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Abstract. Supervisory Control and Data Acquisition (SCADA) systems are a lucrative
attack target due to physical impacts. A large percentage of these attacks are crafted
input attacks. Buffer overflows, a relatively common form of crafted input attacks, are
still common in SCADA systems and the Internet on the whole. Attackers can use such
vulnerabilities to take over SCADA systems or force them to crash using vulnerabilities
in software. These compromised devices could be used to issue SCADA commands to the
other devices on the network and perform malicious actions.
We present CVD, a novel SCADA forensics tool to help operators detect crafted input
attacks and monitor a SCADA substation for harmful actions. CVD includes various
Language-Theoretic Security-compliant parsers to ensure the syntactic validity of the
SCADA communication, hence detecting many crafted packet zero days. CVD detects
attacks triggered using legacy protocols widely used in SCADA networks such as Telnet,
Web interfaces, or DNP3 protocols. CVD also includes command-line tools, GUIs, and
tools to compare network traffic against various configuration files. To evaluate CVD, we
first ran our parsers on an extensive collection of valid packets for all the SCADA protocols
we support. Next, to ensure that our parsers were resilient to random data, we fuzz-tested
our parsers against AFL++ and python-fuzz. To ensure that our network interfaces are re-
silient, we fuzz-tested the TCP Server endpoints using fuzzotron. Last, we also constructed
various attack scenarios using malformed packets and invalid configurations and CVD was
able to detect and visualize these attacks successfully.

1 Introduction

Supervisory Control and Data Acquisition (SCADA) protocols are being used to
make the Power Grid smart and automated. In such a modernized grid, substations
are increasingly unstaffed and controlled from control centers via SCADA protocols
such as DNP3 and IEC 61850 MMS.

Such critical-infrastructure systems usually boast of an IT-OT air-gap—
physical separation of the critical infrastructure (OT) and IT systems using non-
routable interfaces and legacy hardware. However, this air-gap is disappearing,
given the need for remote access to control these devices [1].

? This material is based upon work supported by the United States Air Force and DARPA under Con-
tract No. FA8750-16-C-0179. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the United States
Air Force and DARPA.
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In recent times, this air-gap has not helped either. Attackers were able to
make centrifuges malfunction in the case of Stuxnet by taking control of PLCs [2].
These PLCs were attacked using multiple zero-day attacks using compromised
USB sticks. We had no prior knowledge of these vulnerabilities and held no sig-
natures of them. We also witnessed the use of such zero days in the Ukraine
power grid attack [3]. However, these zero-day attacks have one thing in com-
mon: they are mostly input-handling vulnerabilities such as stack- or heap-based
buffer-overflows [4].

Securing our SCADA Systems has been a challenge for various reasons. First,
since any communication received by a SCADA device can have a physical effect,
availability and timeliness are of paramount importance. The devices are usually
too constrained, and security schemes often fail to meet some of the real-time
guarantees required by Smart Grid networks [5].

Second, Anomaly and Intrusion detection schemes proposed for SCADA sys-
tems are either targeted at detecting anomalies using the physics of these systems
or using the communication patterns. Such schemes cannot detect crafted-input
attacks such as those used in the Ukraine attack or the Stuxnet attacks.

Hence, any forensic tool used to investigate cyberattacks must detect attacks
that use invalid communications. In SCADA systems, invalid communications can
stem from various causes. First, communications can exploit weaknesses in pro-
grams due to insufficient syntax checking. Programs often fail to implement
communication protocols correctly, leading to vulnerabilities. An attacker can ex-
ploit this vulnerability to crash the program or gain complete access to the device
running the program.

Second, forensic tools must detect syntactically valid but semantically in-
valid communications. For each device in a SCADA network, the SCADA op-
erator holds a specification document listing all the IP addresses and the endpoints
of that device. For protocols such as DNP3 and MMS, the device only supports a
specific set of requests known as setpoints. A SCADA operator holds specification
documents showing what setpoints each device supports. Communication violating
any of these network or setpoint configurations is semantically invalid.

Finally, forensic tools must also help detect communications triggered by
a malicious program or device, not a human. Differentiating between human
actions and a malicious program is a difficult problem. SCADA forensic tools
must provide visual feedback or confirmation on any human-triggered actions or
evil actions.

To address these challenges, we present CVD, a communications validity de-
tector. Our contributions are as follows:
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– Our CVD implementation detects malformed packets in a wide range of pro-
tocols. CVD detects any packet that does not conform to the protocol specifi-
cation, detecting potential zero-day attacks.

– CVD detects various Web-based, Telnet-based, and DNP3 actions that attack-
ers take. Although these protocols are known to be insecure, they are used
extensively in SCADA networks.

– CVD can detect various configuration and communication mismatches within
a Smart Grid substation.

– With CVD, we propose a new forensics paradigm to permanently place our
CVD devices in substations and control centers to monitor traffic and detect
attacks early.

The paper is organized as follows. Section II introduces the required background
and related work for the paper. Section III introduces the design of CVD. We
evaluate CVD in Section IV using various datasets and fuzzers. We discuss lessons
learned from building and evaluating CVD in Section V. Section VI concludes the
paper.

2 Background and Related Work

2.1 SCADA Systems

Supervisory Control and Data Acquisition (SCADA) systems are deeply embedded
in critical infrastructure systems [6]. SCADA systems are used to automate several
critical infrastructures such as railways, aircrafts, nuclear powerplants, power grids,
water plants, and oil refineries.

SCADA systems in the electric grid comprise two components: control centers
and substations. Substations usually span large geographic areas, and many sub-
stations communicate with a single control center. A control center includes Real-
Time Automation Controllers (RTAC), Human Machine Interfaces (HMIs), and
Master Technical Units (MTUs). In contrast, substations include Intelligent Elec-
tronic Devices (IEDs), relays, Remote Terminal Units (RTUs), and Programmable
Logic Controllers (PLCs). These devices have physical impacts and can open or
close circuits.

Devices in substations such as PLCs and RTUs communicate with the HMI
and RTAC in the control center. The control center aggregates various data such
as phasor information and the state of all the relays in the substation. Operators
use HMIs to send commands to various relays via the RTUs.

SCADA systems use several communication protocols for various purposes.
This paper focuses on Distributed Network Protocol 3 (DNP3), IEC 61850 Man-
ufacturing Message Specification (MMS), IEEE C37.118, SEL Fast Message, and
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SES92. Of these protocols, DNP3, MMS, and SES92 can be used interchangeably
to poll RTUs and send commands from HMIs.

C37.118 and SEL Fast Message are used to send phasor measurements from
phasor measurement units (PMUs) to phasor data concentrators (PDCs). Phasor
measurements are useful for estimating a power system’s state, detecting wide-area
power events, or monitoring power flows. Some stations use dedicated PMUs and
PDCs, but often these features are included in relays.

SCADA systems or Operational Technology (OT) Networks have some char-
acteristics that are distinct from Information Technology (IT) networks [7]. First,
OT networks are hard real-time [4]. Any packets received after a deadline are use-
less and can have adverse effects on a power system’s state. For example, in IEC
61850 GOOSE protocol, this deadline to receive packets is set at 4 ms. Any packets
received beyond this deadline are ignored.

Furthermore, off-site devices in substations are often not touched for several
years at a time. These devices operate for decades. Most of these devices run
real-time operating systems (RTOS). Such operating systems handle memory dif-
ferently than conventional operating systems—memory is often not separated be-
tween kernel and user memory. This feature in RTOSs makes them a prime target
for buffer overflow attacks.

Some SCADA devices do not support any IP-based protocols but support serial
connections. Using IP-based sniffers from routers and switches are mostly ineffec-
tive due to this. Also, most attacks targeting IT systems exploit various features
of IP-based protocol stacks. These devices are inert to such attacks but are still
prone to buffer-overflow or crafted packet attacks.

Finally, most of these SCADA protocols do not support encryption. Even if the
specification specifies encryption protocols, they are left unutilized since encryption
adds latency. These SCADA protocols also mostly do not support authentication
mechanisms. Devices can be easily spoofed.

2.2 Attacks on SCADA Networks

For a long time, SCADA networks used proprietary protocols and devices that
were air-gapped away from companies’ other components. Today, this air-gap is
slowly disappearing with corporate and cloud networks used to control SCADA
networks.3 Without the air-gap, attackers can find easier ways to make their way
into SCADA networks.

Attackers did precisely this in Ukraine in 2015 and 2016 [3]. Hackers sent spear-
fishing emails with malicious Word documents to grid operators. These hackers
could now observe the operators’ actions and collected virtual private network

3 https://www.infosecurity-magazine.com/infosec/air-gap-between-it-and-ot-1-1-1-1/
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(VPN) credentials to access the SCADA network. Attackers took several substa-
tions offline by opening several relays remotely.

One of the earliest recorded attacks on a SCADA system was in 1982 [8]. A
trans-Siberian gas pipeline used software that included a trojan horse. This mal-
ware was executed when the pipeline operators were conducting a routine pressure
test on the pipeline. The malware increased the pressure in the pipeline, causing
an explosion.

In 2017, a Saudi Arabian Oil and Gas company suffered a cyberattack that
used the TRITON malware [9]. In a similar fashion to the Ukraine attack, attackers
jumped from the IT network to the OT network to infect engineering workstations.
This malware reprogrammed the Triconex Safety Instrumentation System leading
to an automatic shutdown. Stuxnet, in contrast, entered an air-gapped OT network
using infected USB drives [10]. In 2010, it was reported that Stuxnet ruined almost
one-fifth of Iran’s centrifuges. Stuxnet injected a rootkit into a Siemens PLC that
would send unexpected commands to the centrifuges while reporting typical values
back to users.

Apart from these large scale attacks carried out on various critical infrastruc-
ture, researchers have discovered several vulnerabilities that could have been ex-
ploited by attackers. For example, Lee et al. [11] demonstrated several simulated
attacks on DNP3 systems. Sistrunk and Crain also found several issues in DNP3
vendor implementations [12].

Buffer overflow weaknesses are widely prevalent in SCADA systems [4]. Apart
from the buffer overflows Sistrunk and Crain found, researchers also found heap-
based buffer overflows in the WellinTech KingView servers widely used in China.
In 2020, Triangle Microworks [13] reported buffer overflows in their DNP3 library
that could be exploited using crafted packets. Any forensic tool must be able to
detect and log such crafted packet attempts.

2.3 Language-Theoretic Security

Language-Theoretic Security (LangSec) is a programming paradigm stating that
all input to be received by a program must be treated as a formal language, such
as a context-free grammar or a regular grammar. And, any input received must be
validated by a recognizer for the formal language before being acted on.

Most protocol specifications include long pages of verbose text and no machine-
readable grammar. Developers need to read through the entire specification and
implement code that conforms to this grammar. Developers often leave certain fea-
tures unimplemented or do not implement features correctly. For example, a stack-
overflow bug was found recently in the Triangle Microworks DNP3 library [13]. The
CVE description of this bug acknowledges that it was due to “poor validation of
user-supplied data.”
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To follow the LangSec methodology, we convert the protocol specifications to
a formal grammar. We then use a parser-combinator toolkit such as Hammer [14]
to implement the parser for the grammar. Parser combinators make it easy to
implement these grammars within a programming language.

Several attempts have been made to implement parsers for various SCADA
protocols. First, Bratus et al. [15] implemented a parser for the DNP3 protocol.
They found that the Hammer toolkit constructs were insufficient to implement the
protocol and had to add additional constructs. This DNP3 parser is a part of the
CVD now.

Similarly, Anantharaman et al. [16] implemented PhasorSec, a tool to filter in-
valid and malformed IEEE C37.118 packets using a LangSec parser. We have incor-
porated this parser in CVD with a caveat: that the parser only detects anomalous
traffic, and does not perform filtering. When we detect malformed packets, we only
send alerts since availability is of paramount importance. If a packet gets filtered
as a false negative, and causing the SCADA device to not perform a time-critical
task, the consequences can be devastating.

Millian et al. [17] demonstrated how an entire power grid utility network could
be converted to use LangSec-compliant protocol implementations. They explored
the steps it would take to include LangSec filters, i.e., software that would not
allow any malformed traffic through. In contrast with that work, given the risk of
false negatives, we employ a technique to allow all traffic through, and alert users
on any malformed input.

2.4 SCADA Forensics

After a cyberattack occurs, investigators use various forensic tools to gather evi-
dence to retrace the steps of the attackers and to prevent such attacks in the future.
Wright et al. [18] proposed a model to investigate cyberattacks against SCADA
systems. Their model included four sequential steps: an examination of various
evidence sources, identification of an attack, collection of evidence, and documen-
tation of evidence. CVD follows these stages of forensic analysis. It gathers evidence
from network packets and identifies packets that violate specifications that could
be crafted packets. CVD then logs these evidences in locally kept databases.

Valli et al. [19] proposed a framework to create Snort signatures for various
known vulnerabilities. They examined multiple vulnerabilities in SCADA protocols
such as DNP3 and Modbus to create these signatures. They re-created the attacks
in a test environment and built a system to generate Snort rules from packet
captures. CVD differs from this framework in terms of approach: we do not create
rules for previously known attacks. Instead, we develop parsers for various SCADA
protocols that would validate all input in the network.
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Ahmed et al. [20] discuss various challenges in investigating SCADA cyberat-
tacks. First, they point out that operators would rather keep the SCADA system
online than turn it off for evidence gathering; SCADA systems need live forensics
tools [21,22]. Second, intrusion detection tools based on prior data or a set of rules
may be too strict for forensic tools. A forensics gathering tool may set off several
false alarms. Third, substation devices are often too resource-constrained. Storing
forensic data on these devices may not be an option.

CVD addresses these challenges in forensic tools in various ways. First, CVD
connects to a live network tap interface. The router or switch duplicates all network
traffic and sends them to the tap interface. CVD then exhaustively validates the
packets. Second, since CVD runs its analysis, it ignores packets it creates, reduc-
ing false alarms. Finally, CVD includes a PostgreSQL database to store forensics
locally.

2.5 Anomaly Detection

Anomaly detection techniques are usually specification-based [23], signature-based,
or learning-based [24, 25]. Signature-based approaches look for packets that seem
to be replicating a known attack [26]. In learning-based techniques, there is a
learning phase where the system learns what routine operation or an abnormal
operation is. And later, the system uses this learned data to decide if an operation
is malicious.

We can use these anomaly detection techniques in conjunction with CVD to
gather more forensic data. Although such methods are useful in identifying fuzzing
attacks, they are not effective against a wide range of zero-days, i.e., protection
against future attacks we have not seen before. CVD can detect attacks that we
have not seen earlier while still enabling detecting malicious SCADA commands.

CVD can also be used in conjunction with various Device Fingerprinting tech-
niques such as [27], to prevent forgery attacks. Similarly, Physics-based defenses
such as [28] could be used in conjunction with CVD. CVD does not fingerprint de-
vices, nor does it look at the underlying physics of these SCADA devices; instead,
it focuses on SCADA network protocols.

Berthier et al. [23] use specification-based intrusion detection, where they spec-
ify what the security properties of the network are of the transport layer, network
layer, as well as the application layer. They demonstrate their technique on me-
tering infrastructure protocols. Hong et al. [29] combine host- and network-based
intrusion detection to get better coverage. Neither of these techniques can capture
zero-day attacks such as crafted packets.

EDMAND [30] categorizes smart grid network traffic into three categories:
transport, operations, and content. They then go on to build multi-level anomaly
detection frameworks. Our technique uses some techniques similar to EDMAND
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while differing in the core approach. EDMAND relies on the IDS tool, Zeek (for-
merly Bro), to provide attack alerts, whereas we built LangSec-compliant parsers
to detect attacks. The attacks our parsers detect are significantly different from
the ones Zeek can detect.

We wish to highlight that Zeek is an IDS that should be used in conjunction
with CVD. Zeek can detect brute-force attacks and SQL injection attacks, but
CVD employs a vastly different set of detectors and is designed to detect miscon-
figurations and crafted input attacks specifically for power protocols.

3 System Design

To build a useful forensic gathering tool for SCADA networks, we set the following
technical goals for CVD:

– Live Forensics: CVD devices must be connected to SCADA traffic to continu-
ously monitor and collect forensic information. In case there are any suspicious
actions in a network, operators can view CVD’s insights.

– Detecting syntactically invalid messages: CVD must detect messages that
violate protocol specifications.

– Detecting semantically incorrect packets: Based on SCADA operator con-
figuration files, CVD must detect communication flows violations.

– Help in detecting non-human-triggered actions: Most critical SCADA
actions with physical effects such as opening or closing breakers and relays
are human-triggered. If a compromised device communicates these SCADA
commands over the network, CVD must detect and visualize all SCADA actions
with physical effects.

To ensure that CVD is a tool that is extensible and usable, we set the following
design goals for CVD:

– Adaptive. We must not depend on existing attack scenarios and heuristics,
but be able to detect crafted packet attacks. Since zero-day attacks exploit
patterns and vulnerabilities that we have never seen earlier, we do not want
to rely on previously seen patterns but instead, use the LangSec paradigm to
detect new attacks.

– Scalable. We need to support a wide range of Smart Grid protocols with an
easy API to support future protocols. CVD detects syntactically malformed
packets for protocols we implement. CVD must hold a flexible architecture so
that in case a SCADA network supports protocols we do not support, develop-
ers can add parsers for this protocol with minimal effort.

– Distributed. Given that there is a large amount of data generated in every
substation, we want to perform as much analysis as possible within the same
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substation. In the control center, we only want to perform certain aggregated
operations. This goal is vital to not add too much network overhead to the
SCADA network due to our CVD devices.

– Usable. It must be able to provide alerts in a usable and visual way while not
overwhelming users with information.

CVD Master

CVD Minion

CVD MinionRelay

IED
Substation

Substation

Control Center

HMI

PLC

RTU

Fig. 1. CVD Minions are connected to the routers within the substation, and collect traffic from two
interfaces. Whereas, the CVD Master is present in the Control Center. The shaded boxes show our CVD
devices.

3.1 Design

To realize our design goals, CVD uses various techniques. First, CVD uses a com-
prehensive set of Language-Theoretic Security-compliant parsers for different pro-
tocols commonly used in Smart Grid substations. Some of the protocols that CVD
includes parsers for are DNP3, IEC 61850, and IEEE C37.118. Our parsers are
adaptive, not relying on previous attack samples to detect crafted input attacks.
We will discuss these parsers in more detail in Section 3.5.

Second, CVD uses a producer-consumer model within each implementation.
This design using Apache Kafka makes CVD scalable. Any future protocol addi-
tions only require adding consumers. The producers extract the payload portions
of the packets and broadcast them to all the consumers simultaneously.

Third, CVD uses a distributed master–minion system, where the CVD min-
ions are placed in every substation, whereas the CVD master is present in a
control center. This design is shown in Figure 1. The CVD master performs only
data aggregation and correlation, whereas the data collection and our parser checks
happen in the minions.
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Finally, CVD includes strong visual components in terms of various Web UIs
and a command-line interface. The Web UIs present Smart Grid operators with
multiple alerts and a visual representation of specific traffic, which gives operators
an ability to monitor the network for traffic that may be well-formed but not sent
by the operators. For example, attackers could then use a particular relay device
compromised via a side-channel attack to send DNP3 commands to other breakers.
Operators can easily detect such attacks via our visual component that displays
various DNP3 protocol actions.

3.2 Continuous Data Collection and Monitoring Paradigm

Apache Kaa 
Broker

Postgresql 
Database

Flask Rest 
API

Producer:  
Network Capture

Consumer:
DNP3 Parser

Consumer: DNP3 
Setpoint Monitor

Consumer: 
GOOSE Parser

Consumer: 
MMS Parser

Consumer: 
SELFAST Parser

Consumer: 
C37.118 Parser

Consumer: 
SES92 Parser

Parsers

Consumer: 
Language Trolls

Consumer: 
Ping Monitor Command Line

Interface

Consumer: 
Flight Recorder

Consumer: SSL 
Certificates

Fig. 2. Overall Architecture of the CVD Minion. The producers process network packets and forward
them to various consumers via the Apache Kafka Broker. The various consumers perform their analysis
and store the results in a PostgreSQL database. Operators can consume information from the PostgreSQL
database via interactive Web UIs or a command-line interface.

CVD proposes a novel paradigm of continuous data collection and monitoring.
Most forensic investigation tools are only deployed after a bulk of the attackers’
actions are complete. We deploy CVD in SCADA networks to continuously monitor
network traffic. In case of a suspicion of a cyberattack, operators can retrace the
attackers’ steps using the CVD database.

We require a live network tap interface that can be created by duplicating all the
traffic going through a router. CVD processes all the packets the router forwards
asynchronously, generating alerts on all suspicious packets. We continuously push
these alerts to our databases along with all network traffic metadata observed.
This paradigm of leaving CVD connected to a SCADA network tap before any



CVD: A Communications Validity Detector for SCADA Networks 11

cyberattack to aid in forensics allows operators to reproduce the steps taken by
attackers rapidly.

3.3 Distributed Data Collection

As seen in Figure 1, data is collected by CVD Minions present in every substation.
These minions collect and store data within the substation, as well as across them.
This data can include mostly various SCADA commands, but could also include
other routing behavior such as ARP, NTP, and DNS.

Since the CVD Minion and Master are also a part of the substation networks,
network traffic originates from these devices as well. However, this data does not
contribute to any forensics gathered by our parsers since we whitelist all traffic
originating from CVD.

3.4 CVD Minion Publish-Subscribe Model

One of the goals of CVD is to run the same packet received from the network,
through our various LangSec parsers in parallel to check if the packet conforms to
any of those packets. To do this, we adopt the publish-subscribe model.

We show this model in Figure 2. In this model, we have producers that capture
network traffic on various interfaces and send them to the Apache Kafka Broker.
The Kafka Broker then broadcasts it to all the consumers, that then decide what
to do with these packets. We chose the publish-subscribe model since it gives us
the flexibility to add future protocols and other analyzers easily without much
effort.

Producers. We designed our Kafka producers to accept input in two formats.
They can take packet capture files or attach to live network interfaces. In either
case, our producers read each packet, and convert them to a string and then
send them over to all the consumers. They do not do any pre-processing since each
consumer analyzes the packet at a different layer of the protocol stack.

Consumers. Our Kafka consumers receive all the packets from the producers
and process them in various ways. In this section, we describe the various con-
sumers present in CVD. As seen in Figure 2, all our consumers store the results of
their analysis in the PostgreSQL Database.

3.5 Detecting Syntactically Invalid Packets

We implemented LangSec-compliant parsers for the protocols shown in Table 1.
To build these parsers, we purchased or procured the specifications of all SCADA
protocols of interest. After carefully reading these specifications, we extracted the
protocol state machine and the message formats in these protocols.
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The protocol state machines specify what the correct sequences of packets must
be and what sequences are prohibited. In contrast, message formats determine
how a packet conforming to a specific protocol must look like. We converted these
message formats to formal grammars.

IECGoosePdu = h.sequence(gocbRef ,

timeAllowedToLive ,

datSet ,

goID ,

T,

stNum ,

sqNum ,

simulation ,

confRev ,

ndsCom ,

numDatSetEntries ,

allData)

Fig. 3. Code showing a portion of our IEC 61850 GOOSE parser. h.sequence() is a function provided
by the Hammer parser-combinator toolkit.

We use parser-combinators to convert these formal grammars to code. Parser-
combinators such as Hammer allow us to write parsers in code. As seen in the
code snippet Figure 3, the parser-combinators help us write parsers that visually
resemble the formal grammar.

Our LangSec-compliant parsers detect packets that violate the formal specifi-
cations of a protocol. Although we cannot find or see specific semantic bugs, where
well-formed packets crash the application, state-of-the-art fuzzers should find such
semantic bugs. Our parsers or syntax validators cannot detect other types of at-
tacks. However, based on our prior research, most new zero-days discovered are
crafted input attacks such as buffer overflows that we prevent [31].

Our parsers are Kafka consumers that accept a raw byte string. We run our
parsers on this byte string and decide whether the packet is safe or not. Often,
packets may conform to protocols we are yet to support. Based on the packet
metadata (first two bytes of the payload and the Ethernet frame), we first shortlist
packets to check if it may conform to a protocol we support.

These consumers run on Docker containers to ensure functional separation. Our
parsers would return a parsed object if the parse were successful or NULL if the parse
failed. The parsed object is essentially an abstract syntax tree (AST). Our parser
interacts with the AST to store various information. Based on data extracted by
our parsers, we keep all instances of failed parses due to malformed packets in our
CVD database. After ascertaining if a particular packet is making any setpoint
changes, we store these new setpoint values in our local CVD database.
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Table 1. Various parsers included in CVD. The other LangSec parsers will also be made available soon.

Protocol Language Code Availability

DNP3 C/C++ Yes [15]
C37.118 C/C++ Yes [16]
SES92 C/C++ Not yet

GOOSE Python Not yet
MMS Python Not yet

SEL Fast Message Python Not yet

3.6 Setpoint Monitors

Operators of SCADA devices control the devices using HMIs. The HMI communi-
cates with the SCADA devices using one of the many SCADA protocols, triggering
setpoint changes.

Our setpoint monitoring consumer records these setpoints transmitted over
HTTP as well as DNP3 to these devices. Along with the setpoints and values, it also
stores the source and destination MAC addresses, IP addresses, and ports. This
consumer adds these records to the database, and these setpoints our visualized
in our timeline, shown in Figure 7.

3.7 Detecting Semantically Incorrect Packets

SCADA operators usually hold various configuration files. These files specify a
setpoint mapping from point numbers to a human-readable format. Configuration
files also specify IP addresses and MAC addresses of all devices on the SCADA
network. To ensure high availability, SCADA operators do not strictly enforce
these configurations on routers and switches filtering traffic.

We tap into these configuration files in the setup process of CVD. Operators
upload these files using CVD’s web UI. Once CVD stores these configurations in the
database, we use the configurations in our consumers to make semantic decisions.
If these configurations change during the SCADA network’s routine operation,
CVD allows operators to modify details on the UI manually or re-upload a new
file.

CVD detects two semantic violations. First, CVD can find devices that generate
network traffic but are not present in network configurations. These devices could
be rogue devices introduced by adversaries. Adversarial code on devices can also
change their network interfaces so that CVD detects it as a new device. We check
the IP address and MAC address of each device on our network.

Second, CVD detects setpoint communications that violate the setpoint map-
pings. Each SCADA device has a fixed list of points configured and the type of
communication (such as digital or analog). Our parsers extract the setpoint infor-
mation. For each setpoint, we check the configuration files to ensure the setpoint
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was valid. We log any violations as semantic violations and alert the user. Such
misconfigurations can be the result of malicious code on devices or human error.
We aid operators in detecting such semantic error conditions.

Network 
Packets

Setpoint 
Configuration 

Files

CVD's Configuration 
Mismatch Detector

Network 
Configuration

Files

New devices not
in configurations

Setpoint changes 
not in 

configurations

Fig. 4. CVD’s Configuration Mismatch Detector. This module consumes network packets, configuration
files, and setpoint configuration files, and files various mismatches in these files.

3.8 User Interfaces

Flask-based Web UI. One of the most critical abilities in a SCADA forensic
tool is to visualize various actions while also logging them. CVD includes a robust
visual component to aid operators in detecting problems within their network. We
built a Python Flask-based UI to enable operators to perform various actions.

First, we aid operators in setting up CVD for their network. Users can upload
various network and setpoint configuration files to CVD from this UI. Once oper-
ators start capturing traffic using CVD, we seamlessly use these configuration files
to provide more insight to operators on misconfigurations or missing devices.

Second, we provide a timeline interface for operators to check their DNP3
actions. Although most DNP3 operations are automated, some critical functions
such as OPERATE, DIRECT-OPERATE, and WRITE are human-triggered. Op-
erators can continuously monitor these visuals to ensure that all critical functions
were initiated by them and not a malicious program in the network. Likewise,
operators can also monitor network interface visuals to check if any device hasn’t
communicated in some time or unidentified devices.

Finally, we demonstrate the overall state of a crank path using one-line dia-
grams. Using various codes, we denote whether substations are clean and have
CVD running on them. Such a UI that runs on CVD Master provides a single
place to monitor CVD instances running on various devices. Operators can pin-
point network issues and CVD issues in one location.

Command-Line Interface. To enable users to use CVD’s various function-
alities, we built two interfaces. Our command-line toolkit allows users to initialize
CVD and specify a live capture network interface to run CVD. We run packets
from that interface through all our producers and consumers. Our command-line
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interface also supports restarting individual producers and consumers. We support
various commands to query multiple portions of the database, such as setpoints,
telnet commands, and malformed packets for any protocol. Table 2 shows some of
the commands supported by CVD.

Command Feature

map Starts CVD against a packet capture file or a network interface.

dnppoints Prints the DNP3 setpoints observed. This command has several
options to query the database based on various timeframes and
to query the database for only certain types of DNP3 packets
such as OPERATE or DIRECT-OPERATE commands.

cmds Prints the Telnet commands observed using CVD. Often, cy-
berattacks originate using Telnet interfaces on various SCADA
devices.

malformed Prints the malformed packets observed across all protocols. Pro-
vides an overall summary or protocol-specific summary with the
bytes observed in protocols.

flows All TCP and UDP connection within the substation, entering
the substation, and leaving the substation.

layer2 MAC addresses of all the devices observed.

certs Any SSL certificates observed.

roles CVD inferred roles for devices on SCADA network. Based on
communication patterns and MAC addresses we infer the func-
tion of various devices.

stop Stop CVD and stop all the producers and consumers launched
via CVD.

Table 2. A non-exhaustive list of CVD commands supported by the command-line interface.

4 Evaluation

To evaluate CVD, we try to answer the following questions:

– Are the LangSec parsers CVD implements correct?

– Are the LangSec parsers in CVD resilient to fuzzers?

– Are CVD’s network interfaces resilient to fuzzers?

– Can CVD detect crafted packet attacks for various protocols?

– Can CVD handle the high rate of traffic in SCADA networks?

– Can CVD visualize various human actions?

We ran our experiments on an Intel Xeon E31245 3.30 GHz processor with four
cores and 16GB RAM. We used Apache Kafka version 0.10 and Hammer toolkit
version 1.0-rc3.
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4.1 Running our LangSec parsers through a large dataset

To ensure that our LangSec parsers cover a wide range of features in various
SCADA protocols, we ran data collected from a SCADA tested through our
parsers. Apart from running live network captures, CVD can also replay and pro-
cess previously captured packet captures (PCAP files).

Dataset. We used a dataset provided by Yardley et al. [32]. They collected
data from 20 substations and three control centers. These substations and control
centers were not provided by an actual industry utility, but they were otherwise
realistic, simplified physical substations with both SCADA communications and
power equipment in a field-deployed testbed. These were experimental substations
spread over two square miles representing three independent crankpaths and fed
by three generators connected by real overhead and underground wires. There were
also high-voltage substations handling electricity at 13 kV.

Table 3. Our parser correctness experiments. We ran our parsers through a large dataset of SCADA
traffic provided by Yardley et al. [32].

Protocol Number of Packets parsed Total number of Percentage of packets
Substations Successfully packets correctly parsed

DNP3 25 1888861 2007277 94.5%
MMS 1 35635 36262 98.2%
C37.118 2 1619479 1619582 99.9%
GOOSE 1 4501 4511 99.7%
SEL Fast Message 1 45802 46737 98.1%
SES-92 2 488147 503244 97%

Each substation included at least four relays and an RTU. The three control
centers had RTACs and HMIs. These devices were from at least four different
manufacturers. Our dataset includes five hours of traffic. Although most of these
substations and control centers ran DNP3, each of the following protocols—SES-92,
SEL Fast Message, IEEE C37.118, IEC 61850 GOOSE, and IEC 61850 MMS—was
running in one substation each.

The results of our experiment are in Table 3. Our parsers ran with a mini-
mum accuracy of 94%, and most parsers had an accuracy of at least 98%. Our
experiments demonstrate that our parsers cover an extensive feature set of these
SCADA protocols successfully. Many practical DNP3 implementations support
experimental and error-prone features that we are yet to support.

4.2 Fuzzing our parsers

Fuzzing SCADA devices can lead to crashes and denial-of-service attacks if the
parsers are vulnerable [33]. As explained in Section III-D, CVD includes a set of
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LangSec parsers to ensure the syntactic validity of the SCADA network packets.
Since CVD is designed to detect crafted-packet attacks for SCADA protocols, we
want to ensure that fuzzing approaches do not crash CVD itself. Fuzzing CVD
serves two primary purposes: (i) Parser resilience: ensuring that our parsers do not
crash on any input—well-formed, malformed, or random, (ii) Network resilience:
testing the network interfaces of our consumers to check if they can handle the
high volume of traffic in SCADA networks.

Table 4. Results of our fuzzing experiment with our LangSec parsers.

Parser Resilience

Protocol Number of Unique Crashes Hangs
packets paths

DNP3 3.62 Million 623 0 0
SES92 637 Million 6 0 0

C37.118 112 Million 5 0 0
GOOSE 1.2 Million 254 0 0

MMS 2.2 Million 13 0 0
SEL Fast 1 Million 6 0 0

Parser Resilience. We fuzzed our C/C++ parsers using AFL++ [34] and our
python parsers using Python Fuzz [35]; both coverage-guided fuzzers. To create a
fuzzing target for AFL++, we created additional C files called our parsers while
supporting the fuzzing tools. AFL++ requires us to compile the program with
instrumentation using an afl-cc compiler. We then run afl-fuzz on the binaries
generated with a seed folder. We created a corpus of valid packets for our seed.

Our fuzzing results are in Table 4 and Figure 5. We ran each of our fuzzers
for 48 hours. None of our fuzzing executions led to any crashes or unresponsive
parsers. Each of our python-fuzz targets ran at least one million permutations
through our parser targets. In comparison, our AFL++ targets ran a minimum of
three million executions through our parsers.

Table 5. Results of our fuzzing experiment with our LangSec parser network interfaces. We fuzzed our
interfaces using fuzzotron while setting a maximum limit on number of tries.

Network Resilience

Protocol Number of Crashes
connections

DNP3 900000 120
SES92 900000 6

C37.118 900000 0
GOOSE 900000 0

MMS 900000 0
SEL Fast 900000 5
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Fig. 5. Fuzzing our SES-92 parser using AFL++.

Network resilience. We implemented all our CVD parsers as Apache Kafka
consumers. These consumers receive raw bytes from the producers that they parse
and decide if they are safe or no. Since our parsers also include network interfaces,
we fuzzed our parsers using fuzzotron [36]. This fuzzing exercise aims to see if our
network interfaces are resilient, and they can withstand several connections and
drops in connections every second.

We specify what ports each CVD consumer uses and then run fuzzotron tar-
geting those ports. Fuzzotron creates and drops connections to these ports, often
violating the TCP state machine. Once the connections are established, fuzzotron
also communicates random bytes on the open TCP ports.

Table 5 shows the total number of connections attempted to the CVD con-
sumer by fuzzotron. Using fuzzotron, we detect the number of network timeouts
or crashes. We found that three of our consumers encountered no timeouts or
crashes, whereas with the other three consumers, at most 0.1% of the packets
caused crashes. We observed that we could not reproduce any of these crashes;
most of these were introduced due to heavy network loads.

4.3 CVD versus Crafted Packets

To test CVD against crafted packets, we collected malformed DNP3 packets from
the Aegis fuzzer [37]. Our sample consisted of 198 malformed DNP3 packets that
were generated by mutating well-formed DNP3 packets. These malformed packets
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used some of the DNP3 vulnerabilities identified by Crain and Sistrunk [12]. Most
of these vulnerabilities were structural or syntactic vulnerabilities.

Since Aegis only supports Modbus and DNP3, we mutated well-formed packets
for SEL Fast Message, GOOSE, MMS, IEEE C37.118, and SES92 protocols. We
generated 198 packets for each of these protocols. We mutated packets so that they
mostly conform to the protocol but violate the specification in specific locations.

We fed these generated packets to our CVD producers, which passed on these
packets to the respective CVD consumers. We found that CVD was able to detect
all the mutated packets as malformed. Also, none of these malformed packets led
to any crashes on any of CVD’s parsers.

4.4 Performance of CVD

Fig. 6. Most of our parsers show that the amount of time is mostly constant, with minor variations.
These times are in the order of micro-seconds for C37.118, MMS, and GOOSE, whereas our DNP3 and
SES92 parsers took in the order of milliseconds to run and decide the validity of packets.

To measure our various CVD parsers’ performance, we wanted to measure the
time it takes for our different parsers to decide whether a packet is well-formed or
malformed. We used the same corpus as in Section 4.1.
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The results of the above experiment are summarized in Figure 6. We see that
our parsers take in the order of milliseconds to decide the safety of packets. We
also found that the time taken does not directly depend on the size of packets.
There was an added latency due to the publish-subscribe model as well.

We also found that our python-based parsers performed far superior to our C
implementations. In CVD, even in our C implementations, we used some Python
code to ensure seamless interoperability across all the containers. We found that
this feature added additional latency.

4.5 CVD’s Visualization Capabilities

Fig. 7. CVD’s Web UI displaying the DNP3 Write operations captured within a ten minute window.

One of CVD’s core features is an added visual component so operators can
confirm user actions. To validate our various UIs, we constructed several scenarios.
We created network configurations for our test network with three relays, two
RTUs, and one RTAC from three different manufacturers. This network was a
SCADA-only network. Our relays were not controlling any live power settings.

We removed various devices from our network configuration and ran CVD on
the network. We found that CVD was successfully able to detect network devices
not present in the configuration. Our network configuration mismatch analyzer
triggered alerts to alert the user with the network diagram in Figure 8.

Next, to evaluate our DNP3 timeline UI, we crafted a scenario where a malicious
program injected various DNP3 WRITE commands in the network. Operators
must monitor our DNP3 timeline to ensure no malicious WRITE or OPERATE
commands enter the network. Only users can trigger these commands.

When we injected DNP3 WRITE commands and ran CVD, we found that
CVD generated various alerts and generated the timeline UI in Figure timeline. If
an operator notices the timeline UI in such a state, it could imply that one of the
network devices could be sending malicious commands.



CVD: A Communications Validity Detector for SCADA Networks 21

Fig. 8. CVD’s network UI. Devices not identified are shown in red.

5 Discussion

Overwhelming operators and users with alerts can always mean that a large chunk
of them are false positives. CVD filters packets to decide if they match the headers
of a specific protocol and then run the parser on the packet. In case the parser
fails, we log this result. This approach is effective for most protocols, but it proved
challenging for SES-92 and SEL Fast Message protocols.

Both these protocols do not start with a fixed set of bytes designated to be the
header. Instead, we need to run our parsers to decide if the packets conform to
one of the two protocols. Although our parser may detect several crafted packet
attacks for these two protocols, we may also miss several packets.

Let us suppose we run a single packet through DNP3, SES-92, and MMS, for
example. Should we log this packet as an invalid SES-92 packet when the header
does not match MMS and DNP3, and also our SES-92 parser cannot successfully
parse this packet? This packet could be any protocol such as DNS or NTP that
we have not written a parser for.

In this paper, we depended on the Hammer parser-combinator toolkit to write
parsers for various SCADA protocols. Hammer does provide functions to free the



22 Anantharaman et al.

parsed AST but does not provide any mechanism to free the parser objects. We
found this issue during our fuzzing efforts since our fuzzers reached their memory
limits much sooner than anticipated. We found a workaround for this problem and
sidestepped this issue. We are in touch with the Hammer development team to
add functions to free parser objects to ease fuzzing efforts.

Formally verifying our LangSec parsers is yet another challenge. There are cur-
rently no formal parsing algorithms available to handle the context-sensitive lan-
guages used in our SCADA communications. There have been some recent efforts
to build parsers that extend beyond regular grammars or context-free grammars.
Our parser-combinator tool, Hammer, provides bindings to parse these languages
with context-sensitive properties. However, Hammer has not been verified. We
have fuzzed our implementations extensively to ensure we have not introduced
any bugs in our toolkit.

Although we designed CVD as a forensics analysis toolkit to gather data from
SCADA networks, it can also be deployed as a network intrusion detection or
prevention system (NIDS/IPS). One of the primary reasons we did not follow this
direction was that we were introducing latency in the order of a few milliseconds
given our tool limitations. Some protocols, such as Goose, specify that latency must
not exceed 4 ms. We would violate some of this latency requirement if CVD was
deployed as an intrusion prevention system in its current state. With significant
engineering improvements and parsers running directly on the hardware using
FPGAs, we believe CVD can be re-purposed for this use.

TCP Reassembly poses yet another challenge for parsing efforts. Although most
SCADA packets are small enough not to be fragmented, DNP3 and MMS send
large packets in rare conditions. In its current state, CVD cannot handle frag-
mented packets. Introducing a TCP reassembly engine in our parsers requires
significant overhead. It would require us to maintain the TCP state as well as
buffer packets before decisions are made. We plan to introduce a TCP reassembly
engine in the next iteration of CVD with parsers implemented in FPGAs.

6 Conclusions

This paper presented CVD, a novel, distributed tool to monitor SCADA communi-
cations networks for crafted input attacks and malicious operations. We presented
our novel paradigm of continuous monitoring and data collection to gather foren-
sics from the SCADA network. We showed how we use LangSec-compliant parsers
to detect crafted input attacks and malformed packets.

We demonstrated CVD Minion’s parsers on a wide range of SCADA protocols
and a large dataset of valid SCADA traffic. We also built a GUI that would enable
SCADA operators to make security decisions. We fuzzed CVD to show that it is
resilient and can detect various SCADA misconfigurations.
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Our future work takes us in various directions. We would like to formally verify
our parsers and build a new toolkit to generate verified parsers. To do this, we are
working on new parsing algorithms for context-sensitive grammars. We are creat-
ing highly parallel versions of these parsing algorithms to implement on FPGAs.
Finally, we need better user studies to understand SCADA operators’ needs and
what tools can be useful for them to detect various attacks in their networks.
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