
1540-7993/21©2021IEEE Copublished by the IEEE Computer and Reliability Societies May/June 2021 17

FAILURE TO VALIDATE

What We Have Here Is Failure to Validate:
Summer of LangSec
Sameed Ali, Prashant Anantharaman, Zephyr Lucas, and Sean W. Smith | Dartmouth College

This article reviews several exploits of input-handling vulnerabilities and categorizes these vulnerabilities
based on their root causes. We describe the language-theoretic security paradigm and discuss how it can
be used to tackle these categories of vulnerabilities.

I n the summer of 2020, we saw a surge in exploits of
input-handling vulnerabilities across various systems

from the modern to the more than 20-year-old Treck
TCP/IP stack. Although such vulnerabilities have been
a commonly exploited attack vector since the 1980s,
they are still prevalent. Languages (such as C, C++, and
assembly) that lack built-in memory protections are
incredibly prone to bugs stemming from insufficient or
no input validation. One approach to prevent this class
of vulnerabilities is to apply a more formally rigorous
process to input handling, such as Language-Theoretic
Security (LangSec). In this article, we study 10 vulner-
abilities and exploits from the summer of 2020 through
the lens of LangSec. We believe that LangSec can be a
useful tool to prevent such exploits in the future.

The LangSec approach advocates defining various
input formats as formal grammars and building recog-
nizers for these grammars to decide whether an input
is valid, as proposed in 2013 by Sasseman et al.11 This
framework applies to various network protocols and file
formats that require complex parsers to process input.
LangSec provides a rigorous methodology to imple-
ment these parsers in a way that would minimize pars-
ing errors.

The vulnerabilities we study in this article fall under
three broad categories, as follows:

■ when the parser does not reject invalid input
■ when the specification or grammar describes a

proper superset of the input that the program can
handle correctly

■ when two parsers are expected to consume the same
grammar but behave differently.

Flawed and Insufficient Parsers:
Basic LangSec Failures
 Figure 1 shows the basic LangSec antipattern, in which
flawed code implicitly assumes the input is correctly
formatted and acts on invalid input as a result. The three
vulnerabilities described next fit this antipattern.

Ripple20
June 2020 brought news of Ripple20, a set of vulner-
abilities in the Treck TCP/IP stack. This TCP/IP stack
is over 20 years old but used in “hundreds of millions”
of embedded systems, including critical infrastructure
such as power, aircraft, and health care.2 Besides the
direct threat to the large number of compromised sys-
tems themselves, Ripple20 has additional high-impact
downstream consequences because it is a networking
stack that, by definition, exposes an interface to the out-
side world. Consequently, Ripple20 vulnerabilities may
enable adversaries to read and write data on the devices,
as well as execute code, and thus compromise other sys-
tems. Remediation will be difficult as real-world embed-
ded systems are notoriously hard to track down and patch.

Digital Object Identifier 10.1109/MSEC.2021.3059167
Date of current version: 5 March 2021

Authorized licensed use limited to: Dartmouth College. Downloaded on June 14,2021 at 14:49:06 UTC from IEEE Xplore. Restrictions apply.

18	 IEEE Security & Privacy� May/June 2021

FAILURE TO VALIDATE

Two of Ripple’s vulnerabilities (i.e., “#1” and “#3”
in Kol et al. 7) are straightforward failures by the
Domain Name System (DNS) resolver to validate
external input.

■■ In the first vulnerability, flawed code constructs a
requested hostname and copies it into a buffer. How-
ever, the adversary-supplied MX record provides
both the RDLENGTH value used to calculate the size
of the buffer and the data from which the requested
hostname is constructed. As a result, the adversary
can supply a record that tricks the code into corrupt-
ing its heap by copying a large byte sequence into a
too-small buffer. Correctly behaving code should
have rejected this malformed record.

■■ In the second vulnerability, the flawed code does
not correctly confine reads to data relevant to the
adversary-supplied record—so a malformed record
can trick the code into copying internal data to an
output buffer.

The Thales Module
August brought news of a vulnerability in a Thales mod-
ule potentially used in “billions of things.”8 At its core,
this vulnerability manifests as a variation on the basic
LangSec antipattern. The variation is shown in Figure 2.
In the case of the Thales module, flawed code deter-
mines access control by checking if an input parameter
specifies something forbidden—but this test implicitly
assumes the input parameter is correctly formatted (i.e.,
a path with a single slash). If the adversary goes outside
the safe input space by supplying what would be a for-
bidden parameter, except using two slashes instead of
one, the flawed code accepts the parameter and then
ignores the second slash.

How LangSec Can Fix These Problems
In these examples based on exploiting the basic Lang-
Sec antipattern, the software programs expected their
input to follow certain rules and the attacker capital-
ized on these expectations by providing data that was
not structured according to these rules but processed
nonetheless. This in turn caused unexpected and harm-
ful computation to be performed. LangSec calls for
these input rules to be formally described as a gram-
mar. Describing the input rules as a grammar allows a
verifier to parse any potential input to see if it adheres
to these rules before passing it on for processing. In
the Ripple20 vulnerabilities, a parser would have rec-
ognized malformed records and rejected them before
any harmful computation would have been done. Simi-
larly, in the Thales Module, an input parser would have
rejected input parameters with excess slashes, thereby
protecting the code from the forbidden paths.

The Official Grammar Is Wrong: When
Specifications are Incorrect
The standard LangSec defense pattern to the problems
of Figures 1 and 2 is to formally specify an expected
input language, L2, and to test whether an input is in L2
before acting on it. However, this approach raises the
question (depicted in Figure 3): just because an input is
in the language the developer expects, does that it mean
the code will handle it safely? This section considers
some recent vulnerabilities for which the answer to the
question (above) is “no.”

Summer 2020 saw many flaws arising because the set
of correctly handled inputs are only a proper subset of
the inputs within the validation grammar. This can stem
from either an error in formally describing the intended
input or from improperly handling all intended inputs.

The Wallpaper of Death
June brought news of the Android “Wallpaper of Death.”1
A particular picture, when set as the background image

Figure 1. In the basic antipattern, the flawed code implicitly assumes the input
is in L2 but does not check; attacks are possible when the adversary crafts an
input in L1\L2.

L1: All Possible Inputs

L2: Correct Inputs

Code

Figure 2. In a variation of the basic antipattern, the flawed code checks for
disallowed requests (L4) but implicitly assumes these requests are in L2; the
adversary can craft inputs in L1\L2 that bypass the checks but get interpreted as
something in L4.

L1: All Possible Inputs

L2: Correct Inputs

 L4:
Forbidden

Paths

Code

Authorized licensed use limited to: Dartmouth College. Downloaded on June 14,2021 at 14:49:06 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 19

for a Samsung or Google Pixel (or other phones that
use the default Android color engine), will softlock the
phone by causing it to endlessly reboot. The picture
contains a pixel whose color values cause an overflow
error when the phone is calculating the luminescence
value that the OS handles by rebooting the phone. Dur-
ing the reboot process, the background image is loaded,
overflows, and initiates another reboot. This renders
the phone unusable until the user boots the phone in
safe mode and deletes the image, resetting the phone to
the default background.

This raises some interesting LangSec questions as
the image in question uses a properly formatted red,
green, blue (RGB) color space—but the phone first
transforms the RGB to sRGB, and the transform code
can turn some valid RGB images (such as this one) into
illegally formatted sRGB images.

Non-Click iOS Email 0 day
In April 2020, ZecOps reported that they found a
zero-click attack on iPhone and iPad default email
applications.14 Users do not need to take any action;
when the email shows up in their mailbox, it gives
access to the attacker. The attacker can even delete the
crafted email that gave them access. Such zero-click
attacks are hence extremely difficult to detect. ZecOps
reported that several top-level executives and journal-
ists across the world might have been affected by
this vulnerability.

ZecOps reported that correctly formatted (but devi-
ously crafted) emails, such as the following examples,
could trigger vulnerabilities:

■■ Out of bounds write: The email application calls the
ftruncate syscall to truncate or extend a file to a
specific length, but it does not check the error condi-
tion. With the right input, the application will write
beyond the end of mapped space.

■■ Heap-based overflow: The email application tries to
copy 0x200000 bytes into memory allocated using
mmap. However, if this syscall fails, the application
only allocates 8 bytes and copies over the much larger
0x200000 bytes, overflowing the heap.

The Snapdragon
August brought news of a large number of vulner-
abilities within the Snapdragon digital signal proces-
sor used in many Android smartphones, including but
not limited to Google, Samsung, OnePlus, Xiaomi, LG,
Android and which are accessible by third-party appli-
cations.10 Such devices have many separate processors;
communication between them is handled by software
generated by the Hexagon software development kit.
However, as Slava Makkaveev discussed at DefCon,15

this code fails to handle certain kinds of correctly (but
oddly) formatted input: data and buffer lengths are
treated as unsigned integers but tested as signed inte-
gers—so crafted input with a large enough length to
be regarded as negative when interpreted as signed can
result in heap overflow.

SigRed
Bastille Day (14 July 2020) brought news of “SigRed,”
a 17-year vulnerability in the Windows DNS. The bug
enables remote adversaries to execute code on the
victim machine, on “the DNS servers of practically
every small and medium-sized organization around
the world.”3 Researchers at Check Point13 found that
when the code handles certain kinds of records sent in
response to a forwarded DNS query, it calculates the
length of the record using a 16-bit unsigned integer.
However, the adversary can use compression tricks to
construct a valid record whose length exceeds 2.16 Once
more, the flawed code copies too many bytes into too
small a buffer, resulting in heap overflow.

Ripple Again
Another one of the Ripple vulnerabilities demonstrates
this pattern (“#2” in Kol et al.7). The flawed code uses
a 16-bit unsigned integer to track a “label length” value,
but correct inputs can be constructed whose label
length overflows that. As a result, the code will allocate
a too-small buffer, and then copy a much larger byte
sequence into it. This can also be viewed as a parsing
problem: The flawed code uses two different ways to
calculate a length, and there are correct inputs for which
these two approaches do not agree.

How LangSec Can Fix These Problems
In these examples, the problem was not a failure to validate,
but a failure to validate with the correct specifications.

Figure 3. In many cases, the flawed code is intended to handle some target L2 of
valid inputs—but instead properly handles only a proper subset L3. Attacks are
possible when the adversary crafts an input in L2\L3. Simply validating against L2
is not enough—we need tools to help ensure that L2\L3 is empty.

L1: All Possible Inputs

L2: Intended Correct
Inputs

 L3: Handled
Correctly

Code

Authorized licensed use limited to: Dartmouth College. Downloaded on June 14,2021 at 14:49:06 UTC from IEEE Xplore. Restrictions apply.

20	 IEEE Security & Privacy� May/June 2021

FAILURE TO VALIDATE

To fix problems like this, the grammar must be re
written to match what is handled correctly, or the
computation must be reworked to handle all of the
expected input. We must check whether the input
is within the specified grammar. However, we also
need to be careful that the grammar we are checking
against matches a program’s “safe input.” Therefore,
we need to develop tools that can discover grammars
for the application or, at minimum, be able to find
potential errors with grammars that are considered
“correct.” Alternatively, if the legal inputs in L2\L3
have no legitimate use, the developers may wish to
restrict the official input space and tighten the input
filter accordingly.

LangSec on the Inside

Other Ripple Vulnerabilities
Other Ripple vulnerabilities6 pertain not to code pars-
ing input but, rather, to code parsing its own internal
data structure (Figure 4). When processing tunneled
and fragmented Internet Protocol packets, the code
constructs an internal data structure with two different
ways of representing the same length: an overall length
in the initial part, and the sum of the lengths of each part.
In “correct” configurations of this data structure, these
match; however, correct inputs exist that can cause the
flawed code to construct an internal state in which these
values do not match, leading to adversarial-directed
memory corruption.

How LangSec Can Fix These Problems
Just as it is important for software to ensure that its
external inputs are correctly formatted before acting on
them, it is also important to check its internal inputs and
internal outputs. Indeed, the basic programming tenet
of defining and preserving the invariant for a data struc-
ture can be seen in a LangSec context: Indicate precisely
what one means as correct.

Differentials: Can Parsers Disagree?

Parsing Differential
In LangSec, the role of formal languages is not just con-
fined to deciding whether an input is safe to act on. It
is also key in parsing; i.e., how a program understands
what an input means.

In the software world, the multiple programs often
consume the same input—and there is an underlying
assumption that different programmers read a specifica-
tion and understand it the same way. Disagreements lead
to parser differentials (Figure 5), perhaps documented
initially in 2010 when Len Sassamen et al.5 found that
Public Key Certificate Authorities could grant servers
to domains that were invalid and some application pro-
gramming interfaces accepted these invalid certificates.

The Psychic Paper. May brought news of a parser differ-
ential vulnerability in iOS.12 In the Apple Ecosystem,
property lists (or plists) are used to store serialized data
in various contexts, such as code signatures and con-
figuration files. The list of properties the plist defines
in code signatures comprise the entitlements. There are
over 1,800 entitlements available for the latest versions
of the iOS (the mobile operating system), whereas the
Mac OSX versions support just fewer than 1,000 enti-
tlements each. These entitlements also specify how
the application interacts with the kernel. It can hold
a list of drivers and system calls that the application
can access.

The Psychic Paper vulnerability uses the fact that
iOS uses “at least four” different XML parsers, and they
have differentials. One example is how parsers handle
comments in plists. Comments are usually enclosed
in <!–– and ––> tags, and everything enclosed within
these tags is considered to be a comment. However,
three of the iOS XML parsers (IOKit, CF, and XPC)
handle the not-quite-correct comment delimiters 1)
<!–––> and 2) <!––> differently.

Figure 4. In some vulnerabilities, crafted but correct input can trick the flawed code into constructing an incorrectly
formatted internal state; when the code later acts on that state, it goes wrong.

L1: All Possible Inputs

L2: Correct Inputs

Internal Data Structures

Code

L6: Correct Configs

L5: All Possible Configs

Authorized licensed use limited to: Dartmouth College. Downloaded on June 14,2021 at 14:49:06 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 21

■■ The IOKit sees the <!– in 1) and thinks it is the start
of a comment. It ends the comment when it sees the
end of 2) <!––>.

■■ The CF parser has a bug that only scans two places
after seeing the ! in 1). This means that a – is parsed
twice and the first tag 1) opens a comment. The sec-
ond tag 2) is treated as the opening of a new comment.

■■ XPC ignores both 1) and 2) but differs from the
IOKit and CF in other constructs such as the usage of
double-quotes, “ and square brackets, [].

By being able to construct plists containing mate-
rial that some parsers ignore as comments and others
regard as real, the adversary can thus forge his or her
own entitlements and can get access to any memory
location the user can access and execute system calls
and drivers. The adversary can also alter thread register
states and read and write to process memory.

As mentioned previously, the problem stems from
the fact that the three parsers handle comments differ-
ently. One way to deal with this could be to specify the
context-free grammar needed to recognize plists, and
then build a parser to recognize this grammar. Instead of
a specification, if developers start with the formal gram-
mar needed to recognize plists, parser differentials can
be minimized.

How LangSec Can Fix These Problems. With parser dif-
ferentials, the correct specifications are not the same
across various implementations. Using parser genera-
tors that use a data-description language or grammar
could ensure that the parsers implement the same
grammar across different implementations. Another
approach would be to use parser combinators. They
implement code that looks like the grammar and can
be easily verified. When different implementations
use parser combinators, they can be visually verified
to be equivalent, as well as equivalent to the gram-
mar specification.

Semantic Differential

The Shadow. July also brought news of the Shadow
attack9, which might also be seen as a form of differen-
tial, albeit a semantic one. A PDF viewer can

1.	 render a PDF file as a “virtual piece of paper” to the
user

2.	 allow a user to digitally sign the document seen by
the user

3.	 allow a user to append an incremental update to the
document

4.	 tell the user that a digital signature is valid.

The problem is that Behavior 3 could permit cer-
tain harmful types of incrementally saved changes after
Behavior 2 and, hence, allow the attacker to configure
the PDF so that the visible content of the document
that the signer saw in Behavior 2 differs from the con-
tent the verifier sees in Behavior 4 (Figure 6). Attackers
can construct a form, contract, or bill, for example, and
get it approved via a digital signature. However, it is pos-
sible for the attacker to then modify the document to
display content different from the one approved.

The problem is that there is a gap between the core
meaning of the PDF file—the virtual piece of paper the
user sees—and the parsed PDF structure. As Figure 7
shows, the verifier cannot (easily) distinguish between
two different abstract syntax trees with significantly dif-
ferent signature semantics the same way. (This was also
demonstrated with earlier versions of PDF long ago.4)

How LangSec Can Fix These Problems. A common solu-
tion that many PDF viewers currently use is to remove
any unused objects prior to signing; however, this stops
only some flavors of the Shadow attack and not all of
them. A stronger one,9 would be to reject any document
that contains a nonsigning incremental save after a sig-
nature. While this is effective, it is possibly too harsh, as

Figure 5. In parser differentials, two different programs can construct different parse trees—and take different actions—for
the same input.

L1: All Possible Inputs

L2: Correct Inputs
Code 1

Code 2

Space of Parsed Inputs

Authorized licensed use limited to: Dartmouth College. Downloaded on June 14,2021 at 14:49:06 UTC from IEEE Xplore. Restrictions apply.

22	 IEEE Security & Privacy� May/June 2021

FAILURE TO VALIDATE

there are use cases where changes made post signature
are actually desired (e.g., filling out an approved form).

Work must be done to isolate exactly what is consid-
ered a “safe change”—and more deeply bind the action
of producing/verifying a signature to the semantics of
how the document is being presented to the user. Ide-
ally, if two parse trees are semantically different, then
the code consuming them should enable the user to dis-
tinguish the difference.

A lthough LangSec has been around since 2013, de
velopers have not adopted it much as far as we know.

No studies have been conducted to evaluate the usability
of the several parser-combinator libraries, data-description
languages, and parser generator tools available to enforce
LangSec principles. We believe such a study would clarify
why such tools are yet to receive traction.

Instrumenting existing software with LangSec pars-
ers would increase code complexity and add a runtime
overhead. However, we believe such overheads would

be minimal with respect to large code bases, and Lang-
Sec parsers make code easy to audit since parsers are
written like grammars. Several other categories of code
vulnerabilities—such as use-after-free, null-pointer-
dereference, and integer overflows—cannot be pre-
vented using LangSec (unless, of course, they are tickled
by illegal inputs). We must use LangSec in conjunction
with several other security and memory protection
tools to minimize exploits.

Summer 2020 reminded us that it remains important
for software to specify and validate its input (e.g., via
parser-combinator libraries) and for all consumers in an
ecosystem to parse input the same way. However, we also
see reminders that we need better tools to help discover
when the set of inputs a program can safely handle is a
strict subset of the set it was designed for.

Acknowledgments
This material is based in part upon work supported
by the Defense Advanced Research Projects Agency
(DARPA) under contracts HR001119C0075 and

Figure 7. In this simplified diagram, the verifier may perceive that the signer signed P3: the PDF P1 modified by changes C.
However, that only happened in (b); in (a), the signer only signed P1.

PDF P1 Sig of P1

PDF P2

PDF P3

Incremental
Changes C Sig of P3

PDF P2

PDF P3

Incremental
Changes C

PDF P4

(a) (b)

Figure 6. In the Shadow attack, the signer sees a “virtual piece of paper” and signs it; the verifier later sees a valid signature
but a different virtual piece of paper. In between, the adversary modifies the PDF.

L1: All Possible Inputs

L2: Correct Inputs

“Virtual Piece of Paper”

Signer’s
Code

Verifier’s
Code

Authorized licensed use limited to: Dartmouth College. Downloaded on June 14,2021 at 14:49:06 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 23

HR001119C0121. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of DARPA.

References
	 1.	 B. Bhushan. “Why a single pixel on this wallpaper

crashes Android phones?” SlashGear. June 2020. https://
www.slashgear.com/why-a-single-pixel-on-this-wall
paper-crashes-android-phones-13624653/The%20expl
anat ion&tex t=The%20picture%20basical ly%20
didn’t,space%20that%20the%20image%20uses

	 2.	 C. Cimpanu. “Ripple20 vulnerabilities will haunt the IoT
landscape for years to come.” ZDNet. June 2020. https://
www.zdnet.com/article/ripple20-vulnerabilities-will
-haunt-the-iot-landscape-for-years-to-come/The%20
researchers%20said%20they%20named,and%20
the%20years%20to%20come.&text=This%20vulnerabi
lity%20may%20result%20in%20remote%20code%20exe
cution

	 3.	 A. Greenberg. “Hack brief: Microsoft warns of a 17-year-
old ‘wormable’ bug.” Wired. July 2020. https://www
.wired.com/story/sigred-windows-dns-flas-wormable/

	 4.	 K. Kain, S. W. Smith, and R. Asokan, “Digital signatures
and electronic documents: A cautionary tale,” in Advanced
Communications and Multimedia Security: IFIP TC6/
TC11 Sixth Joint Working Conference on Communications
and Multimedia Security September 26–27, 2002, Portorož,
Slovenia, J.-B. Borka and K. Tomaž, Eds., Boston, MA:
Springer-Verlag, 2002, pp. 293–307.

	 5.	 D. Kaminsky, M. L. Patterson, and L. Sassaman, “PKI
layer cake: New collision attacks against the global X.509
infrastructure,” in Proc. Int. Conf. Financial Cryptogr. Data
Security, 2010, pp. 289–303.

	 6.	 M. Kol and S. Oberman, “Ripple20 CVE-2020-11896
RCE and CVE-2020-11898 Info Leak,” JSOF, Tech. Rep.,
June 2020. [Online]. Available: https://www.jsof-tech
.com/wp-content/uploads/2020/06/JSOF_Ripple20
_Technical_Whitepaper_June20.pdf

	 7.	 M. Kol, A. Schön, and S. Oberman, “Ripple20 CVE-2020-
11901,” JSOF, Tech. Rep., Aug. 2020. [Online]. Available:
https://www.jsof-tech.com/wp-content/uploads/2020/08/
Ripple20_CVE-2020-11901-August20.pdf

	 8.	 A. Laurie and G. Wypych. “New vulnerability could put
IoT devices at risk.” Security Intelligence. Aug. 2020.
https://securityintelligence.com/posts/new-vulnera
bility-could-put-iot-devices-at-risk/

	 9.	 C. Mainka, V. Mladenov, S. Rohlmann, and J. Schwenk,
“Attacks bypassing the signature validation in PDF,”
Ruhr-Universität Bochum, Bochum, Germany, Tech. Rep.,
Mar. 2020. [Online]. Available: https://pdf-insecurity
.org/download/report-pdf-signatures-2020-03-02.pdf

	10.	 M. Kumar, “New flaws in qualcomm chips expose mil-
lions of android devices to hacking.” https://thehack

ernews.com/2019/08/android-qualcomm-vulnerability
.html

	11.	 L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto,
“Security applications of formal language theory,” IEEE
Syst. J., vol. 7, no. 3, pp. 489–500, 2013. doi: 10.1109/
JSYST.2012.2222000.

	12.	 Siguza. “Psychic paper.” May 2020. https://github.com/
Siguza/psychicpaper

	13.	 S. Tzadik. “SIGRed – Resolving your way into domain
admin: Exploiting a 17 year-old bug in Windows DNS serv-
ers.” Check Point Research. July 2020. https://research
.checkpoint.com/2020/resolving-your-way-into-domain
-admin-exploiting-a-17-year-old-bug-in-windows-dns
-servers/

	14.	 ZecOps Research Team. “You’ve Got (0-click) Mail!” Apr. 2020.
https://blog.zecops.com/vulnerabilities/youve-got-0-click
-mail/

15. DEFCONConference, Makkaveev S. DEF CON Safe
Mode - Slava Makkaveev - Pwn2Own Qualcomm Compute
DSP for Fun and Profit. (Aug. 5, 2020). Accessed: Feb. 13,
2021. [Online Video]. Available: https://www.youtube
.com/watch?v=CrLJ29quZY8&feature=youtu.be

Sameed Ali is a Ph.D. student in the Department of
Computer Science at Dartmouth College, Hanover,
New Hampshire, 03755, USA. His research interests
include building and optimizing parsing algorithms
for field-programmable gate arrays. He is also inter-
ested in program analysis and symbolic execution to
find various input-handling vulnerabilities. Contact
him at sameed.ali.gr@dartmouth.edu.

Prashant Anantharaman is a Ph.D. student in the Depart-
ment of Computer Science at Dartmouth College,
Hanover, New Hampshire, 03755, USA. His research
interests include securing industrial control systems
protocol implementations using LangSec and building
verified parsers for various grammars. He is a Student
Member of IEEE and a member of the IEEE Com-
puter Society. Contact him at pa@cs.dartmouth.edu.

Zephyr Lucas is a Ph.D. student in the Department of
Computer Science at Dartmouth College, Hanover,
New Hampshire, 03755, USA. His research interests
include exploring the computational complexity and
run-time complexity of various parsing algorithms.
Contact him at zephyr.s.lucas.gr@dartmouth.edu.

Sean W. Smith is a professor in the Department of
Computer Science at Dartmouth College, Hanover,
New Hampshire, 03755, USA. His research interests
include security and privacy in software and hardware
in various real-world applications. Contact him at
sws@cs.dartmouth.edu.

Authorized licensed use limited to: Dartmouth College. Downloaded on June 14,2021 at 14:49:06 UTC from IEEE Xplore. Restrictions apply.

