security

NTELLIGENT
w

OFFENCE VS DEFENCE

What 1s their relationship?

€3 John Lambert +% Follow
JohnLaTwC

If you shame attack research, you misjudge
its contribution. Offense and defense aren’t
peers. Defense is offense’s child.

Marcus Ranum @mjranum 5/20/15
sergeybratus @JohnLaTwC @XSSniper - Co-evolution is the answer
to the stupid question "which came first, the chicken, or the egg?"

IT'S CO-EVOLUTION, BUT
WHAT IS (CO-)EVOLVING?

The Buff-tailed Sicklebill (Eutoxeres condamini), a hermit hummingbird, beside one of the
flowers to which they are specialized, showing how the flower and recurved bill have
co-evolved. Photo by Christopher Witt, University of New Mexico.

IT'S CO-EVOLUTION, BUT
WHAT IS (CO-)EVOLVING?

e |Is the co-evolution of offensive and defensive
computing "random" & meaningless?

* Is it about adapting to some "random" external
conditions?

* Does 1t improve our understanding of how to build
computers we could finally trust?

THE SECURITY ELEPHANT"

Firewalls! e | UX!

Policy!

o -~
- ? -
- T ' -y .
'y ‘

: : P— "' ’
- -] ”~
» »” 2 -

. b " ~ Y -~ -

- . - "y
B e o TR
r » » - -~ -
. - - L
A 4 \
\J ’ " ‘ .
: - " -
. -
i - . | . - >
-t .
d -
: g~
. - - g
~» .-

"THE REAL SECURITY ELEPHANT"

%\c’;)\

. . " SR 7
. \ e \
i \)
k \ N
(N '
3 Y

W

s

LY

) \g\f;\- R
%

S

T

/ /
e
”
e
\C A
:
/4
- fi
‘
f] ’
'l
4
"’ ¢
<
»
//>
R

SE i
"‘”""f“‘?(
g

LSS
"y

P

R

avidm

http://davidmengart.blogspot.de/2014/03/of-elephants-and-blind-men.html

OFFENSIVE COMPUTING

* Problem: we build computing systems with behaviors we
don't understand & cannot predict

* Emergent computation kills security & trust

» Oftensive computing has higher goals that merely
annoying defenders:

* revealing mechanisms of emergent computation
* revealing actual impact of features & bugs

* systematically explores unexpected/illegal states

"WHAT CAN THIS COMPUTE?"

* 'This core question of computer
science 1s daily, empirically
explored by offense

 (Goes back to Hilbert's 10th
problem, Church, and Turing

* Undecidability lurks, emergent
Turing completeness abounds

EXPLOITS ARE PROOFS

* Exploits are proofs by construction that
unexpected computation and its supporting
automata exist within the target

* Sometimes these are Universal 'Turing machines

* Our current exploit/proot methods are neither
methodical nor precise; only our results are

» "Can't argue with root shell"

THREE TALES OF CO-
EVOLUTION

* When first introduced, security measures will be
misunderstood & mislabeled. Their actual value
will become clear when they are circumvented.

» Oftensive proot-of-concept release enables detection
of similar technique already in the wild.

* Security-critical features start outside of security
domain & get understood as such only when
successtully attacked.

HACKER RESEARCH BECOMES AN
INDUSTRY STANDARD: DEP+ASLR

» Standard function prologues and epilogues are an automaton,
distributed through code, stack frames are 1ts programs

 'T'his automaton realizes the “control flow graph™
* Programmed since Aleph One’s Phrack 49:14 ("reuse of a RET™")
* OpenWall & PaX enforce/emulate non-executable stacks

* Solar Designer, Tim Newsham, gera, Nergal, and others discover stack
frame-chaining programming techniques, 1997-2001

* PaX mitigates with ASLR: http://pax.grsecurity.net/docs/aslr.txt
* Known as ROP (named by Hovav Shacham) since 2007

* DEP+ASLR -- pioneered by hackers! -- become an industry standard

DEP IN WINXP SP2: A "BUFFER
OVERFLOW" PROTECTION

Windows XP Service Pack 2 (Part 7). Protecting

against buffer overflows

Part 7: Protecting against buffer overflows

Buffer overflows are one of the most notorious forms of attack from the Internet. They rely on the simple fact that programmers
may make errors when reserving disk space for variables.

Local Variables

Farameters

Variable X

Harmful Code New Address

What does Data Execution Prevention do?

Data Execution Prevention (DEP) monitors programs to verify whether they are using system memory securely. To do this, DEP
software, either alone or with compatible microprocessors, marks memory locations as "non-executable." If an program tries to

run a code (malicious or not) from one of these protected locations, DEP closes the program and notifies you by sending a
warning message.

https://support.microsoft.com/en-us/kb/889741

RETURN OF THE BOOTKIT

* Vbootkit, PoC bootkit for Vista, BlackHat USA 2007

 Merbroot, first modern bootkit in the wild, 2007

* Vbootkit x64, Stoned, BH 2009: PoC bypass digital signature check

* Olmarik (TDL4), 2010: first x64 sign. check bypass in the wild

ADVENTURES OF SMM

Security-critical features start as power management,
performance, admin/inventorying, etc. - outside of
the security domain

Attackers expose their actual execution models

Seeing these models, defenders understand the
features' actual worth, and 1nvest in (re)designing
them properly

New security models eventually result

ADVENTURES OF SMM

.- * Duflot, 2006: payload in SMM to bypass OpenBSD secure levels

4

~*~ * BSDaemon et al., Phrack 63:7, "System Management Mode Hacks:
b . Using SMM for Other Purposes", 2008

4
’

[

ot .+* Sherry Sparks, 2008: "SMAM Rootkuts: A New Breed of OS Independent

Y 4
. Malware”
§

A
) N

- -;ﬁ

-
-

* Filip Wecherowski, Phrack 66:11, "A Real SMM Rootkit: Reversing

‘\‘ and Hooking BIOS SMI Handlers", 2009

q
* Joanna Rutkowska, 2009, "Attacking SMM Memory via Intel® CPU

Cache Poisoning"
* Intel's SMM for Authenticated Variables, MI'I' RE's signed BIOS,

... - OMM now a core element of security policy

/s ’
4 ~ / -
»
-) . e ¢
{ P - o g . (PPN, et qu_ ;‘A.;;.‘-u.m femii e s P ot et i, ue e st wnt 41_:‘4‘14 o i V‘h’“ - ;M‘..om 3 - 5 g
8 y 3 5 < b 5 5 9 9 g ~ iRy ; /oy
¢ o A g y a . . 4 _ r . ‘ » ol
DA iy B N | = = 3 i | | A y . 1 % pice T
” o 5 y . -
: j == \ |] e N i j ¥ lceced § . | - y = \ s | Ll § o - [:
’ Ve | WA . / g oy
’ | _ o A "\ | | j ‘ j | ‘; 4 | S 1 . N ‘f b ot 7 b g A A &
4 ,M’ I ;]) 4 : j ’ ’ - 7 3
b L. : 4 - g I o y A - :

5 — ‘ i A A A ek ~zay s | > i | a | TP, 4 raceced Y e \ 4 43 o 3 y Ay T 25
- . - 'y / 7 ’ T . . s a
. r

¢ 4
o/
e - /
’
>
o’ . L
g ’
W
- 2 / L.
7 g y
: .
- o
’
A o~ v
,
-
.
- P
. A 7
- .
- - ’
5 V4
s 7,
- ~ o,
/
A/ 7
{ , <
5 r /
- A
- - ."
VA —— R . v -
7 } - -
/ y !
2 fm : g & -
5 Chns < L \ .
V) \ “ { 7
2 ¢4)|)‘,‘ ﬂﬂ-‘
-) 4
s .
] s 7
- /
> . 'y : . / - o, -~ o~ sy o s
ot L g J ” ” ” i v ’ s L e 4 - ~ ~ B S Bl VA e AN s .
AT b : . g . s . / 7 L AL P AN A S
s . . J é ’ v . &
v 1) -~ o I I - ey -) : - ’ i) - - . - | »
g / ’ o - . ’ /. ” ’ / o
T s / ’ » ~ ’, /’ v /- Vo 4 . . 4 . é
’ A » J o 7 e < . - P
3 = o ’ / - g - = * . ” ’
” £ v , o SV o ¥ g & < . o/ i i
o~ Y '’ Z - rra - /s = v : £- = v ’ S, ” o«

OFFENSE DEFINES THE UNIVERSE
IN WHICH DEFENSE LIVES

Proorammer's model Functions. variables
g >

"(Gadgets", overwrites,
out-of-type references,
illegal states, ...

Binary representation/
runtime

Glitches, noise,
cross-talk, ...

Physical representation

Offense defines the universe in which
defense lives

T'’he unexpected computation the defense must counter
occurs within offense's universe, on offense's
computation models and modes
of programming.

ARE ALL BUGS SHALLOW?

HELL NO.

* "Given enough eyes, all bugs are shallow" - not
until we grow eyes that can see solutions to NP-
complete problems (or undecidable ones)

» "Bugs are just bugs" - and an ISA 1s just an ISA :)

We d
We ¢

on't und
on't unc

We d

erstanc
erstanc

on't und

an exploit

| a word until we can use 1t 1n a sentence
| a math fact until we can use 1t in a proof

erstand

a bug or a feature until we can use them in

"WEIRD MACHINES"

Create account Log in

Article Talk Read Edit View history Q

WIKIPEDIA Weird machine

The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page In computer security, the weird machine is a computational artifact where
Contents additional code execution can happen outside the original specification of

Featured content the program.!'! It is closely related to the concept of weird instructions,

bkl which are the building blocks of an exploit based on crafted input data.[?!

Random article

Exploitation is setting up, instantiating, and programming the
weird machine -Thomas Dullien, Infiltrate 2012

Memory corruptions ...

* So let's view programs as finite state machines
* |nteraction causes transitions between states

* Assume all states are “under control” — e.g. no valid
program state Is insecure (for this presentation)

* ... and then we corrupt memory ...

* Suddenly, the space of possible program states explodes In
size

-Thomas Dullien, Infiltrate 2012

http://titanium.immunityinc.com/infiltrate/archives/
Fundamentals_of_exploitation_revisited.pdf

/ Weird machines ...

* The transition functions that map between states still exist
 They now they operate on invalid / absurd states

 With each interaction, we transform one invalid / absurd state into
a new absurd / invalid state

 We have a new state machine now: One with gazillions of
unknown states, and most transitions lead to instant death (crash)

e Butinthe end, this isn't much different from any CPU — at any
point in time, most instructions will yield a crash

-Thomas Dullien, Infiltrate 2012

http://titanium.immunityinc.com/infiltrate/archives/
Fundamentals_of_exploitation_revisited.pdf

Create account Log in

Article Talk Read Edit View history Q

e
Q

)
N

Y

\X/IKIPEDIA Weird machine

The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page In computer security, the weird machine is a computational artifact where
Contents additional code execution can happen outside the original specification of

Featured content the program.[! It is closely related to the concept of weird instructions,

Current events which are the building blocks of an exploit based on crafted input data.?!

Random article

Unintended
functionality,
I.e. the "weird

Normal, intended machine”

functionality

i

Expected, valid input Unexpected input

DOMAIN OF OFFENSIVE
COMPUTING

Universe of
weilrd states

Zd
4
y(
"

Normal, intended
functionality

Expected, valid input .
intended states

THE UNIVERSE OF KNOWN
"WEIRD STATES" EXPANDS

ROP, heap ov,

Stack
malloc vudo,
overflows, feng-shui
shellcode , e
-

NX/DEE ASIR. CFI

stack canaries %

METAPHOR FOR OFFENSE:
ALGEBRA

METAPHOR FOR OFFENSE:
ALGEBRA

¢ “M{}f}ﬁéﬁl ._a»wdls;;}-.
i)mH,MMJ@wJ‘

‘Mh—dl‘t&a,&;ﬁﬁvy’;}p’ b affe
Bl ooL!‘JMu@b&L,\&IWJ'
o etlple p a5 trle g i
ood [7 B AT/E WU$£JM
..u’ e red] fenl 1e2 v
uwwwaﬂefﬂ)’ .
. _.:La_),.eo

ou,n, L2 dee o5
(‘R Q\H:JJ.LJ! »

%}Zf MIL..»::)l/)

b%" {,)‘; “’L ‘. .’»L
,.Nlaj.ﬂ,’.yj_,,g Ui, |

Yoy oy

{ fwn"':wmﬁf*"“'m ‘
5
MWW’\’

| v g

METAPHOR FOR OFFENSE:
ALGEBRA

A'-‘:‘—U:‘MC-'“

J\J‘J\iu
4 a

ﬂéﬂ

Gﬁ JMJMIOLIL;.,M.»J»-Y‘
5 S8 it 4 rlis a5l ﬂ %
+ ethlers b Gy i ek ¥
- A U’_A.# '\JL{'/\JJ\)’ AR < (_'-\l __: Z’_’_;)
f | ..J, u_,(j_;al\j\)a‘dr dad Pal V\q,l
‘;gg 0__.:. M‘ 33@69@@&
t;’-, [‘wj "LZ.WM o \‘.__ VAN Ve
| R VOLT iescesh
| S5 (REERERRY
£ L“(;)Ségﬁ:iéLE }'aiQ BEOG GO (35 =t
: é b g"‘”“u LacPoyil W\ [VAV
z : whiwz.w,.:s gt@ @ C:) @ Qﬁ @ @ & C—,;p
m.c g *’»

[I [N
w&*"'&\ '\Q] o Sl i e v
_._J_

METAPHOR FOR OFFENSE:
ALGEBRA

. —btvb%—4dac

2a

SV 6

e AnRRRRER
N M J f\ A3
SR rUo AR RRA

Sy a@ BEE PSS @ O3

5—?-'«'

f,lf{

|
R i el Francois Viete
i A i B i e B

METAPHOR FOR OFFENSE:
ALGEBRA

Computation existed since forever

Algebraic notation abstracted it,
allowed us to represent & combine
"all formulas" 1in given variables

» "Art of calculation on symbols"

Some formulas don't make sense,
many can be ssmplified

Offense enumerates "variables", "formulas" Z=SBW e viers

and properties of weird states e
Francois Viete

METAPHOR FOR OFFENSE:
ALGEBRA

* Eftective detense needs to know &
represent all i1llegal state

» Compare with functional
programmers' mantra: "Make
tllegal state unrepresentable"

» Algebra 1s necessary (but not sufficient)
for automation of computations

* |t takes a lot more to automate
proofts, but it starts with algebra

Francois Viete

ABOUT PROOFS

“Jou WANT PRo0E? ['LL GIVE. YoU PROOE !

PROGRAM VERIFICATION

An Axiomatic Basis for
Computer Programming

C. A. R. HoARre
The Queen’s Unaiversity of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
a formal proof of a simple theorem is displayed. Finally, it is

argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

Volume 12 / Number 10 / October, 1969

Communications of the ACM

PROGRAM VERIFICATION

An Axiomatic Basis for
Computer Programming

C.A. Thus the practice of proving programs would seem to
The Q s . °
lead to solution of three of the most pressing problems in
nis, Software and programming, namely, reliability, documen-
tors ¢ tation, and compatibility. However, program proving, cer-
been tainly at present, will be difficult even for programmers of
wicn high caliber; and may be applicable only to quite simple
oo program designs. As in other areas, reliability can be pur-
"y chased only at the price of simplicity.
Volume 12 / Number 10 / Octobcrﬂ

Communications of the ACM

Precondition Code Result

D1 Rules of Consequence

If P{QIRand R D Sthen P{QI}S
If P{QIRand S D Pthen S{QIR

D2 Rule of Composition
If P{Qi}R, and Ry){Q:JR then P{(Q:; Q)}R

((r:

-3

10

11

z; q:=0); while

y<rdo (r:=r —y;

Formal proof
true Dz =z4+yX0

z=z4+yYyXQir:=zjg=r+yX0
z=r+y)<0|{q:=0}iz=r+y)(q
true‘{r ;= z}|z=r+y)(0

true||{r := z; q:=0}|z=r+y)(q
z=r+yYXgAy<rDz=

(r—v) + vy X (149)
z-(r—y)-{r—yx(l-{-q‘[r cu= r—ylz=
r+ y X (1+9)

z=r+yX (1+q]lg := 14qglfk =
r+yXyg

(r=y) + ¥y X (1+g)ir := r—y;

= l4gllz=r+yXg

z=r+yXgAy<r|lr:=r—y;
= 1tgllt=r+yXaq

z=r+y X qg|lwhile y<r do
(r := r—y; g := 1+9)}]

“y<rANz=r+yXg

x

oy

[N

trucl{((r i=z; q:=0); whiley < rdo

(ri=r—y; ¢g:=14+Q)}|v<rAz=

r+yXyq

g:=1+44q))

Justification
Lemma 1
DO

DO
D1 (1, 2)
D2 (4, 3)
Lemma 2

DO

DO

D2 @, 8)

D1 (6, 9)

D3 (10)

D2 (5, 11)

COMPOSITION IS WEIRD

D2 Rule of Composition
If P{Q,)R; and R){Q:JR then P{(Q:; Q)R

So you put together { Q1 ; Q2 }. How many programs did you

actually create?

Instruction Q3 Instruction Q4

HOW MUCH CAN PROVEN
CODE SURPRISE YOU?

Assume Q is proven correct, P{ Q } R

If P isn’t quite right, what will { Q } do to R?

P{Q}Rﬁ

HOW MUCH CAN PROVEN
CODE SURPRISE YOU?

Assume Q is proven correct, P{Q } R

If P isn’t quite right, what will { Q } do to R?

What can we make (Q compute
by varying inputs it wasn’t verified for?

ANY INPUT IS A PROGRAM

“Everything i1s an interpreter™
-Greg Morrisett

The illusion that your program is
manipulating its data 1s powerful.
But it 1s an illusion: The data s
controlling your program.

-Taylor Hornby (@DetuseSec)

WITH THE RIGHT INPUTS,
"TEVERYTHING" IS TURING-COMPLETE

% Your ld.so ELF loader/relocator is Turing-complete
¢ PE (LOCREATE, Uninformed 6:3), Mach-O are fun, too

% So is the DWARF exception handler helpfully linked into
your C/C++ program

% So is your xX86 MMU on x86 GDT + IDT +TSS + PTEs

% Good luck predicting effects of those inputs!

EXPLOITATION IS A PROGRAM
VERIFICATION TASK!

BY THANASSIS AVGERINOS, SANG KIL CHA, ALEXANDRE REBERT,
EDWARD J. SCHWARTZ, MAVERICK WOO, AND DAVID BRUMLEY

Automatic
Exploit
Generation

AEG is far from being solved. Scalabil-
ity will always be an open and inter-
esting problem. As of February 2013,
AEG tools typically scale to finding

buffer overflow exploits in programs
the size of common Linux utilities.

74 COMMUNICATIONS OF THE ACM FEBRUARY 2014 VOL.57 NO.2 ’

Our research team and others cast
AEG as a program-verification task
but with a twist (see the sidebar “His-
tory of AEG"). Traditional verification
takes a program and a specification of
safety as inputs and verifies the pro-
gram satisfies the safety specification.
The twist is we replace typical safety
properties with an “exploitability”

property, and the “verification” pro-
cess becomes one of finding a pro-

ram path where the exploitability
mm
fication framework ensures AEG tech-
niques are based on a firm theoretic
foundation. The verification-based
approach guarantees sound analysis,
and automatically generating an ex-

ploit provides proof that the reported
bug is security-critical.

- | - e g » fls - <
4 4] A
5 B % y y | .)
i ¥ y A | | 4
| y |) 4
N \ Vv 4 N | y
g \ it] aceei i
)
y N w——— O W Y O

4.

)—)—)—J—)-r-)-)-r-—)-;-»-)-»-'—“ :

(i m e

)-qk-_)-—)- Sy }--)-)-)—)---

Pl L XS

e Nty

Jacadn i ey

’ ’ - 7 ’ 7
. ariy - -
- -~ v, g . - J ” . 4
P ot - ~ .
- - o o R .
” - o~
~ ’ . e v Pt ’ ” 4 A g
- . 3 v . A - ‘ - 7 . /
v f - - - -y - -
7/
/ ’
’ / / / / AL ’
’ o > - ; J Y
> - ’ » > .
7 .
o s - & " f/a . -

Bl b aty b

Llndery

¥
’
v

—’w~,

P}-)-)-}-')-f-f—')"-')'-'}'-)-vr--}-—)-)—-}—"‘
R | kY

> T ,,.I:ﬁ',.,..._-v—- - --s---g-—-.,,,. ".'h‘..

o bbb pilhr s 5

-

)...)-}—)-)-v-)—-)-- 7

w

%

. -*; s .._“f i
7 Y
’J"; "thw‘
LN A A T A X 0
4 ‘1'0'. &:\\\ & ,,‘:‘ d
0 \/ Yy
3 }13‘}..3
»0,‘:.'; o
- /"",'5
G

W ,
‘' _“\\“\ ‘-‘ ' \

o

) s
/

AR

LE T PR~
AT fe b

) D =

é RIS AT T B f‘@-m:h S AR w28 € . R L - e -

EEREC ARNE N -5 — S S TS

3
b

®ln
—-'!-i P

|
/4

W

R anmal g drcroe pha)y T anee’ o(abq.

WHAT'S "WASSENAAR"?

(ARMS DEALER)

Credit: FX, “Information Security War Room”, invited talk USENIX Security 2014

WASSENAAR ARRANGEMENT

% Wassenaar Arrangement addendum was signed Dec. 2013
% An arms-control agreement (nuclear, chemical, ...)
¢ WA defines “entrusion software’.
¢ “./The modification of the standard execution path
of a program or process in order to allow the execution

of externally provided instructions...”

% Controls means of generating, developing, delivering,
communicating with "intrusion software'

"INTRUSION SOFTWARE"

§772.1 Definitions of terms as used in the Export Administration Regulations (EAR).

Intrusion software. (Cat4) “Software” “specially designed” or modified to avoid detection by

‘monitoring tools,” or to defeat ‘protective countermeasures,” ofa computer or network-capable
device, and performing any of the following:

(a) The extraction of data or mformation, from a computer or network-capable device, or the
modification of system or user data; or

(b) The modification of the standard execution path of a program or process in order to allow
the execution of externally provided mstructions.

Notes: 1. “Intrusion software” does not include any of the following:

a. Hypervisors, debuggers or Software Reverse Engineering (SRE) tools;

b. Digital Rights Management (DRM) “software”; or

WA TWO-TIER CONTROL

"generation", "development",
"communication"

Control Lists

"Intrusion software" (not controlled)

"malware samples", proot-ot-concept

Exceptions: "debuggers, RE tools, hypervisors"

WA TWO-TIER CONTROL

Fuzzers, frameworks, generators, AEG?
Compilers, instrumentation, analyzers?

"generation"”, "development",
"communication”

Control Lists

"Intrusion software" (not controlled)

"malware samples", proot-ot-concept

Exceptions: "debuggers, RE tools, hypervisors"

NEW IN BIS RULES:
"DEFAULT DENY"

world. Note that there is a policy of presumptive denial for items that have or support rootkit or

zero-day exploit capabilities. The governments of Australia, Canada, New Zealand or the United

BIS so tar did not define how "zero-day exploit" is
ditferent from just an "exploit"!

BIS so tar did not define "rootkit"

NEW IN BIS RULES:
"PROPRIETARY RESEARCH"

Scope of the New Entries
Systems, equipment, components and software specially designed for the generation,
operation or delivery of, or communication with, mtrusion software include network penetration

testing products that use mtrusion software to identify vulnerabilities of computers and network -

capable devices. Certain penetration testing products are currently classified as encryption items

due to their cryptographlc and/or cryptanalytlc functio nahty Technology for the development of

\ e S— = : o ——————
| infrusion soﬁware rncludes proprletary research on the vulnerab111t1es and exp101tat10n of '

i p
‘ | _computers. and network capable dewces The new entry on the CCL that would control ternet

NO CONVERSATIONS =>
NO RESEARCH

Q‘ c@ Association Connecting Electronics Industries

Industry | Knowledge Membership | Online Store

Deemed Exports

1. Deemed Exports 101: Exporting without crossing borders
2. Deemed Exports: Licenses for any controlled |IP that a foreign national employee may be able to access
3. Deemed Export FAQs for Items on the U.S. Munitions List — ltems Listed in ITAR
Revisions to ITAR impacting Deemed Exports
View IPC's comments on changes to ITAR impacting Deemed Export rules
4. Deemed Export FAQs for Iltems on the Commerce Control List — Iltems Listed in EAR

s —— e

‘ Deemed Exports 101: Exportmg W|thout crossing borders
|

| Employers must understand that even the slightest exposure of technology or information by a company to any \l
foreign national can trigger the deemed export rule and cause the company to violate U.S. export regulations. S ch a

e —————

release could cause criminal and civil penalties as well as ‘imprisonment for employees involved in the violation.

PuBLIC COMMENT:
THERE'S STILL TIME

* We have till July 20

* Please submit a comment on how this may or will
attect you!

* If you are not sure how, please contact me:
sergey(@cs.dartmouth.edu, @sergeybratus

mailto:sergey@cs.dartmouth.edu

CHILLING AUTOMATION

* We progress by writing programs that write programs

* Binary > Asm > Compilers > lTemplates > Analyzers
e

* Automating program analysis 1s rapidly developing

* SAT/SM'T solvers, abstract interpretation, symbolic
execution can & should become mainstream

* WA's generation & development clauses will chill
this path significantly

WHAT IS "ZERO-DAY"?

MOTION FOR A EUROPEAN PARLIAMENT RESOLUTION

on Human rights and technology: the impact of intrusion and surveillance systems on
human rights in third countries
(2014/2232(INI))

17. Calls for the development of policies to regulate the sales of zero-day exploits to avoid
their being used for cyber-attacks or unauthorized access to devices leading to human
rights violations;

"/ero-day" means new, novel. Eixploit means prootf.

In science, only "zero-day" results are worth pursuing

& publishing. All science 1s about ""zero-day'"!

EXPLOIT = EXPERIMENTAL EVIDENCE

H Dino A. Dai Zovi +%. Follow
Sy (dinodaizovi

A vulnerability is a theorem: a supposition
that a software flaw is a risk. An exploit is a
proof of that theorem. Proofs are important.

* In absence of hard evidence, hypothetical risks are
either ignored or everything is "critical" (= no priority)

» Exploit 1s evidence that a phenomenon 1s real, same
as a physical experiment in Physics, Chemistry; ...

* Would Physics or any technology succeed without
ubiquitous lab experiments?

THANK YOU!

