US006167521A

6,167,521
Dec. 26, 2000

United States Patent
Smith et al.

Patent Number:
Date of Patent:

[19] [11]

[45]

[54] SECURELY DOWNLOADING AND OTHER PUBLICATIONS
EXECUTING CODE FROM MUTUALLY
SUSPICIOUS AUTHORITIES Federal Information Processing Standards Publication,
Security Requirements For Cryptogra. Modules, US Dept.
[75] Inventors: Sean William Smith, Cornwall, N.Y.; of Commerce, Jan. 11, 1994, FIPS PUB 140-1, p. 1-56.
Steve Harris Weingart, Boca Raton, Schneier, Applied Cryptography, 2nd edition, p. 185-186,
Fla. Oct. 1995.
[73] Assignee: International Business Machines Primary Examiner—Tod R. Swann
Corporation, Armonk, N.Y. Assistant Examiner—Paul E. Callahan
Attorney, Agent, or Firm— ouis P. Herzberg
[21] Appl. No.: 08/920,814 [57] ABSTRACT
[22] Filed: Aug. 29, 1997 An apparatus, system and method for secure code-
[51] Int. CL7 oo GO6F 11/30 downloading and information exchange, in the full gener-
[52] US.Cl e, 713/200; 380/286; 705/64; ality of complex code dependencies while considering the
705/67; 705/71; 709/230; 709/237; 717/11; implications of mutual distrust and hot-swapping. Included
713/150; 713/168; 713/180 are secure techniques wherein an authority signs code from
[58] Field of Searchovvnvcnunnee 713/200, 150, another party upon which that authority depends in order to
713/168, 180; 395/652, 653, 712, 704, establish that a trusted execution environment, is being
186; 364/280; 380/4, 21, 286; 709/300, preserved. Trusted code is employed to ensure that propri-
303; 345/440; 705/64, 67, 71 etary data is destroyed, disabled, and/or made unreadable,
when a change causes the trusted execution environment to
[56] References Cited cease holding to a certain security level. A carefully con-
structed key structure is employed to ensure that communi-
U.S. PATENT DOCUMENTS cations allegedly from particular code in a particular envi-
4218582 8/1980 Hellman et al. ...ooooovovvrere. 178/22 ~ tonment can be authenticated as such. Authenticity of code
5,057,996 10/1991 Cutler et al. coooooovoveovveevocrccrens 364/200 thatdecides the authenticity of public-key signatures, and/or
5,412,717 5/1995 FiSChET wvovuvvvveveereeeeeeeereeeeveennns 380/4 the authenticity of other code is cared for. In particular, the
5,493,682 2/1996 Tyra et al. ... 395/700 loading code that performs these tasks may itself be reload-
5,557,518 9/1996 Rosen 304/408 able. Authenticity is maintained in physically secure copro-
5,808,625 9/1998 Picott et al. ...covviiviiniins 345/440 cessors with multiple levels of dependent software that is
5,825,877 10/1998 Di?.n et al. e 380/4 independently downloadable by mutually suspicious
g’ggg’ggi %/ iggg I;{hller et all' - 3 4284?4{3 authorities, and in physically secure coprocessors whose
6058478 5;2000 D1§‘(])1tst eta b 713§191 software has sufficient richness and complexity so as to be
6:0881797 7/2000 Rosen T713/173 certainly permeable. Recoverability is provided for physi-

FOREIGN PATENT DOCUMENTS

WO 98/43212 10/1998 WIPO .
WO 99/16031

4/1999

WIPO .

Authority over node B
Prepare command
message (102)

Send command
to Device (104)

cally secure coprocessors from code of arbitrary evil running
at arbitrary privilege.

61 Claims, 11 Drawing Sheets

Device:

Receive command
{106)
Verify sender
(108)
Verify Load
Predicates {110)

Install code {112)

For Node B and
each ancestor,
evaluate new load
against pre-existing
Trust Parameters
{114}

For Node B and
each descendent,
adjust outgoing
authentication
keys (116)

Resume normal
execution (118)

U.S. Patent Dec. 26, 2000 Sheet 1 of 11 6,167,521

10

70 w [60
Program E Program F Program G Program H
depends on depends on depends on depends on
A 4 A 4 A
Program C Program D
40j depends on depends on
A4 A\ 4
30— Program B

o5— | depends on

A J

00— Program A

Fig. 1A

U.S. Patent Dec. 26, 2000 Sheet 2 of 11 6,167,521

Authority over node B Device:

Prepare command
message (102)
v
Send command
to Device (104)
I
v
Receive command
(106)

Verify sender
(108)

Verify Load
Predicates (110)

Install code (112)

v
For Node B and
each ancestor,
evaluate new load
against pre-existing
Trust Parameters
(114)

v
For Node B and
each descendent,
adjust outgoing
authentication
keys (116)

v

H Resume normal
Fig. 1 B execution (118)

U.S. Patent

Authority over node A

Dec. 26, 2000

Sheet 3 of 11

Authority over node B

Generate new
authentication
secrets (202)

v

Export public or shared
part to Authority over

Node A (204)
]

O

Authenticate the
Authority over Node B

(2086)
I

Prepare Emergency
Certificate (208)

v

Communicate Emergency
Certificate to Device
(210)

[

Fig. 2

v

Proceed with download
(212)

6,167,521

U.S. Patent Dec. 26, 2000 Sheet 4 of 11 6,167,521

Authority over node B Device:

Prepare create child
command (302)
v
Send command
to Device (304)
1
v
Receive command
(306)

Verify sender
(308)

Verify command
predicates (310)

Create child (312)

Resume normal
execution (314)

Fig. 3

U.S. Patent Dec. 26, 2000 Sheet 5 of 11 6,167,521

Authority over node B Device:

Prepare destroy
command (402)

v

Send destroy command
to Device (404)
|

v

Receive destroy
command (406)

Verify sender
(408)

‘

Verify command
Predicates (410)

Destroy node B
(412)
!

For each descendent
Node C, destroy or
transfer to an
ancestor of Node B
(414)

Resume normal
execution (416)

Fig. 4

U.S. Patent Dec. 26, 2000 Sheet 6 of 11 6,167,521

Device:

Generate new
keypair (502)

I

Select ancestor
(504)

Compose new
certificate (506)

v

Have ancestor sign
certificate (508)

!

Save new key and
new certificate (510)

I}

Replace current
keypair with new

keypair (512)

Fig. 5

U.S. Patent Dec. 26, 2000 Sheet 7 of 11 6,167,521

Device:

Select ancestor
(602)
v

Compose new
message (604)

v

Have ancestor sign
message (606)

Fig. 6

U.S. Patent Dec. 26, 2000 Sheet 8 of 11 6,167,521

Device:

Generate new node B
keypair (702)

'

Compose new node B
certificate (704)

v

Have existing key sign
certificate (706)

:

Save certificate (708)

I

Replace current
keypair with new

keypair (710)

Fig. 7

U.S. Patent

6,167,521

824
-

Program D,
next version

44
/8

Program C,
next version

864
/

Program B,

Version 3

Dec. 26, 2000 Sheet 9 of 11
810 \
Program E,
current ver.
depends on
830 820
800 Tt }"""“""“":
f | updated v updated :
Program F, Program D, |10 | Program D, |10 :
current ver. last version | | current ver. !
5 depends on
840~ !
842 | E
\ , updated v updated .
Program C, |10 | Program C, to |
last version | current ver. ;
860 : depends on |
updated updated v updated E
Program B, | 10 | Program B, o | Program B, fo :
Version 1 Version 2 Version 3 !
Outgoing key I
= Publicgkey depends on
tc)ené‘fied .
evice's .
C.{erﬁfying + —890
Authority ! v |
Outgoing key A !
= Secrel key encr;/[)ted Program |
and signed by Certifying | (ROM) !
Authority :

U.S. Patent

910
\

Dec. 26, 2000

Processor

Sheet 10 of 11 6,167,521

950
/

Loader

/ 920

930
\

Message

Exchange Port

Communication

Channel

Read/Write
Memory

940
/

960\

Security
Manager

Fig. 9

Authenticator

U.S. Patent Dec. 26, 2000 Sheet 11 of 11 6,167,521

Series And Parallel Bus
And Cable Harness

100\5{\
1010 1060
N , Sensing v
Receiver —¢- Subdivision
1020 1070
A Verifying o Descendent |~
Circuit Controller
103{)/\)980
Processor — C“g?\?:glgr
104&\ /1990
Reciept #
Generator Memory
1050 1095
AN o
Authenticator f Nodes
/1J096
Node
¢ Responder

Fig. 10

6,167,521

1

SECURELY DOWNLOADING AND
EXECUTING CODE FROM MUTUALLY
SUSPICIOUS AUTHORITIES

CROSS REFERENCES

The present application is related to the following appli-
cations even dated herewith: entitled, “Establishing and
Employing the Provable Integrity of a Device”, by inventors
S. W. Smith et al., assigned application Ser. No. 08,920,815
with a filing date of Aug. 29, 1997; entitled, “Hardware
Access Control Locking”, by inventors T. A. Cafino et al,;
entitled “Authentication for Secure Devices With Limited
Cryptography”, by inventors S. M. Matyas et al., assigned
application Ser. No. 08,921,442 with a filing date of Aug. 29,
1997, which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention is directed to the field of informa-
tion security. It is more specifically directed to secure
information exchange.

BACKGROUND OF THE INVENTION

Computer systems require programs (also known as code)
in order to function. As time goes on, new code needs to be
installed, and existing code needs to be updated or deleted.
In practice, scenarios arise where these changes occur in a
somewhat or completely automatic fashion. This is often
under the control of someone who is not the direct user of
the system, and who is remotely connected to the system via
a network or some other means. In these scenarios, this
process is called code downloading [or code loading].

As an example, consider a secure coprocessor such as a
high-end smart card. Such a device is a small computer
system designed to be secure and robust against attack by
potentially hostile users or other parties. This security
requirement complicates the problem of code installation
and update in that code downloading needs to occur only
when permitted by an appropriate authority often not colo-
cated with the card. Furthermore, the smart card itself might
be physically encapsulated to prevent tamper. This encap-
sulation generally prevents any maintenance access besides
via the computer I/O. It is even difficult to even know how
to tell with certainty as to what really is loaded in the card.

It is recognized that a smart card dedicated to a single
application might have a simple code structure for enabling
permanent code downloads, and to restart a single unit of
application code. However, a general-purpose computer
(GPC) system introduces more complications in that the
code structure is usually very complex. Thus, permanent
code in a GPC might support several layers of downloadable
code. These may include the program or code that does the
downloading, the operating system, and one or more appli-
cations. Furthermore, each piece of code might be controlled
by a different authority. Since these programs are designed
for long-lived operation, code-downloading should preserve
the state associated with the execution of existing code. This
may include even the code that is being replaced and/or
updated.

Code downloading raises two fundamental security
issues. Firstly, how to prevent the new code from attacking
code that is already installed in the system. Secondly, how
to prevent code that is already installed in the system from
attacking the new code.

Consideration of general-purpose computer systems
raises the additional challenge of providing these properties

10

15

20

25

45

50

55

60

65

2

in a fully general context. This includes conditions when the
structure of downloadable code on the system can be fairly
complex (and include very fundamental code), and when
this structure might include different code-owners who
might not trust each other. This has to be accomplished while
preserving the operational state of the code whenever pos-
sible and reasonable.

Most previous work addresses downloading only for a
single level of application code. This is the situation for
code-signing work which protects a system from down-
loaded application code by having developers sign their own
code so as to establish its origin. It is also so, for a technique
which allows a single application to be downloaded from the
same authority that controls the system while additionally
having options to retain application state and to somewhat
protect the application from a rogue system.

A system may support downloading a linear hierarchy of
code. However, replacing one level of code often requires
erasing everything associated with that level and above.
Furthermore, this approach does not protect the various
programs from each other.

SUMMARY OF THE INVENTION

One aspect of this invention is to provide secure code-
downloading in the full generality of complex code depen-
dencies while considering the implications of mutual distrust
and hot-swapping, using security and authentication meth-
ods. In particular, systems, methods and structures are
presented wherein:
an authority signs code from another party upon which that

authority depends in order to establish that a ‘trusted

execution environment’ is being preserved;

code is used that is already trusted to ensure that proprietary
data is destroyed, disabled, and/or made unreadable, when
a change causes the trusted execution environment to
cease holding to a certain security level;

a carefully constructed key structure is employed to ensure
that communications allegedly from particular code in a
particular environment can be authenticated as such;

the authenticity and reloadability of code that decides the
authenticity of public-key signatures, and/or the authen-
ticity of other code is cared for;

the authenticity is maintained in physically secure copro-
cessors with multiple levels of dependent software that is
independently downloadable by mutually suspicious
authorities, and in physically secure coprocessors whose
software has sufficient richness and complexity so as to be
almost certainly permeable; and

recoverability is provided for physically secure coprocessors
from code of arbitrary evil running at arbitrary privilege.
Still an other aspect of the present invention provides a

method for a node’s authority to download new code into an
existing node within a device. The method comprising the
following steps: the authority preparing a command message
including the new code, load predicates and trust param-
eters; the authority communicating the command message to
the device; the device receiving the command message; the
device verifying a source of the message and a current
execution environment being valid for the load predicates;
and downloading the code if the source is verified to be the
authority and the load predicates are valid, and not loading
the code otherwise.

In some embodiments wherein the existing node has at
least one descendent node, the method further comprises:
evaluating for each the descendent node a change in an
environment of the existing node resulting from the step of
loading by comparing the environment against stored trust

6,167,521

3

parameters for the descendent node; determining if the
change is acceptable for the trust parameters and; executing
the code if the step of determining proves the change to be
acceptable, or clearing sensitive data from the descendent
node otherwise. These may further include the steps of the
device adjusting at least one of its outgoing authentication
keys to reflect the change, and the device erasing an original
outgoing authentication key of the descendent node; and the
device generating and certifying a new outgoing authenti-
cation key for the descendent node, and/or the device
generating at least one receipt attesting to the change, and/or
authenticating the receipt using an outgoing authentication
technique of the existing node.

Another aspect of the present invention is a method for an
authority of a parent node in a device to create a child node
of the parent node. The method includes the steps of: the
parent authority preparing a create child command for the
device, the command including command predicates; the
authority sending the command to the device; the device
receiving the create child command; the device verifying a
source of the command; the device creating the child if the
predicates are satisfied and the source is the parent authority,
otherwise not creating the child.

Still another aspect of the present invention is a method
for a device which has a security dependency graph to
regenerate an outgoing authentication key for a first node.
The first node has at least one ancestor with public-key
ability, the method comprising: the device generating a new
keypair for the first node; the device selecting the ancestor
for its outgoing authentication technique; the device com-
posing a certificate for a new outgoing public key of the first
node, the certificate includes the new outgoing public key
the first node; identifying an authority over each descendent
node in the security dependency graph; identifying code
currently held in the descendent node; signing the certificate
with a current outgoing private key of the ancestor; saving
the new public key for the first node and saving the certifi-
cate in an appropriate memory; and atomically making the
new keypair the active pair for the first node while deleting
the old private key.

Still another aspect of the present invention is a method
for a device to respond to a first command. The device has
a NODE-A and a NODE-B. NODE-A is under the control of
a NODE-A authority. NODE-B is under the control of a
NODE-B authority. The first command is a request made by
the authority of NODE-A which is an ancestor of NODE-B.
The method comprising the following steps. The NODE-B
authority selects a command authentication technique, gen-
erates new incoming authentication secrets; and communi-
cates at least part of the secrets to the NODE-A authority.
The NODE-A authority authenticates that the communica-
tion originated with the NODE-B authority, and prepares an
emergency certificate. The emergency certificate includes a
first identification of the NODE-B authority, the selected
command authentication technique, and an appropriate part
of secrets of the NODE-B authority. It then communicates
the emergency certificate to the device to enable the device
to respond to the first command.

Still another aspect of the present invention is a computer
system comprising: a processor; a memory for storing
instructions and data for the processor; a communication
channel for exchanging message signals between the pro-
cessor and external devices; an authenticator for determining
whether incoming message signals to the processor are
authorized by a trusted authority; a security manager for
authorizing the loading of a new program into the memory
only if the authenticator determines that the new program is

10

15

20

25

30

35

40

45

50

55

60

65

4

authorized by a trusted authority. In some embodiments the
system includes an operating system or application program
in the read/write memory. The operating system or applica-
tion program is dependent on the loader. The new program
is “dependent” on both the loader and the operating system
or application program. The trusted authority includes in
combination a first influence of a first authority over the
loader and a second influence of a second authority over the
operating system or application program. Thus an authority
controls the loading of the new program. But this loading
and its execution depend on two other programs, each
controlled by their own authority. In this way these authori-
ties in combination have influence over the trusted environ-
ment of the new program.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features, and advantages of the
present invention will become apparent upon further con-
sideration of the following detailed description of the inven-
tion when read in conjunction with the drawing figures, in
which:

FIG. 1A shows a simple example of a security depen-
dency graph;

FIG. 1B shows an implementation for downloading code
into an existing NODE-B by the authority of NODE-B in
accordance with the present invention;

FIG. 2 shows the scenario for downloading code into an
existing NODE-B, by the authority over NODE-A, an
ancestor of NODE-B.

FIG. 3 shows a scenario for creating a child NODE-C of
an existing Node B, by the authority over Node B in
accordance with the present invention;

FIG. 4 shows an implementation procedure for a scenario
for the authority over NODE-B to destroy an existing
NODE-B;

FIG. § shows an implementation scenario for regenerating
an outgoing authentication Key for Node B, if B or an
ancestor has public-key ability in accordance with the
present invention;

FIG. 6 shows a second option for regenerating an outgo-
ing authentication key for NODE-B in accordance with the
present invention;

FIG. 7 shows the steps for regenerating an outgoing
authentication key for NODE-B, if NODE-B or an ancestor
has public-key ability, and if the previous version of the code
at NODE-B was trusted in accordance with the present
invention;

FIG. 8 shows the authentication properties this invention
provides for devices with a straightline dependency graph
whose root is ROM and whose public-key signature services
are carried about by the root’s child;

FIG. 9 shows a computer system embodiment of the
present invention.

FIG. 10 shows an embodiment of an apparatus in accor-
dance with the present invention.

PRINCIPLES OF THE INVENTION

The following are definitions of terms and objects as used
herein. Firstly, a security dependency graph (SDG) is
employed in order to discuss a computer system with
hierarchically dependent code. An SDG models the security
dependencies in computer systems. A SDG is a directed
acyclic graph where each node represents a program. As
used herein, a node is a logical subregion of a device which

6,167,521

5

is directly controlled by a single authority, and which
includes elements such as a data store and a program store.
Thus a ‘program-A’ is at NODE-A, a ‘program-B’ is at
NODE-B, and so on. In the SG, a connecting line (edge)
from a first node to a second node terminated in an arrow at
the second node, represents a direct security dependency of
the first node on the second node. The dependency is such
that the secure and trusted operation of the program in the
first node depends on the secure and trusted operation of the
second node. The second node is said to be a parent-node of
the first node. The first node is said to be a child-node of the
second node.

FIG. 1A shows a simple example of a security depen-
dency graph 10. It shows a line 25 running from NODE-B
30 to NODE-A 20 with an arrow at NODE-A 20. This
represents a direct security dependency of NODE-B 30 on
NODE-A 20, such that the secure and trusted operation of
Program-‘B’, running in NODE-B 30, depends on the secure
and trusted operation of Program-‘A’, running in NODE-A
20. NODE-A 20 is said to be a parent-node of NODE-B 30.
NODE-B 30 is said to be a child-node of NODE-A 20.
Similarly, the secure and trusted operation of Program-‘F’ on
NODE-F 60 depends on the secure and trusted operation of
NODE-C 40. The secure and trusted operation of Program-
‘C’ depends on the secure and trusted operation of NODE-B
30. The secure and trusted operation of Program-‘E’ 70 also
depends on the secure and trusted operation of NODE-C 40.
Actually, NODE-A 20 is the ancestor-node of all the nodes
shown in FIG. 1A. NODE-A is also referred to as the root
node. In a directed acyclic graph, a node which is an
ancestor of all the other nodes is called the root.

It is herein assumed that dependency also implies infor-
mation flow from child to parent. Arrows connect children
to their parents. In particular, if ‘B’ depends on ‘A’, then ‘A’
is assumed to have access to secrets that belong to ‘B’.
Conversely, if some NODE-X has access to critical secrets
for some NODE-Y, then the SDG must contain a path from
NODE-Y to NODE-X with an arrow terminating at NODE-
X. Parent-nodes of parent-nodes are said to be ancestors of
the children-nodes. In this way, within an SDG, the set of
ancestors of a given node is said to comprise that node’s
“supporting software environment” or just environment. A
node along with its ancestors is said to comprise that node’s
software execution environment.

It is noted that not all devices need to share the same SDG.
Furthermore, the security dependency at any device might
change with each code downloading operation. In some
cases, the SDG is a tree with a root that is permanent and
simple. In particular, it performs neither public-key cryp-
tography nor hashing. The remaining nodes are all dynamic
and reloadable. The root’s children perform more general
crypto tasks.

Several items are associated with each particular node in
an SDG. Each particular node has an ‘authority’. An author-
ity is an external party responsible for that particular node.
Each node might have a different authority, and the authority
for a given node might change over the lifetime of that node.
Each particular node has a storage place for the name of this
authority, and for code which is the program at that node. It
also has a storage place for storing operational data associ-
ated with the ongoing execution of the code at that node, for
storing an incoming authentication key, and for storing an
outgoing authentication key. The incoming authentication
key is used by the system to authenticate requests from that
node’s authority. The outgoing authentication key is used by
the code at that node to prove where it came from.

The incoming authentication key embodies the ability to
authenticate that an incoming message originated at a spe-

10

15

20

25

30

35

40

45

50

55

60

65

6

cific authority in accordance with the standard algorithms
known to those skilled in the art. For example, the key might
be a shared symmetric key, or a public key. The shared secret
key or the private key corresponding to the public key is
generated and retained by that node’s authority.

Similarly, the outgoing authentication key embodies the
ability to prove that a message originated with the party
which knew that key in accordance with standard algorithms
known to those skilled in the art. For example, the key might
be a shared symmetric key, or a private key. Sometimes, this
is a private key, which is one key of a pair of keys (keypair),
that is generated by execution of that node’s program. The
keypair is usually generated by a trusted ancestor of that
node. That is, key-generation ability is given to only one
node. This is often the first child of the root. This first child
provides all public-key services for the remaining nodes.

Symmetric keys are used here only in a few special
situations. They are used primarily when the node in ques-
tion has no public-key crypto support in its software execu-
tion environment. They are also used when the node in
question has public-key cryptography code, but no outgoing
authentication key in the execution environment has yet
been certified as trustworthy by an appropriate external
party.

The general principles of the present invention requires
that two central trust invariants are maintained.

Firstly, for a NODE-A to preserve its operational data, the
authority over that NODE-A must trust NODE-A’s software
execution environment. As a consequence of this trust, any
change to this environment must be trusted by the authority
over NODE-A, and the code that carries out this change (and
evaluates this trust) must already be in the trusted software
execution environment. Secondly, the outgoing authentica-
tion key for a NODE-A binds that NODE-A to a specific
software execution environment. As a consequence, any
change to this environment results in this key being
destroyed. If authority over NODE-A trusts this changed
environment, then a new outgoing authentication key is
created. In this way, NODE-A can still authenticate its
outgoing messages as originating in a trusted environment.
But, the receiver of these messages can use this key to
distinguish between these messages and any sent by
NODE-A before its environment was changed.

The presence of the incoming authentication key associ-
ated with a node allows the loader, or authenticator, to verify
that an incoming command came from the authority over
that node. Commands that can be authenticated this way are
assumed to express the direct will of the authority. This is as
opposed to commands that are never directly authenticated
by the device, but only indirectly via other Authorities. In
this direct way, the authority over a node creates the children
for that node, and establishes the identity of the authority
over each child.

It is noted that in most embodiments, the terms “loader,”
“authenticator,” and “security manager” are user inter-
changeably for the same component or subdevice.

The authority over a node controls the loading of new
code into that node. The authority exercices this control by
using its authentication technqiue to authenticate the code to
be loaded, and to authenticate a ‘description’ of the support-
ing environment it deems necessary for its code to continue
to run in a trustworthy fashion. This description can take
either of two forms. In one form, the description is the
signed statements about the underlying computer system and
the owners and code in one’s ancestors. Another form of the
description is the authority explicitly counter-signing new

6,167,521

7

code to be downloaded into an ancestor node. Thus, in the
first form, authority-A is expressing opinions about the state
of the ancestors of NODE-A before NODE-A is loaded. In
the second, authority-A is expressing opinions about the
state an ancestor will be in after that ancestor is loaded.

Once established, the operational state associated with a
node is preserved only if the execution environment either
remains unchanged, or changes only in a fashion trusted by
the authority of that node. The operational state and outgo-
ing authentication keys associated with a node are not
accessible to any program not in the software execution
environment of that node, unless one of these programs
reveals it.

The outgoing authentication key associated with a node is
destroyed when any change occurs to any node in the
software execution environment of that node. If the node
remains runnable, then a new outgoing authentication key is
recreated. For the general case when this key is a private key,
it is associated with a corresponding public key which along
with a description of the environment is certified, by signing
with the private key of a trusted ancestor node, or by a
trusted external authority. This ensures that any party trust-
ing a particular version of a node, and particular versions of
each of its ancestors, can distinguish the communications of
that node IN THAT ENVIRONMENT from those of a clever
adversary, including the execution of that node in a different,
untrusted environment. Code that is already part of the
trusted execution environment, performs the evaluation of
changes and any necessary destruction of a nodes’s state and
secrets. Thus, if the authority over the download-evaluation
code downloads a version untrusted by the authority over
some descendent node, destruction of that node’s secrets is
completed before this version has a chance to run.

A computer system’s SDG describes the state of the code
in the system at any given time. Changes occur in any of two
ways. In one way changes occur as a response to a specific
command from an authority. In another way changes occur
via a clean-up performed automatically after some type of
failure, as for example for a memory failure. The principal
command-driven changes are discussed herein.

Throughout the invention as implemented, when a com-
mand is carried out on a particular node, the device often
generates a receipt. The receipt contains identification infor-
mation about the command performed and is authenticated
with the outgoing authentication key of the node or one of
its ancestors. This is also doable using the outgoing authen-
tication key that existed before any environment change due
to said command occurs.

Situations exist where a first authority may be issuing a
command that directly affects a first node under control of
the first authority, but where the command indirectly affects
a second node under control of a second authority. The
second node is a descendent of the first node in the security
dependency graph of this device, and the command changes
the software execution environment of the second node. In
such situations, the second authority may control what
happens to the second node by explicitly ‘counter-
authenticating’ the command from the first authority. This is
analagous in many ways to countersigning a document. The
type of countersignature, or lack thereof, on the command
for the first node does not affect whether or not the command
is carried out on the first node, but only on what its
consequent affect will be on the second node.

In accordance with the subject invention, a new node is
created as follows. The authority over NODE-A can create
a child node, NODE-B, of parent NODE-A. To do this, the

10

15

35

40

45

50

55

60

65

8

authority over NODE-A issues a create-child command that
establishes the name of the Authority over NODE-B. The
device uses the incoming authentication key of NODE-A to
authenticate that this command came from the authority over
NODE-A. The code, keys, and other data in ‘B’ are initially
blank. Code is subsequently downloaded in the way that
code is loaded into an existing node that does not have an
incoming authentication key, using the following techniques
supplemented with the ‘emergency authentication’ tech-
niques discussed below. Everytime an authority downloads
code, it can also download a new incoming authentication
key for itself.

Loading code into an existing node, in accordance with
the subject invention, is performed as follows. To update the
code in an existing NODE-A, the authority over NODE-A
uses its incoming authentication key: to sign and thus
validate the new code; to sign and thus validate the specific
requirements for the software execution environment nec-
essary for this load to even occur; and to sign and validate
the specific requirements for the supporting environment for
the operational data to be maintained across future changes
to the supporting environment. A load will only proceed if
these specific requirements for the load to occur are satisfied.
The following additional steps are performed. For each
NODE-B that descends from NODE-A in the SDG, (and
thus depends on NODE-A in the SDG,) a check is performed
to determine if the new load for NODE-A satisfies descen-
dent NODE-B’s pre-established parameters for a trusted
supporting environment. If not, the operational data associ-
ated with NODE-B and with any of its descendants are
deleted. Further, whether the program at any such node is
re-started or suspended until re-load, is determined by that
node’s trust parameters, with the exception that no program
can run unless all the programs in its supporting environ-
ment are runnable. In addition, the outgoing authentication
key associated with NODE-A and each of its descendants is
destroyed. If such a node is still runnable, a new outgoing
authentication key is recreated.

The operation of loading a new key into an existing node,
in accordance with the subject invention, is performed as
follows. A new incoming authentication key in an existing
NODE-A is validated by, the authority over NODE-A using
its current incoming authentication key to sign the new key.

In accordance with the subject invention, a node is
destroyed as follows. An authority over a NODE-A can
cause its destruction by signing an appropriate command
with its incoming authentication key. In this case, the
descendants of NODE-A are deleted and/or destroyed as
well.

In accordance with the subject invention, an emergency
operation is performed as follows. When the authority over
a NODE-A somehow loses its ability to authenticate
changes, a back-up emergency method is implemented. In
this situation, an authority over a NODE-B that is an
ancestor of NODE-A can sign a new incoming authentica-
tion key for the authority over NODE-A. However, this
option creates a potential ‘backdoor’ that the authority over
NODE-B might use to gain unauthorized access to the code
and data at NODE-A. For example, the device must take
Authority-B’s word regarding the identity and will of
Authority-A. To keep such backdoors from being useful, the
following precautions are taken. The operational data and/or
runnability of NODE-A is preserved only if the trust param-
eters pre-established by the authority over NODE-A indicate
that this authority trusted this type of emergency action. For
each descendent NODE-C of NODE-A, the operational data
and/or runnability of NODE-C is preserved only if the trust

6,167,521

9

parameters pre-established by the authority over NODE-C
indicate that this authority trusted this type of emergency
action to be taken by the authority over NODE-B to act on
NODE-A.

As discussed briefly above, one implementation of the
present invention constrains the SDG to a tree, with a
permanent simple root, which has one child. The root only
needs to reload the child under emergency circumstances.
The remainder of the downloading and SDG tasks are
directed by this child. Although the incoming key structure
is hierarchical, this implementation performs decision and
installation for code downloading in one central place in
order to simplify a number of tasks. In another embodiment
hierarchical loading is used in a straightline graph, such that
each node loads the next level’s child.

In order to facilitate interaction with some hardware
security techniques, all changes might best be performed at
boot time. The implementation of the present embodiment
also takes care to make sure that all changes occur
atomically, and that failures are handled gracefully and
appropriately. A change occurs atomically if it either takes
place completely or not at all.

The loading trust invariant requires that a node maintain
operational data only in a trusted software execution envi-
ronment. Should the environment cease to be trusted, the
invariant permits several options. These options include the
node and its data are deleted; or the node and its runnability
are preserved, but its data is deleted; or the node is
preserved, but its runnability and data are deleted; or the
node and its data are preserved, but its runnability and/or the
access to its data from its supporting environment is sus-
pended. The implementations presented herein carry out
variations on the middle two options.

The use of outgoing authentication keys establishes that a
message came from a specific version of code within a
specific software execution environment. However, this
property follows from the invariant that the key for a node
in a given software execution environment can be trusted to
be confined to that environment. In one embodiment this is
achieved as follows. The loader is reloadable and signs an
outgoing key for its sole child, who in turn signs items on
behalf of all its descendants. The reloadable loader also
signs a new outgoing key for itself, before the reloadable
loader is itself reloaded. An external trust source for the
initial reloadable loader is established.

Other embodiments may be implemented. If one imagines
the SDG graph extended across time, the approach of the
present embodiment brings the trust path for a signature
down the SDG graph to the minimal node with public-key
capabilities, then back in time to a trusted starting point.
Indeed, any path from a given node down-and-back to a
given trusted starting point is also usable.

Most often, the node storage structure requires memory
protection. This protection may be reinforced with hardware
techniques. These are not a subject of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

This invention provides methods and structures for
securely downloading and executing hierarchically depen-
dent code from mutually suspicious authorities. This is
accomplished while also preserving the ability to authenti-
cate and to recover from penetration. This is described by a
group of scenarios. An implementation method is presented
for each scenario. In these scenarios, the device stops normal
execution in order to respond to a command request. The

10

15

20

25

30

35

40

45

50

55

60

65

10

implementation includes some careful steps as follows. The
command requests a change to a particular NODE-B in the
device. The response is performed in one or more nodes that
NODE-B and/or one or more of its ancestors (precede or
equal NODE-B) in the Security Dependency Graph, by the
software that is current before the change is effected. The
response is structured so that failures during the response
computation leave the device in a safe state. For example,
suppose an untrusted download into NODE-B triggers dele-
tion of NODE-C, but a power failure occurs before the
deletion is implemented. When computation resumes, the
then pre-existing trusted code ensures that deletion is safely
completed before the new code in NODE-B can execute.

An implementation for downloading code into an existing
NODE-B by the authority of NODE-B is shown in FIG. 1B.
It is assumed that the authority over an existing node,
NODE-B, wishes to download code into that node via their
direct authority. This is as opposed to an indirect download,
through some other authority as is the scenario described
subsequently with FIG. 2. Returning to FIG. 1B, NODE-B’s
authority prepares a command message consisting of several
elements (102). These elements include the new code, the
load predicates and a set of trust parameters. The load
predicates include specific requirements which the execu-
tion environment must satisfy in order for the new code to
be able to run. The set of trust parameters include specific
requirements which any subsequent changes to the execu-
tion environment must satisfy in order for the code to
continue to be able to run after these changes.

Then, the authority sends this command to the device
(104), which receives it (106). The device verifies (108) that
this command came from an authority allowed to request it,
i.e., the NODE-B authority. To perform this verification, the
device uses the authentication mechanism it has stored for
the NODE-B authority. This is done in one of several ways.
In one method, the device uses a public key it has stored for
the NODE-B authority to verify a signature that this author-
ity has produced and communicated along with the com-
mand. Alternatively, the device and the requesting authority
perform shared-secret mutual authentication protocol, such
as in the “SKA” technique. This is most often done for
scenarios where the public-key technique is not possible. If
the authentication protocol is interactive, then the Authority
needs to participate in the authentication.

The device then verifies that the Load Predicates are valid
(110) for the current execution environment. This procedure
normally follows the organization of the predicates. It might,
for example, include evaluating issues such as determining
if the Load Predicates specify a set of permitted devices for
this command, and if this device a member of that set. It may
also determine if the Load Predicates specify a set of
permitted NODE-B code versions. If yes, is the version now
in this device a member of that set? The device may also
determine for each NODE-A that is an ancestor of NODE-B
in the security dependency graph, if the load predicates
specify a set of permitted owning authorities and/or code
versions. If yes, are the authority and/or code version now
associated with NODE-A in this device a member of this
set?

If the load predicates are satisfied, the device then installs
(112) this code into NODE-B, and marks the state of the
NODE as loaded and runnable. However, loading this new
code into NODE-B constitutes a change in the execution
environment for NODE-B, and all of its descendants in the
security dependency graph. Hence, before the device can
actually resume execution of the code in any of these nodes,
it must evaluate the impact of this change.

6,167,521

11

This evaluation (114) proceeds as follows. For each
NODE-C that descends from (or equals) NODE-B in the
device SDG, the device evaluates the change in NODE-B
against the trust parameters previously loaded for NODE-C.
These trust parameters establish a function from each pos-
sible combination of a load scenario for Node-B, and
circumstances for NODE-C, and each node (if any) between
NODE-B and NODE-C to take particular courses of action
for NODE-C. These courses of action may include to
continue executing as if nothing happened, to clear existing
sensitive data for NODE-C and resume executing from a
fresh start, to transfer NODE-C to be a child of a different
ancestor than its current parent, and to clear existing sensi-
tive data, and to make NODE-C unrunnable.

After this evaluation and response, the device then adjusts
outgoing authentication keys to reflect this change, as fol-
lows (116). For each NODE that descends from (or equals
NODE-B), the device erases that node’s outgoing authenti-
cation key. If the node is still runnable, the device generates
and certifies a new outgoing authentication key for that
Node.

At this point, the load process is complete, and the device
may resume normal execution, with this new and/or modi-
fied code (118). The device may optionally generate one or
more receipts attesting to the changes that have just
occurred. Such messages are most often authenticated by
using the outgoing authentication technique of the node that
performed the loading.

FIG. 2 shows the scenario for downloading code into an
existing NODE-B, by the authority over NODE-A, an
ancestor of NODE-B. In this case it is supposed that the
authority over an existing node NODE-B wishes to down-
load code into that node indirectly. This is done with the
assistance of an authority over another node, (say NODE-A)
that is an ancestor of NODE-B in the security dependency
graph. This is used for example, when the authority over
NODE-B has accidentally erased its private authentication
secrets or when NODE-B is newly created and does not yet
contain an incoming authentication key.

First, the authority over NODE-B selects an authentica-
tion method and generates new incoming authentication
secrets (202) and it communicates part or all of these secrets
to the authority over NODE-A (204). The authority over
NODE-A authenticates (via whatever technical means it
deems appropriate) that this communication originated with
the genuine authority over NODE-B (206). Then, the author-
ity over NODE-A prepares an “emergency certificate” (208)
containing the name of the authority over NODE-B and the
authentication method and shared/public key for the author-
ity over NODE-B

The authority over NODE-A then communicates this
emergency certificate to the device (210). If both the author-
ity over NODE-A and the authority over NODE-B use
public key cryptography as their incoming authentication
method, then this communication may occur indirectly. The
emergency certificate can be sent to the authority over
NODE-B, who then forwards the certificate to the device
along with the load command.

The authority over NODE-B then proceeds to load code
(212) via a method such as that shown in FIG. 1B, with the
following exceptions. In this case, the process of “verifying
sender”, FIG. 1, (108) verifies the load command against the
information in the emergency certificate, not against the
information in NODE-B. The verification also include veri-
fying that the emergency certificate was indeed produced by
the authority over NODE-A. Another exception is that the

10

15

20

25

30

35

40

45

50

55

60

65

12

function used in the evaluation step, FIG. 1B, (114) may
explicitly reflect that this load occurred indirectly, via the
authority over NODE-A.

A scenario for creating a child NODE-C of an existing
Node B, by the authority over Node B is shown in FIG. 3.
To create a new child of an existing Node B, the authority
over NODE-B first prepares a “Create Child” command for
the device (302). This command includes identifiers such as
the name of the new child, the name of the new child’s
authority, and the command predicates.

The command predicates, include specific requirements
that the execution environment of NODE-B must satisfy in
order for the new command (create-child) to be carried out.
The NODE-B authority sends (304) this command to the
device, which receives it (306). The device verifies the
sender of (308) this command to ascertain that the command
came from an authority allowed to request it. To perform this
verification, the device uses the authentication mechanism it
has stored for the authority over that node, namely NODE-B
authority. The device then verifies that the command predi-
cates are valid (310) for the current execution environment
of Node B. This procedure is the same as the procedure for
evaluating the load predicates in the standard Download
Scenario (FIG. 1B). If the predicates are satisfied, the device
creates the requested child (312).

Several options exist for the initial state of this newly
created child. These options include making the child
“unrunnable,” and containing no code or authentication
secrets. Alternatively, the child may be pre-loaded with
incoming authentication secrets sent in the command, or the
child may be pre-loaded with incoming authentication
secrets and code sent separate from the command. Once the
child is created, normal execution resumes (314). It is noted
that just as with downloading code, the create-child com-
mand could also be requested indirectly via the authority
over an ancestor NODE-A.

An implementation procedure for a scenario for the
authority over NODE-B to destroy an existing NODE-B is
shown in FIG. 4. The authority over NODE-B first prepares
a “Destroy” command for the device (402). The command
includes command predicates, which include specific
requirements of which the execution environment of
NODE-B must satisfy in order for the destroy command to
be carried out. The authority sends (404) the destroy com-
mand to the device, which receives it (406). The device
verifies (408) that this command came from an authority
allowed to request it. The device performs this verification,
by using the authentication mechanism it has stored for the
authority over that node. The device then verifies that the
command predicates are valid (410) for the current execu-
tion environment of NODE-B. This procedure is the same as
evaluating the load predicates in the standard download
scenario (FIG. 1B). If the predicates are satisfied, the device
then destroys NODE-B and all its data (412).

For each descendent NODE-C of NODE-B, the device
either destroys NODE-C and all its data or alternatively
transfers NODE-C to become a child of an ancestor of
NODE-B (414). This depends on policy. If an option is
allowed, the choice could be determined by the trust param-
eters in NODE-C. Normal device execution then resumes
(416). It is noted that when the destroy node command could
also be requested indirectly, via an authority over an ances-
tor NODE-A. Directly or indirectly, this is best carried out
atomically and in a failsafe manner, even if interrupted by
such things as a power failure.

FIG. 5 shows an implementation scenario for regenerating
an outgoing authentication Key for Node B, if NODE-B or

6,167,521

13

an ancestor of NODE-B has public-key ability. In the
implementation shown in FIG. 5, the device first generates
a new keypair for NODE-B (502) using a key generator
technique known to those skilled in the art. The device
selects a pre-existing ancestor, NODE-A, that uses public-
key cryptography for its outgoing authentication technique
(504). The devices composes a new certificate for the new
outgoing public key of NODE-B (506). This certificate
includes the new public key for NODE-B, identifying infor-
mation for the authority over each NODE-C, and the code
currently in NODE-C. NODE-C is any node in the device’s
security dependency graph path from NODE-A up to and
including NODE-B. The device signs this new certificate
with the current outgoing private key of ancestor NODE-A
(508). The device then completes the process by saving the
new public key for NODE-B and the new certificate in the
appropriate memory (510), and atomically making the new
keypair the “active” pair for node B, while deleting the old
private key (512).

Generally, the key for a node is regenerated when the
environment of that node changes. Regeneration ensures
that post-change messages are always distinguishable from
pre-change messages. However, the delegated signing
approach of FIG. 6, can also provide this property.

FIG. 6 shows a method for a device to ensure that
messages from a first node before a change in its execution
environment occurs are distinguishable from messages from
said first node after such a change occurs, said method
comprising. This implementation can provide a similar
service by avoiding to ever create a keypair for NODE-B.
First, the device selects a pre-existing ancestor NODE-A that
uses public-key cryptography for its outgoing authentication
technique (602). Then, whenever NODE-B needs outgoing
authentication on a message, say message M1, NODE-A
composes (604) a message M2 containing message MI1.
Also for each NODE-C in the Security Dependency Graph
path from NODE-A up to and including Node B, message
M2 includes identifying information for the authority over
NODE-C and the code currently in NODE-C. The device
signs message M2 with the current outgoing private key of
ancestor NODE-A (606).

The steps for regenerating an outgoing authentication key
for NODE-B, if NODE-B or an ancestor has public-key
ability, and if the previous version of the code at NODE-B
was trusted are shown in FIG. 7. This technique can be used
for regeneration scenarios when the old version of NODE-B
is trusted and still available, and when the software execu-
tion environment of Node B either does not change, or
changes atomically with the keypair replacement (710). This
can occur both for downloads of updated code into B, as well
as for simple renewal of NODE-B’s key.

First, the device generates a new keypair for NODE-B
(702). The device composes a certificate for the new out-
going public key of NODE-B (704). This certificate includes
the new public key for NODE-B, and identifying informa-
tion for the authority over NODE-B and the code for both
the previous and the new version of NODE-B. The device
signs this certificate with the current outgoing private key of
NODE-B (706). It then completes the process by saving both
the new public key for NODE-B and this certificate in the
appropriate memory (708). The device atomically makes the
new keypair the “active” pair for node B, and deletes the old
private key (710).

It is noted that this invention has direct applications to
secure code downloading in generic, general-purpose com-
puter systems, such as network computers. However, it is

10

15

20

25

30

35

40

45

50

55

60

65

14

ideally suited and was developed for tamper-respondent
general-purpose secure coprocessors: where the physical
encapsulation prevents any direct access of the internal state;
where the integrity of that state and the authenticity of the
device and its software configuration is critical for security;
and where the software has sufficient complexity to merit
multiple levels of code of sufficient complexity and richness
to be probably permeable. Examples include banking
systems, automated payment systems, and sensitive code in
industrial, educational, govermental and defense applica-
tions.

In particular, the invention provides several very useful
properties. It provides authenticity of code execution, in
which, with a minimal amount of trust, a third party can
always distinguish between a message allegedly from a
certain software execution environment in a certain hard-
ware environment, and a message from a clever adversary.
It provides authenticity of device wherein an untampered
coprocessor can always prove it is untampered, despite
arbitrarily evil code running in any downloadable node. It
also provides recoverability from penetration wherein an
untampered coprocessor can always recover arbitrarily evil
code running in any downloadable node.

FIG. 8 illustrates the authentication properties this inven-
tion provides for devices with a straightline dependency
graph whose root is ROM and whose public-key signature
services are carried about by the root’s child. Suppose a
message ‘M’ is allegedly sent by a particular version of
Program ‘D’ 820, running in a particular software environ-
ment. Program ‘D’ 820 is running on top of a particular
version of Program ‘C’ 840. Program ‘C’ 840 is running on
top of a particular version of Program ‘B’ 860, which is
running on top of particular version of Program ‘A’ §890.
Further, Program ‘D’ 820 is allegedly running in a particular
trusted hardware environment, whose initial Program ‘B’
860 outgoing key was certified by a certifying authority, and
whose Program ‘B’ 860 code has undergone a specific series
of revisions since certification.

Program ‘F’ 800, running a completely different device,
has to verify that message ‘M’ came from this alleged
sender, namely Program ‘D’, 820. In order for Program ‘F’
800 to believe this message came from this environment, it
is necessary that Program ‘F’ trust that all the code inside the
dashed-line in FIG. 8 behaves correctly. That is to say, if
Program ‘F’ 800 does not trust something in the box to
behave correctly, then it cannot believe the message from
this instance of Program ‘D’, 820.

However, the method of the present invention ensure that
for Program ‘F’ 800 to believe this message came from this
code in this environment, it is sufficient that it trust only the
code inside the dashed box 830. It does not need to trust
anything other than what is strictly necessary.

In particular, Program ‘F* 800 need to trust the versions
842 of Program ‘C’ that may have been running at the device
before the current version 840 was; nor versions of Program
‘B’ 864, ‘C’ 844, or ‘D’ 824 that might get loaded later, nor
any version of Program ‘E’ 810. It is noted that an approach
the did not follow the invention method of destroying and
regenerating keys, would permit later versions of programs
to impersonate earlier versions. So Program ‘F* 800 could
not reliably distinguish between the alleged Program ‘C’
840, for example, and a malicious later version of Program
‘C’ 844. An approach that did not follow the present
invention’s method for establishing the trust chain, would
permit an earlier version of the alleged ‘C; to impersonate
later ones.

6,167,521

15

As a consequence, this method provides the ability to
recover from penetration. If any of the rewritable nodes
except Program ‘B’ 860 are corrupted, the device is recov-
ered and authenticated by using public-key technology
alone. If Program ‘B’ 860 is corrupted the device is recov-
ered using secret-key techniques from Program ‘A’ 890.
These properties are especially useful when the underlying
device is a physically secure coprocessor whose contents
cannot be directly examined.

Computer system embodiments can take many forms. For
instance, it may include a loader with at least two rewritable
nodes. It may include a loader having at leats two nodes with
keys. The loader tasks may actually be performed by dif-
ferent nodes, and the node(s) that perform the loading tasks
may change depending on the command. The invention may
be implemented in software and hardware combinations.
The term subdevice is herein employed as an implementing
device in software, hardware or both. In some embodiments,
the hardware/software distinction is not critical. Hardware
implementations are employed especially when speed of
performance is important.

FIG. 9 shows a computer system embodiment of the
present invention. The computer system includes a proces-
sor 910; a read/write memory 920 for storing instructions
and data for the processor; a communication channel 930 for
exchanging message signals between the processor and
external devices;, an authenticator 940 for determining
whether incoming message signals to the processor are
authorized by a trusted authority; a loader 950 for loading
programs into the read/write memory; a security manager
960 for authorizing the loader to load a new program into the
memory only if the authenticator determines that the new
program is authorized by a trusted authority.

In some embodiments the system further includes an
operating system or application program in the read/write
memory. The operating system or application program is
“dependent” on the loader, wherein said new program is
“dependent” upon both the loader and the operating system
or application program, and wherein said trusted authority
includes in combination a first influence of a first authority
over the loader and a second influence of a second authority
over the operating system or application program.

An alternate combination for the computer system is a
system that includes a coprocessor; a port for exchanging
message signals between the processor and external devices;
a ROM memory for storing a loader program executable by
the processor, (the loader program containing a crypto-
graphic key for decoding incoming message signals from a
trusted authority over the loader program, and containing a
second cryptographic key for encoding outgoing message
signals from the loader program); a second memory for
storing instructions and data for the processor, and for
storing a first child program which calls one or more of the
functions provided by the loader program, said first child
program including a first child cryptographic key for decod-
ing incoming message signals from a second trusted author-
ity over the first child program, and including a second
cryptographic key for encoding outgoing message signals
from the first child program. Sometimes the loader program
is a verification program which includes code to verify an
integrity level of said child and updated child secrets and/or
the first child program includes code for an interchange of
sensitive data.

Alternatively the computer system comprises a processor;
a communication channel for exchanging message signals
between the processor and external devices; a first memory

10

15

20

25

35

45

50

55

60

65

16

storing a loader program executable by the processor, (the
loader program containing a first cryptographic key for
authenticating incoming message signals from a first trusted
authority over the loader program, and containing a second
cryptographic key for authenticating outgoing message sig-
nals from the loader program); a second memory for storing
instructions and data for the processor, said second memory
storing a first child program which depends upon the loader
program. The first child program containing a first child
cryptographic key for decoding incoming message signals
from a second trusted authority over the first child program,
and containing a second cryptographic key for encoding
outgoing message signals from the first child program.
Sometimes the loader program is a program including code
to destroy sensitive data and/or the first child program
includes code for verifying an integrity level of the loader.

FIG. 10 shows an embodiment of an apparatus in accor-
dance with the present invention. TBD)

The apparatus, system and methods presented solve the
problem of code-downloading in the full generality of
complex code dependencies. These methods account for the
implications of mutual distrust and hot-swapping, and for-
malize and achieve the security and authentication require-
ments for downloadable code in this context.

These subdevices are implemented as known to those
skilled in the art and/or described in the following refer-
enced documents which are incorporated herein by refer-
ence: U.S. Pat. No. 4,860,351, entitled, “Tamper-Resistant
Packaging for Protection of Information Stored in Electronic
Circuitry”, by S. H. Weingart, issued Aug. 22, 1989; U.S.
Pat. No. 5,159,629, entitled, “Data Protection by Detection
of Intrusion into Electronic Assemblies”, by G. P. Double
and S. H. Weingart, issued Oct. 27, 1992; Federal Informa-
tion Processing Standards Publication 140-1, “Security
Requirements for Cryptographic Modules” U.S. Department
of Commerce/National Institute of Standards and
Technology, Jan. 11, 1994; “Applied Cryptology”, by B.
Schneier, 2nd edition, Wiley and Sons, N.Y., 1996, ISBN #
0-471-12845-7. These are incorporated herein for many
purposes, including the enablement of the systems and
subcircuits in the present invention.

This invention includes the following security procedures.
It provides a procedure wherein an authority signs code from
someone else, but upon which that authority depends in
order to establish whether a ‘trusted execution environment’
is being preserved. It also provides the procedure of using
code that is already trusted to ensure that proprietary data is
destroyed when a change causes the trusted execution envi-
ronment to cease holding for a certain level. A procedure is
also provided for using a carefully constructed key structure
to ensure that communications allegedly from particular
code in particular environment can be authenticated as such.
It also describes a procedure for caring for the authenticity
of the code that decides the authenticity of public-key
signatures, and/or the authenticity of other code. Method-
ology is also provided for physically secure coprocessors
with multiple levels of dependent software that is indepen-
dently downloadable by mutually suspicious authorities, and
for physically secure coprocessors whose software has suf-
ficient richness and complexity so as to be certainly
permeable, and for recoverability of physically secure
coprocessors from code of arbitrary evil, running at arbitrary
privilege.

The general reloading problem is the following. In the
general case, we can construct a security dependency graph,
consisting of a node for each program/segment, and directed

6,167,521

17

edges connecting each node to the nodes it depends on.
Secure and correct operation of a node depends on the
programs in that node and its ancestors. So, loading a
program into a particular node requires addressing two
questions. The first question is, will this new program
operate safely and securely in this computational environ-
ment? It is noted that dependencies exist on the programs
currently in its ancestor nodes, and on the device itself. The
second question is, will loading this new program disrupt the
safe and secure operation of the programs currently in its
descendant nodes? Furthermore, the loading scheme must
deal with some additional facts. Indirect Authentication may
be necessary. The card may not necessarily be able to
directly authenticate a request from the authority over a
node. (E.g., because the node is still blank, and has no public
key stored with it). Another consideration is trusting the
loader. Both the old and new versions of a program have
security dependency on the software that evaluates and
performs the reloading.

It is noted that this invention may be used for many
applications. Although the description is made for particular
arrangements and applications, the intent and concept of the
invention is suitable and applicable to other arrangements
and applications. It will be clear to those skilled in the art
that other modifications to the disclosed embodiments can
be effected without departing from the spirit and scope of the
invention.

What is claimed is:

1. A method for a node’s authority to download new code
into an existing node within a device, said method compris-
ing:

said authority preparing a command message including

the new code, load predicates and trust parameters,
where the load predicates specify whether a current
environment in said device is a secure environment for
said code;

said authority communicating said command message to

the device;

said device receiving said message;

said device verifying that said message originated from

said authority, and verifying that the current environ-
ment is valid for said load predicates; and
downloading said code if said message is verified to have
originated from said authority, and said current execu-
tion environment is valid for said load predicates.
2. A method as recited in claim 1, wherein said existing
node has at least one descendent node, said method further
comprising:
evaluating for each said descendent node a change in an
environment of said existing node resulting from said
step of loading by comparing said environment against
stored trust parameters for said descendent node;

determining if said change is acceptable for said trust
parameters and;

executing said code if said step of determining proves said

change to be acceptable, or clearing sensitive data from
said descendent node otherwise.

3. A method as recited in claim 2, further comprising:

said device adjusting at least one of its outgoing authen-

tication keys to reflect said change.

4. A method as recited in claim 3, further comprising:

said device erasing an original outgoing authentication

key of said descendent node;

said device generating and certifying a new outgoing

authentication key for said descendent node.

10

15

20

25

30

35

40

45

50

55

60

65

18

5. A method as recited in claim 4, further comprising the
steps of said device generating at least one receipt attesting
to said change.

6. A method as recited in claim 5, further comprising
authenticating said receipt using an outgoing authentication
technique of the existing node.

7. A method as in claim 6, further comprising atomically
completing said command and using a software environment
that existed before said load was requested.

8. A method as in claim 1, further comprising:

maintaining said device in a safe state following a power

failure.

9. A method as in claim 2, further comprising:

maintaining said device in a safe state following a power

failure, and

sensing an untrusted download into said existing node

triggering deletion of each of said descendent nodes
even when recovering from a power failure.

10. A method as recited in claim 1, wherein said trust
parameters include requirements which a subsequent change
to an execution environment must satisfy in order for the
code to continue to be able to run after said subsequent
change.

11. A method as recited in claim 1, wherein said step of
verifying includes having the device use a public key it has
stored for said authority to verify a signature that said
authority has produced and communicated along with said
command message.

12. A method as recited in claim 1, wherein said device is
a smart card.

13. A device as recited in claim 1 wherein said new code
includes a new incoming authentication key for said node’s
authority.

14. A method as recited in claim 1, wherein said load
predicates include requirements which an execution envi-
ronment must satisfy in order for the new code to be able to
run.

15. A method as recited in claim 11, wherein the step of
verifying that said message originated from said authority
includes a method of incoming authentication using public
key cryptography, and said step of preparing said require-
ments employs a method of identifying acceptable code,
said method of identifying acceptable code including
hashing, and wherein an inclusion of said requirements in
the command constitute one authority signing code belong-
ing to another.

16. A method as recited in claim 14, wherein said envi-
ronment requirements which an execution environment
must satisfy include:

for the existing node and each of its ancestors, an iden-

tification of a particular authority owning each node
and an identification particular acceptable code in each
node.

17. A method as recited in claim 16, wherein said envi-
ronment requirements which an execution environment
must satisfy further includes a specification of a particular
family of devices deemed acceptable.

18. A method for an authority over a parent node in a
device to create a child node of said parent node, said
method comprising:

said parent authority preparing a create child command

for said device,

said command including command predicates;

said authority sending said command to said device;

said device receiving said create child command,

said device verifying a source of said command;

6,167,521

19

said device creating said child if the predicates are satis-

fied and said source is said parent authority.

19. A method as recited in claim 18, further comprising
making an initial state of said child to be unrunnable and to
contain no code or authentication secrets.

20. A method as recited in claim 18, further comprising
pre-loading said child with incoming authentication secrets
sent in said command.

21. A method for a node authority to send a command to
an existing node in a device, said method comprising:

said node authority preparing the command for the

device, said command including command predicates;
said node authority sending the command to the device;
said device receiving the command;

said device verifying a source of said command;

said device verifying that the command predicates are

valid for a current execution environment of said node;
and

implementing said command if said source is verified to

be said node authority and if the predicates are satisfied.

22. A method as recited in claim 21, wherein said com-
mand is a command to destroy the existing node.

23. A method as recited in claim 21, wherein said com-
mand predicates include requirements which the execution
environment of said node must satisfy in order for said
command to be carried out.

24. Amethod as recited in claim 23, wherein a method for
incoming authentication is a public key method for the
existing node, and a method for identifying acceptable code
for the existing node includes hashing, said method further
comprising allowing one authority to sign code belonging to
another authority when the command includes such require-
ments.

25. A method as recited in claim 23, wherein said com-
mand is a command to destroy said existing node, and said
existing node has at least one descendent, said method
further comprising destroying each descendent of said node
and erasing sensitive data in each said descendent.

26. A method as recited in claim 25, wherein said require-
ments which the execution environment of said node
include, for the node being destroyed and each of its
ancestors, an identification of a particular authority owning
the node, and an identification particular acceptable code in
the node, and a specification of a particular family of devices
deemed acceptable.

27. A method for a device having a security dependency
graph to regenerate an outgoing authentication key for a first
node said first node having at least one ancestor having
public-key ability, said method comprising:

said device generating a new keypair for said first node;

said device selecting said ancestor for its outgoing authen-

tication technique;

said device composing a certificate for a new outgoing

public key of said first node, said certificate includes
the new outgoing public key of said first node, identi-
fying an authority over each descendent node in said
security dependency graph, and identifying code cur-
rently held in the descendent node;

signing said certificate with a current outgoing private key

of the ancestor;

saving the new public key for the said first node and

saving the certificate in an appropriate memory; and
making the new keypair the active pair for the first node
while deleting the old private key.

28. A method for a device to ensure that a first message
received from a first node before a change in an execution

10

20

25

30

35

40

50

55

60

65

20

environment of said first node occurs, is distinguishable
from a second message from said first node received after
said change occurs, said method comprising:

selecting a pre-existing ancestor of said first node;

composing a second message whenever the first node

needs outgoing authentication of the first message;
said second message including said first message;

said second message including a first identity of the

authority over said first node, and a second identity of
the authority over a second node;

said second message including a first identity of the code

currently in said first node, and a second identity of the
code currently in said second node;

for each node between said first node and said second

node in a security dependency graph of said device,
said second message includes a first identity of the
authority over said third node, and a second identity of
the code in said third node;

authenticating said second message with a current outgo-

ing authentication technique of said second node.

29. A method for a device to respond to a first command,
said device having a NODE-A and a NODE-B, said
NODE-A under the control of a NODE-A authority, said
NODE-B under the control of a NODE-B authority, wherein
said NODE-A is an ancestor of said NODE-B, and said first
command is a request made by said NODE-A authority, said
method comprising:

said NODE-B authority:

selecting a command authentication technique, gener-
ating new incoming authentication secrets, and

communicating at least part of said secrets and/or keys
to said NODE-A authority; and

said NODE-A authority:

authenticating that said step of communicating origi-
nated with NODE-B authority,

preparing an emergency certificate which includes a
first identification of said NODE-B authority, the
selected command authentication technique, and at
least a part of said secrets, and

communicating said emergency certificate to the device
to enable said device to respond to said first com-
mand.

30. A method as recited in claim 29, wherein said com-
mand authentication technique and said step of authenticat-
ing each employ a public key cryptology technique, said
method further comprising:

sending said emergency certificate to said NODE-B

authority; and

said NODE-B authority forwarding said emergency cer-

tificate to said device along with a second command to
perform said first command.

31. A method as recited in claim 29, further comprising:

NODE-B authority

verifying said load command against information in
said emergency certificate; and

verifying that the emergency certificate was indeed
produces by said NODE-A authority; and

authorizing said device to perform said command.

32. A method as recited in claim 29, further comprising:

NODE-B authority

verifying said load command against information in
said emergency certificate; and

verifying that the emergency certificate was indeed
produces by said NODE-A authority; and

authorizing said device to perform a different action on
the existing node and the descendent node, when the
command uses emergency authentication.

6,167,521

21

33. Amethod for a device to create a child NODE-C of an

existing NODE-B, by an authority over NODE-B; said

method comprising:

the NODE-B authority preparing and sending a create-
child command to the device, said command includes
a name of the new child, a name of the child’s author-
ity; and command predicates

said NODE-B authority sending the create-child com-
mand to the device;

said device receiving the create-child command, verifying
that the command came from the NODE-B authority,
and verifying that the command predicates are valid for
a current execution environment of NODE-B;

creating said child if both steps of verifying are
successful, otherwise not creating the child.

34. A method as in claim 33, wherein said child is

pre-loaded with incoming authentication secrets sent in the
create-child command.

35. A method for securely downloading dependent code

from a loading device to a node, said loading device
controlled by a first authority, said node controlled by a
second authority, said method comprising:

said first authority providing an incoming authentication
key of said second authority and an outgoing authen-
tication key for said device;

said second authority allowing said downloading
executed in a fashion trusted by said second authority;
and

said second authority signing said dependent code.

36. A computer system comprising:

a processor;

a memory for storing instructions and data for the pro-
Cessor;

a communication channel for exchanging message signals
between the processor and external devices;

an authenticator for determining whether incoming mes-
sage signals to the processor are authorized by a trusted
authority;

a loader for loading programs into the memory;

a security manager for authorizing the loader to load a
new program into the memory only if the authenticator
determines that the new program is authorized by a
trusted authority;

an operating system or application program in the
memory said operating system or application program
being “dependent” on both the loader and the operating
system or application program, and wherein said
trusted authority includes a first influence of a first
authority over the loader and a second influence of a
second authority over the operating system or applica-
tion program.

37. A computer system comprising:

a Processor;

a port for exchanging message signals between the pro-
cessor and external devices;

a first memory for storing a loader program executable by
the processor, said loader program possessing a first
cryptographic key for decoding incoming message sig-
nals from a first trusted authority over the loader
program, and possessing a second cryptographic key
for encoding outgoing message signals from the loader
program;

a second memory for storing instructions and data for the
processor, and for storing a first child program which

10

15

20

25

30

35

45

22

calls one or more of the functions provided by the
loader program, said first child program possessing a
first child cryptographic key for decoding incoming
message signals from a second trusted authority over
the first child program, and possessing a second child
cryptographic key for encoding outgoing message sig-
nals from the first child program.

38. A computer system as recited in claim 37, wherein
said loader program includes code to verify an integrity level
of said child and updated child secrets.

39. A computer system as recited in claim 37, wherein
said first child program includes code for an interchange of
sensitive data.

40. A computer system as recited in claim 37, wherein
said loader program is a program including code to destroy
sensitive data.

41. A computer system as recited in claim 37, wherein
said first child program includes code for verifying an
integrity level of the loader program.

42. A computer system comprising:

a Processor;

a communication channel for exchanging message signals

between the processor and external devices;

a first memory storing a loader program executable by the
processor, said loader program possessing a first cryp-
tographic key for authenticating incoming message
signals from a first trusted authority over the loader
program, and possessing a second cryptographic key
for authenticating outgoing message signals from the
loader program;

a second memory for storing instructions and data for the
processor, said second memory storing a first child
program which depends upon the loader program, said
first child program possessing a first child crypto-
graphic key for decoding incoming message signals
from a second trusted authority over the first child
program, and possessing a second child cryptographic
key for encoding outgoing message signals from the
first child program.

43. An apparatus for downloading new code into an
existing node within a secure device, said apparatus com-
prising:

a receiver for receiving a download command message
from an authority, said message including the new
code, load predicates and trust parameters;

a verifying subdevice for verifying that the message is
valid for said load predicates and for verifying that the
message originated with the authority.

44. A secure device having an existing node and com-

prising:

a receiver for receiving a first command message from an
outside source directed to the existing node, said mes-
sage including first command actions, load predicates
and trust parameters;

a verifying subdevice for verifying that the first command
message is valid for said load predicates, and for
verifying that the outside source is an authority over the
existing node; and

a processor to implement the first command actions when
the first command message is verified successfully.

45. A device as in claim 44, wherein the processor is
capable of completing a command in progress following
recovery from a power failure, and to maintain the device in
a safe state following the power failure.

46. A device as recited in claim 44, further comprising a
second subdevice to function to ensure that a change to a
node and its descendants occur atomically.

6,167,521

23

47. A device as recited in claim 46 wherein said second
subdevice performs said function despite interruptions and
failures.

48. A device as recited in claim 44, wherein said existing
node has at least one descendent node, said device further
comprising:

a subdevice to sense a change in an environment of said

existing node resulting from an implementation of the
first command actions;

a descendent controller to control a reaction of each
descendent node to the change in the environment.
49. A device as recited in claim 48, further comprising: a
key generator for generating keys, wherein the existing node
and each descendent each have an outgoing authentication
key, and wherein the device adjusts at least one outgoing
authentication key to reflect the change in the environment.
50. A device as recited in claim 48, wherein at least one
descendent has sensitive data, and wherein said sensor upon
sensing an untrusted download into the existing node causes
deletion of sensitive data in said at least one descendent.
51. A device as recited in claim 48, wherein said action is
to generate a new keypair for the descendent node.
52. A device as recited in claim 48, further comprising:
a memory controller for erasing an original outgoing
authentication key of the descendent node, and for
certifying a new outgoing authentication key for the
descendent node.
53. A device as recited in claim 52, further comprising:

a receipt generator to generate at least one receipt attest-

ing to the change in the environment; and

an authenticator for authenticating the receipt using an

outgoing authentication technique of the existing node.

54. A device as recited in claim 48, wherein said first
command message is a command to create a child node of
the existing node.

55. A device as recited in claim 54, wherein an initial state
of the child makes the child unrunnable and to contain no
code or authentication secrets.

56. A device comprising:

a NODE-A under the control of a NODE-A authority;

a NODE-B under the control of a NODE-B authority,
wherein NODE-A is an ancestor of said NODE-B;

a NODE-B receiver for receiving a first command from

10

15

20

25

30

35

40

45
the NODE-A authority, and for receiving an emergency

certification from the NODE-A authority indicating the
NODE-A authority authenticated that at least one of
NODE-B secrets originated from the NODE-B author-

ity;

24

a NODE-B responder for responding to the first command
upon receiving permission from the NODE-B authority
to prepare and send to the NODE-A authority a first
response, where said first response includes at least part
of NODE-B secrets, thereby enabling the NODE-A
authority to generate and send to NODE-B the emer-
gency certificate.

57. A device as recited in claim 56, wherein the emer-
gency certificate includes a first identification of said
NODE-B authority, a second authentication technique, and
a shared key for said NODE-B authority.

58. A method for regenerating an outgoing authentication
key for a NODE-B, if NODE-B or an ancestor of NODE-B
has public-key ability, and if a previous version of the code
at NODE-B was trusted, said method comprising the device:

generating a new keypair for NODE-B which includes a
new outgoing public key of NODE-B;

composing a new certificate for the new outgoing public
key of NODE-B;

signing the new certificate with a current outgoing private
key of NODE-B;

saving both the new public key for NODE-B and the
certificate in a memory;

making the new keypair to be an active pair for NODE-B;
and

deleting an old private key.

59. A method as recited in claim 58, wherein an old
version of NODE-B code is trusted and still available, said
method being employed for downloads of updated code into
B, and for simple renewal of NODE-B’s key.

60. A method as recited in claim 58, wherein the certifi-
cate includes the new public key for NODE-B, and identi-
fying information for an authority over NODE-B and the
code for both the previous and a new version of NODE-B.

61. A method for maintaining the security of a first node
controlled by a first authority, said first node dependent on
a second node controlled by a second authority, when said
second authority issues a command for said second node,
where said command changes an execution environment of
said first node, said method comprising:

said first authority explicitly counter-authenticating said
command from said second authority as acceptable for
said first node;

destroying said first node and/or deleting its sensitive data
when said command arrives without said counter-
authentication.

