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FAILURE TO VALIDATE

What We Have Here Is Failure to Validate: 
Summer of LangSec
Sameed Ali, Prashant Anantharaman, Zephyr Lucas, and Sean W. Smith  | Dartmouth College

This article reviews several exploits of input-handling vulnerabilities and categorizes these vulnerabilities 
based on their root causes. We describe the language-theoretic security paradigm and discuss how it can 
be used to tackle these categories of vulnerabilities.

I n the summer of 2020, we saw a surge in exploits of 
input-handling vulnerabilities across various systems 

from the modern to the more than 20-year-old Treck 
TCP/IP stack. Although such vulnerabilities have been 
a commonly exploited attack vector since the 1980s, 
they are still prevalent. Languages (such as C, C++, and 
assembly) that lack built-in memory protections are 
incredibly prone to bugs stemming from insufficient or 
no input validation. One approach to prevent this class 
of vulnerabilities is to apply a more formally rigorous 
process to input handling, such as Language-Theoretic 
Security (LangSec). In this article, we study 10 vulner-
abilities and exploits from the summer of 2020 through 
the lens of LangSec. We believe that LangSec can be a 
useful tool to prevent such exploits in the future.

The LangSec approach advocates defining various 
input formats as formal grammars and building recog-
nizers for these grammars to decide whether an input 
is valid, as proposed in 2013 by Sasseman et al.11 This 
framework applies to various network protocols and file 
formats that require complex parsers to process input. 
LangSec provides a rigorous methodology to imple-
ment these parsers in a way that would minimize pars-
ing errors.

The vulnerabilities we study in this article fall under 
three broad categories, as follows:

■ when the parser does not reject invalid input
■ when the specification or grammar describes a 

proper superset of the input that the program can 
handle correctly

■ when two parsers are expected to consume the same 
grammar but behave differently.

Flawed and Insufficient Parsers: 
Basic LangSec Failures
 Figure 1 shows the basic LangSec antipattern, in which 
flawed code implicitly assumes the input is correctly 
formatted and acts on invalid input as a result. The three 
vulnerabilities described next fit this antipattern. 

Ripple20
June 2020 brought news of Ripple20, a set of vulner-
abilities in the Treck TCP/IP stack. This TCP/IP stack 
is over 20 years old but used in “hundreds of millions” 
of embedded systems, including critical infrastructure 
such as power, aircraft, and health care.2 Besides the 
direct threat to the large number of compromised sys-
tems themselves, Ripple20 has additional high-impact 
downstream consequences because it is a networking 
stack that, by definition, exposes an interface to the out-
side world. Consequently, Ripple20 vulnerabilities may 
enable adversaries to read and write data on the devices, 
as well as execute code, and thus compromise other sys-
tems. Remediation will be difficult as real-world embed-
ded systems are notoriously hard to track down and patch.
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Two of Ripple’s vulnerabilities (i.e., “#1” and “#3” 
in Kol et al. 7) are straightforward failures by the 
Domain Name System (DNS) resolver to validate 
external input.

■■ In the first vulnerability, flawed code constructs a 
requested hostname and copies it into a buffer. How-
ever, the adversary-supplied MX record provides 
both the RDLENGTH value used to calculate the size 
of the buffer and the data from which the requested 
hostname is constructed. As a result, the adversary 
can supply a record that tricks the code into corrupt-
ing its heap by copying a large byte sequence into a 
too-small buffer. Correctly behaving code should 
have rejected this malformed record.

■■ In the second vulnerability, the flawed code does 
not correctly confine reads to data relevant to the 
adversary-supplied record—so a malformed record 
can trick the code into copying internal data to an 
output buffer.

The Thales Module
August brought news of a vulnerability in a Thales mod-
ule potentially used in “billions of things.”8 At its core, 
this vulnerability manifests as a variation on the basic 
LangSec antipattern. The variation is shown in Figure 2. 
In the case of the Thales module, flawed code deter-
mines access control by checking if an input parameter 
specifies something forbidden—but this test implicitly 
assumes the input parameter is correctly formatted (i.e., 
a path with a single slash). If the adversary goes outside 
the safe input space by supplying what would be a for-
bidden parameter, except using two slashes instead of 
one, the flawed code accepts the parameter and then 
ignores the second slash.

How LangSec Can Fix These Problems
In these examples based on exploiting the basic Lang-
Sec antipattern, the software programs expected their 
input to follow certain rules and the attacker capital-
ized on these expectations by providing data that was 
not structured according to these rules but processed 
nonetheless. This in turn caused unexpected and harm-
ful computation to be performed. LangSec calls for 
these input rules to be formally described as a gram-
mar. Describing the input rules as a grammar allows a 
verifier to parse any potential input to see if it adheres 
to these rules before passing it on for processing. In 
the Ripple20 vulnerabilities, a parser would have rec-
ognized malformed records and rejected them before 
any harmful computation would have been done. Simi-
larly, in the Thales Module, an input parser would have 
rejected input parameters with excess slashes, thereby 
protecting the code from the forbidden paths.

The Official Grammar Is Wrong: When 
Specifications are Incorrect
The standard LangSec defense pattern to the problems 
of Figures 1 and 2 is to formally specify an expected 
input language, L2, and to test whether an input is in L2 
before acting on it. However, this approach raises the 
question (depicted in Figure 3): just because an input is 
in the language the developer expects, does that it mean 
the code will handle it safely? This section considers 
some recent vulnerabilities for which the answer to the 
question (above) is “no.”

Summer 2020 saw many flaws arising because the set 
of correctly handled inputs are only a proper subset of 
the inputs within the validation grammar. This can stem 
from either an error in formally describing the intended 
input or from improperly handling all intended inputs.

The Wallpaper of Death
June brought news of the Android “Wallpaper of Death.”1 
A particular picture, when set as the background image 

Figure 1. In the basic antipattern, the flawed code implicitly assumes the input  
is in L2 but does not check; attacks are possible when the adversary crafts an 
input in L1\L2.

L1: All Possible Inputs

L2: Correct Inputs

Code

Figure 2. In a variation of the basic antipattern, the flawed code checks for 
disallowed requests (L4) but implicitly assumes these requests are in L2; the 
adversary can craft inputs in L1\L2 that bypass the checks but get interpreted as 
something in L4.

L1: All Possible Inputs

L2: Correct Inputs

 L4:
Forbidden

Paths  

Code
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for a Samsung or Google Pixel (or other phones that 
use the default Android color engine), will softlock the 
phone by causing it to endlessly reboot. The picture 
contains a pixel whose color values cause an overflow 
error when the phone is calculating the luminescence 
value that the OS handles by rebooting the phone. Dur-
ing the reboot process, the background image is loaded, 
overflows, and initiates another reboot. This renders 
the phone unusable until the user boots the phone in 
safe mode and deletes the image, resetting the phone to 
the default background.

This raises some interesting LangSec questions as 
the image in question uses a properly formatted red, 
green, blue (RGB) color space—but the phone first 
transforms the RGB to sRGB, and the transform code 
can turn some valid RGB images (such as this one) into 
illegally formatted sRGB images.

Non-Click iOS Email 0 day 
In April 2020, ZecOps reported that they found a 
zero-click attack on iPhone and iPad default email 
applications.14 Users do not need to take any action; 
when the email shows up in their mailbox, it gives 
access to the attacker. The attacker can even delete the 
crafted email that gave them access. Such zero-click 
attacks are hence extremely difficult to detect. ZecOps 
reported that several top-level executives and journal-
ists across the world might have been affected by 
this vulnerability.

ZecOps reported that correctly formatted (but devi-
ously crafted) emails, such as the following examples, 
could trigger vulnerabilities:

■■ Out of bounds write: The email application calls the 
ftruncate syscall to truncate or extend a file to a 
specific length, but it does not check the error condi-
tion. With the right input, the application will write 
beyond the end of mapped space.

■■ Heap-based overflow: The email application tries to 
copy 0x200000 bytes into memory allocated using 
mmap. However, if this syscall fails, the application 
only allocates 8 bytes and copies over the much larger 
0x200000 bytes, overflowing the heap.

The Snapdragon
August brought news of a large number of vulner-
abilities within the Snapdragon digital signal proces-
sor used in many Android smartphones, including but 
not limited to Google, Samsung, OnePlus, Xiaomi, LG, 
Android and which are accessible by third-party appli-
cations.10 Such devices have many separate processors; 
communication between them is handled by software 
generated by the Hexagon software development kit. 
However, as Slava Makkaveev discussed at DefCon,15  

this code fails to handle certain kinds of correctly (but 
oddly) formatted input: data and buffer lengths are 
treated as unsigned integers but tested as signed inte-
gers—so crafted input with a large enough length to 
be regarded as negative when interpreted as signed can 
result in heap overflow.

SigRed
Bastille Day (14 July 2020) brought news of “SigRed,” 
a 17-year vulnerability in the Windows DNS. The bug 
enables remote adversaries to execute code on the 
victim machine, on “the DNS servers of practically 
every small and medium-sized organization around 
the world.”3 Researchers at Check Point13 found that 
when the code handles certain kinds of records sent in 
response to a forwarded DNS query, it calculates the 
length of the record using a 16-bit unsigned integer. 
However, the adversary can use compression tricks to 
construct a valid record whose length exceeds 2.16 Once 
more, the flawed code copies too many bytes into too 
small a buffer, resulting in heap overflow.

Ripple Again
Another one of the Ripple vulnerabilities demonstrates 
this pattern (“#2” in Kol et al.7). The flawed code uses 
a 16-bit unsigned integer to track a “label length” value, 
but correct inputs can be constructed whose label 
length overflows that. As a result, the code will allocate 
a too-small buffer, and then copy a much larger byte 
sequence into it. This can also be viewed as a parsing 
problem: The flawed code uses two different ways to 
calculate a length, and there are correct inputs for which 
these two approaches do not agree.

How LangSec Can Fix These Problems
In these examples, the problem was not a failure to validate, 
but a failure to validate with the correct specifications. 

Figure 3. In many cases, the flawed code is intended to handle some target L2 of 
valid inputs—but instead properly handles only a proper subset L3. Attacks are 
possible when the adversary crafts an input in L2\L3. Simply validating against L2 
is not enough—we need tools to help ensure that L2\L3 is empty.

L1: All Possible Inputs

L2: Intended Correct
Inputs 

 L3: Handled
Correctly

Code

Authorized licensed use limited to: Dartmouth College. Downloaded on June 14,2021 at 14:49:06 UTC from IEEE Xplore.  Restrictions apply. 



20	 IEEE Security & Privacy� May/June 2021

FAILURE TO VALIDATE

To fix problems like this, the grammar must be re
written to match what is handled correctly, or the 
computation must be reworked to handle all of the 
expected input. We must check whether the input 
is within the specified grammar. However, we also 
need to be careful that the grammar we are checking 
against matches a program’s “safe input.” Therefore, 
we need to develop tools that can discover grammars 
for the application or, at minimum, be able to find 
potential errors with grammars that are considered 
“correct.” Alternatively, if the legal inputs in L2\L3 
have no legitimate use, the developers may wish to 
restrict the official input space and tighten the input 
filter accordingly.

LangSec on the Inside

Other Ripple Vulnerabilities
Other Ripple vulnerabilities6 pertain not to code pars-
ing input but, rather, to code parsing its own internal 
data structure (Figure 4). When processing tunneled 
and fragmented Internet Protocol packets, the code 
constructs an internal data structure with two different 
ways of representing the same length: an overall length 
in the initial part, and the sum of the lengths of each part. 
In “correct” configurations of this data structure, these 
match; however, correct inputs exist that can cause the 
flawed code to construct an internal state in which these 
values do not match, leading to adversarial-directed 
memory corruption.

How LangSec Can Fix These Problems
Just as it is important for software to ensure that its 
external inputs are correctly formatted before acting on 
them, it is also important to check its internal inputs and 
internal outputs. Indeed, the basic programming tenet 
of defining and preserving the invariant for a data struc-
ture can be seen in a LangSec context: Indicate precisely 
what one means as correct.

Differentials: Can Parsers Disagree?

Parsing Differential
In LangSec, the role of formal languages is not just con-
fined to deciding whether an input is safe to act on. It 
is also key in parsing; i.e., how a program understands 
what an input means. 

In the software world, the multiple programs often 
consume the same input—and there is an underlying 
assumption that different programmers read a specifica-
tion and understand it the same way. Disagreements lead 
to parser differentials (Figure 5), perhaps documented 
initially in 2010 when Len Sassamen et al.5 found that 
Public Key Certificate Authorities could grant servers 
to domains that were invalid and some application pro-
gramming interfaces accepted these invalid certificates.

The Psychic Paper. May brought news of a parser differ-
ential vulnerability in iOS.12 In the Apple Ecosystem, 
property lists (or plists) are used to store serialized data 
in various contexts, such as code signatures and con-
figuration files. The list of properties the plist defines 
in code signatures comprise the entitlements. There are 
over 1,800 entitlements available for the latest versions 
of the iOS (the mobile operating system), whereas the 
Mac OSX versions support just fewer than 1,000 enti-
tlements each. These entitlements also specify how 
the application interacts with the kernel. It can hold 
a list of drivers and system calls that the application 
can access.

The Psychic Paper vulnerability uses the fact that 
iOS uses “at least four” different XML parsers, and they 
have differentials. One example is how parsers handle 
comments in plists. Comments are usually enclosed 
in <!–– and ––> tags, and everything enclosed within 
these tags is considered to be a comment. However, 
three of the iOS XML parsers (IOKit, CF, and XPC)  
handle the not-quite-correct comment delimiters 1) 
<!–––> and 2) <!––> differently.

Figure 4. In some vulnerabilities, crafted but correct input can trick the flawed code into constructing an incorrectly 
formatted internal state; when the code later acts on that state, it goes wrong.

L1: All Possible Inputs

L2: Correct Inputs

Internal Data Structures

Code

L6: Correct Configs

L5: All Possible Configs
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■■ The IOKit sees the <!– in 1) and thinks it is the start 
of a comment. It ends the comment when it sees the 
end of 2) <!––>.

■■ The CF parser has a bug that only scans two places 
after seeing the ! in 1). This means that a – is parsed 
twice and the first tag 1) opens a comment. The sec-
ond tag 2) is treated as the opening of a new comment.

■■ XPC ignores both 1) and 2) but differs from the 
IOKit and CF in other constructs such as the usage of 
double-quotes, “ and square brackets, [].

By being able to construct plists containing mate-
rial that some parsers ignore as comments and others 
regard as real, the adversary can thus forge his or her 
own entitlements and can get access to any memory 
location the user can access and execute system calls 
and drivers. The adversary can also alter thread register 
states and read and write to process memory.

As mentioned previously, the problem stems from 
the fact that the three parsers handle comments differ-
ently. One way to deal with this could be to specify the 
context-free grammar needed to recognize plists, and 
then build a parser to recognize this grammar. Instead of 
a specification, if developers start with the formal gram-
mar needed to recognize plists, parser differentials can 
be minimized.

How LangSec Can Fix These Problems. With parser dif-
ferentials, the correct specifications are not the same 
across various implementations. Using parser genera-
tors that use a data-description language or grammar 
could ensure that the parsers implement the same 
grammar across different implementations. Another 
approach would be to use parser combinators. They 
implement code that looks like the grammar and can 
be easily verified. When different implementations 
use parser combinators, they can be visually verified 
to be equivalent, as well as equivalent to the gram-
mar specification. 

Semantic Differential

The Shadow. July also brought news of the Shadow 
attack9, which might also be seen as a form of differen-
tial, albeit a semantic one. A PDF viewer can

1.	 render a PDF file as a “virtual piece of paper” to the 
user

2.	 allow a user to digitally sign the document seen by 
the user 

3.	 allow a user to append an incremental update to the 
document

4.	 tell the user that a digital signature is valid.

The problem is that Behavior 3 could permit cer-
tain harmful types of incrementally saved changes after 
Behavior 2 and, hence, allow the attacker to configure 
the PDF so that the visible content of the document 
that the signer saw in Behavior 2 differs from the con-
tent the verifier sees in Behavior 4 (Figure 6). Attackers 
can construct a form, contract, or bill, for example, and 
get it approved via a digital signature. However, it is pos-
sible for the attacker to then modify the document to 
display content different from the one approved. 

The problem is that there is a gap between the core 
meaning of the PDF file—the virtual piece of paper the 
user sees—and the parsed PDF structure. As Figure 7 
shows, the verifier cannot (easily) distinguish between 
two different abstract syntax trees with significantly dif-
ferent signature semantics the same way. (This was also 
demonstrated with earlier versions of PDF long ago.4)

How LangSec Can Fix These Problems. A common solu-
tion that many PDF viewers currently use is to remove 
any unused objects prior to signing; however, this stops 
only some flavors of the Shadow attack and not all of 
them. A stronger one,9 would be to reject any document 
that contains a nonsigning incremental save after a sig-
nature. While this is effective, it is possibly too harsh, as 

Figure 5. In parser differentials, two different programs can construct different parse trees—and take different actions—for 
the same input.

L1: All Possible Inputs

L2: Correct Inputs
Code 1

Code 2

Space of Parsed Inputs
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there are use cases where changes made post signature 
are actually desired (e.g., filling out an approved form).

Work must be done to isolate exactly what is consid-
ered a “safe change”—and more deeply bind the action 
of producing/verifying a signature to the semantics of 
how the document is being presented to the user. Ide-
ally, if two parse trees are semantically different, then 
the code consuming them should enable the user to dis-
tinguish the difference.

A lthough LangSec has been around since 2013, de
velopers have not adopted it much as far as we know. 

No studies have been conducted to evaluate the usability 
of the several parser-combinator libraries, data-description 
languages, and parser generator tools available to enforce 
LangSec principles. We believe such a study would clarify 
why such tools are yet to receive traction.

Instrumenting existing software with LangSec pars-
ers would increase code complexity and add a runtime 
overhead. However, we believe such overheads would 

be minimal with respect to large code bases, and Lang-
Sec parsers make code easy to audit since parsers are 
written like grammars. Several other categories of code 
vulnerabilities—such as use-after-free, null-pointer-
dereference, and integer overflows—cannot be pre-
vented using LangSec (unless, of course, they are tickled 
by illegal inputs). We must use LangSec in conjunction 
with several other security and memory protection 
tools to minimize exploits.

Summer 2020 reminded us that it remains important 
for software to specify and validate its input (e.g., via 
parser-combinator libraries) and for all consumers in an 
ecosystem to parse input the same way. However, we also 
see reminders that we need better tools to help discover 
when the set of inputs a program can safely handle is a 
strict subset of the set it was designed for. 
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