMM for Authenticated Variables, MITRE's signed BIOS,
... -- SMM now a core element of security policy

Shape of the beast

offense defines the universe
in which defense lives

Programmer's model

Binary representation/ 
runtime

Physical representation

Functions, variables

"Gadgets", overwrites,
out-of-type references,

illegal states, ...

Glitches, noise,  
cross-talk, ...

Offense defines the universe in which
defense lives

The unexpected computation the defense must counter
occurs within offense's universe, on offense's

computation models and modes
of programming.

Are all bugs shallow?
Hell No.

• "Given enough eyes, all bugs are shallow" - not
until we grow eyes that can see solutions to NP-
complete problems (or undecidable ones)

• "Bugs are just bugs" - and an ISA is just an ISA :) 

We don't understand a word until we can use it in a sentence 
We don't understand a math fact until we can use it in a proof 
We don't understand a bug or a feature until we can use them in
an exploit

"weird machines"

-Thomas Dullien, Infiltrate 2012

-Thomas Dullien, Infiltrate 2012
http://titanium.immunityinc.com/infiltrate/archives/

Fundamentals_of_exploitation_revisited.pdf

-Thomas Dullien, Infiltrate 2012
http://titanium.immunityinc.com/infiltrate/archives/

Fundamentals_of_exploitation_revisited.pdf

Domain of offensive
computing

Universe of
weird states

intended states weird states

The universe of known
"weird states" expands

1990s 2000s

2010s

Stack  
overflows,
shellcode

NX/DEP,  
stack canaries

ROP, heap ovf, 
malloc vudo,
feng-shui, ...

ASLR, CFI,  
Uderef

metaphor for offense:
ALGEBRA

metaphor for offense:
ALGEBRA

metaphor for offense:
ALGEBRA

metaphor for offense:
ALGEBRA

François Viète

metaphor for offense:
ALGEBRA

• Computation existed since forever

• Algebraic notation abstracted it,  
allowed us to represent & combine  
"all formulas" in given variables

• "Art of calculation on symbols"

• Some formulas don't make sense,  
many can be simplified

• Offense enumerates "variables", "formulas"  
and properties of weird states

François Viète

metaphor for offense:
ALGEBRA

• Effective defense needs to know &
represent all illegal state

• Compare with functional
programmers' mantra: "Make
illegal state unrepresentable"

• Algebra is necessary (but not sufficient)
for automation of computations

• It takes a lot more to automate
proofs, but it starts with algebra

François Viète

about proofs

Program Verification

Program Verification

P { Q } R

Precondition ResultCode

Composition is weird

So you put together { Q1 ; Q2 }. How many programs did you
actually create?

Instruction Q1 Instruction Q2

Instruction Q3 Instruction Q4

...

how much can proven
code surprise you?

Assume Q is proven correct, P { Q } R

If P isn’t quite right, what will { Q } do to R?

how much can proven
code surprise you?

Assume Q is proven correct, P { Q } R

If P isn’t quite right, what will { Q } do to R?

What can we make Q compute 
by varying inputs it wasn’t verified for?

-Greg Morrisett
“Everything is an interpreter”

-Taylor Hornby (@DefuseSec)

The illusion that your program is
manipulating its data is powerful.

But it is an illusion: The data is
controlling your program.

Any Input is a Program

With the right inputs,
"everything" is turing-complete

Your ld.so ELF loader/relocator is Turing-complete

PE (LOCREATE, Uninformed 6:3), Mach-O are fun, too

So is the DWARF exception handler helpfully linked into
your C/C++ program

So is your x86 MMU on x86 GDT + IDT + TSS + PTEs

Good luck predicting effects of those inputs!

Exploitation is a program
verification task!

Evolution?

Evolution?

Weapons control!

Weapons control!

What's "Wassenaar"?

Credit: FX, “Information Security War Room”, invited talk USENIX Security 2014

wassenaar arrangement

Wassenaar Arrangement addendum was signed Dec. 2013

An arms-control agreement (nuclear, chemical, ...)

WA defines “intrusion software”:

“...The modification of the standard execution path
of a program or process in order to allow the execution
of externally provided instructions...”

Controls means of generating, developing, delivering,
communicating with "intrusion software"

"Intrusion Software"

WA two-tier control

"generation", "development",
"communication"

"intrusion software"

Control Lists

(not controlled)

"malware samples", proof-of-concept
Exceptions: "debuggers, RE tools, hypervisors"

WA two-tier control

"generation", "development",
"communication"

"intrusion software"

Control Lists

(not controlled)

"malware samples", proof-of-concept

Fuzzers, frameworks, generators, AEG?
Compilers, instrumentation, analyzers?

Exceptions: "debuggers, RE tools, hypervisors"

New in BIS rules:
"Default deny"

BIS so far did not define how "zero-day exploit" is
different from just an "exploit"!

BIS so far did not define "rootkit"

NEW IN BIS RULES:
"PROPRIETARY RESEARCH"

No Conversations =>  
no Research

Public Comment:  
There's Still Time

• We have till July 20

• Please submit a comment on how this may or will
affect you!

• If you are not sure how, please contact me:
sergey@cs.dartmouth.edu, @sergeybratus

mailto:sergey@cs.dartmouth.edu

Chilling Automation

• We progress by writing programs that write programs

• Binary > Asm > Compilers > Templates > Analyzers
> ...

• Automating program analysis is rapidly developing

• SAT/SMT solvers, abstract interpretation, symbolic
execution can & should become mainstream

• WA's generation & development clauses will chill
this path significantly

what is "zero-day"?

• "Zero-day" means new, novel. Exploit means proof.

• In science, only "zero-day" results are worth pursuing
& publishing. All science is about "zero-day"!

Exploit = experimental evidence

• In absence of hard evidence, hypothetical risks are
either ignored or everything is "critical" (= no priority)

• Exploit is evidence that a phenomenon is real, same
as a physical experiment in Physics, Chemistry, ...

• Would Physics or any technology succeed without
ubiquitous lab experiments?

Thank you!

