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A COMMUNICATIONS VALIDITY
DETECTOR FOR SCADA NETWORKS
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Abstract Supervisory control and data acquisition systems (SCADA) are attrac-
tive targets due to their widespread use in the critical infrastructure. A
large percentage of attacks involve crafted inputs. Buffer overflows, a
form of crafted input attack, are still common. These attacks can be
used to take over SCADA systems or force them to crash. The compro-
mised systems could be leveraged to issue commands to other devices
in a SCADA network and cause harm.

This chapter presents a novel forensic tool that enables operators to
detect crafted input attacks and monitor SCADA systems and networks
for harmful actions. The tool incorporates several language-theoretic
security-compliant parsers to ensure the syntactic validity of communi-
cations, enabling the detection of zero-day attacks that leverage crafted
packets. The tool also detects attacks triggered using legacy proto-
cols and includes graphical user interfaces, command-line interfaces and
tools for comparing network traffic against configuration files to detect
malicious activities. Experimental evaluations of the parsers using a
large SCADA network traffic dataset demonstrate their efficacy. Fuzzing
experiments demonstrate the resilience of the parsers as well as the tool
itself.
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1. Introduction
Supervisory control and data acquisition (SCADA) protocols are used

throughout modern power grids for automation and “smart” operation.
Substations in power grids are increasingly unstaffed and are managed
from control centers using SCADA protocols such as Distributed Net-
work Protocol 3 (DNP3) and IEC 61850 Manufacturing Message Spec-
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ification (MMS). These critical infrastructure assets have historically
separated operational technology systems from information technology
systems using non-routable interfaces and legacy hardware. However,
the air gaps are disappearing as the assets are increasingly being oper-
ated remotely [8].

The interconnectivity of SCADA systems has also increased their at-
tack surfaces. In December 2015 and 2016, attackers leveraged spear-
phishing email to access computer systems of electric utility operators in
Kiev, Ukraine [15], eventually taking several substations offline by open-
ing electrical relays remotely. Iran’s uranium hexafluoride centrifuges in
Natanz were targeted by multiple zero-day attacks using a USB drive to
breach the air gap [16].

Securing SCADA systems is challenging. Commands received by
SCADA devices often have physical effects, and availability and timeli-
ness are of paramount importance. Additionally, the devices are usually
resource-constrained and security schemes often do not meet the strict
real-time guarantees [41].

Meanwhile, anomaly and intrusion detection schemes for SCADA sys-
tems rely on the physics of the systems and/or communications patterns.
Such schemes cannot detect crafted input attacks and zero-day attacks
that are of increasing concern.

Forensic tools for SCADA systems must detect attacks that leverage
invalid communications. In SCADA systems, invalid communications
exploit weaknesses in programs due to insufficient syntax checking. Pro-
grams often fail to implement communications protocols correctly, lead-
ing to vulnerabilities. An attacker can exploit these vulnerabilities to
crash programs or gain access to the devices that execute the programs.

Forensic tools must detect syntactically-valid but semantically-invalid
communications. For each device in a SCADA network, an operator has
a specifications document that lists all the IP addresses and endpoints.
For SCADA protocols such as DNP3 and IEC 61850 MMS, a device
only supports a specific set of requests known as setpoints. A SCADA
operator also maintains documents showing the setpoints supported by
SCADA devices. Communications that violate any of the network or
setpoint configurations are semantically invalid.

SCADA forensic tools must also help detect communications trig-
gered by malicious programs and devices. Differentiating between hu-
man actions and malicious program/device actions is a difficult problem.
SCADA forensic tools must provide visual feedback or confirmation of
human-triggered actions and malicious actions.

To address these challenges, this chapter presents a communications
validity detection tool for SCADA networks. The tool detects malformed
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packets in a wide range of SCADA protocols. Packets that do not con-
form to the protocol specifications are flagged, providing the ability to
detect potential zero-day attacks. The tool detects various web-based,
Telnet-based and DNP3 commands leveraged in attacks. Also, it detects
configuration and communications mismatches in SCADA networks. In-
deed, this work heralds a new forensic paradigm that permanently po-
sitions devices across a large SCADA network to monitor traffic and
provide early warnings of cyber attacks.

2. Background and Related Work
This section presents background information and related research

on SCADA systems, SCADA network attacks, language-theoretic secu-
rity, SCADA system forensics, software-defined networks and anomaly
detection.

2.1 SCADA Systems
SCADA systems are deeply embedded in critical infrastructure as-

sets [13]. These systems are used to monitor and control assets such
as railroads, aircraft, nuclear power plants, electric power grids, water
treatment plants and petrochemical refineries.

SCADA systems in the electric grid are housed in two principal types
of facilities, substations and control centers. Substations usually span
large geographic areas. Multiple substations are typically managed by a
single control center. A control center houses real-time automation con-
trollers (RTACs), master terminal units (MTUs) and human-machine in-
terfaces (HMIs). Substations house intelligent electronic devices (IEDs),
relays, programmable logic controllers (PLCs) and remote terminal units
(RTUs). These devices are responsible for physical tasks such as opening
and closing circuits at substations, among others.

Devices in a substation such as programmable logic controllers and
remote terminal units communicate with the real-time automation con-
trollers and human-machine interfaces at the control center. The control
center aggregates data such as phasor information and the states of all
the relays in the substation. Operators use the human-machine inter-
faces to send commands to relays via the remote terminal units.

SCADA systems use various communications protocols. This research
focuses on the DNP3, IEEE C37.118, IEC 61850 MMS, IEC 61850
GOOSE, SEL Fast Message and SES-92 protocols. Of these protocols,
DNP3, IEC 61850 MMS and SES-92 can be used interchangeably to
poll remote terminal units and send commands from human-machine
interfaces.
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The IEEE C37.118 and SEL Fast Message protocols are used to send
phasor measurements from phasor measurement units to phasor data
concentrators. Phasor measurements are useful for estimating the state
of a power system, detecting wide-area power events and monitoring
power flows. Some substations use dedicated phasor measurement units
and phasor data concentrators, but these features are often incorporated
in relays.

SCADA systems reside in operational technology networks that have
distinct characteristics from conventional information technology net-
works [36]. First, operational technology networks operate under hard
real-time constraints [40]. Network packets received after deadlines are
often useless and may have adverse effects on the power system state.
For example, the IEC 61850 GOOSE protocol has a packet reception
deadline of 4 ms. Any packets received after this time are ignored.

Furthermore, devices in substations often operate continuously for
long periods of time. Most of the devices run real-time operating sys-
tems, which handle memory differently from conventional operating sys-
tems. In particular, the operating system kernel and user memory are
not separated. This feature of real-time operating systems renders them
prime targets for buffer overflow attacks.

Some SCADA devices only support serial protocols. As a result, IP-
based sniffers on routers and switches are mostly ineffective for these
devices. Also, most attacks that target information technology systems
exploit various features of IP-based protocol stacks. SCADA devices may
be immune to such attacks, but they are still prone to buffer overflow
and crafted packet attacks.

Finally, most SCADA protocols do not support encryption. Even
when the implementations support protocol encryption, communications
are unencrypted because encryption adds latency. Most SCADA pro-
tocols also do not support authentication mechanisms, which enables
SCADA devices to be spoofed easily.

2.2 SCADA Network Attacks
Historically, SCADA networks have used proprietary protocols and

devices that were separated from other components. The air gaps are
disappearing as corporate and cloud networks increasingly connect to
SCADA networks [6]. The absence of air gaps enables attackers who
enter corporate or cloud networks to make their way into SCADA net-
works.

In December 2015 and 2016, attackers leveraged spear-phishing email
with malicious Word documents to access computer systems of electric
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utility operators in Kiev, Ukraine [15]. The attackers observed operator
actions and collected virtual private network (VPN) credentials to ac-
cess the SCADA networks. The attackers then took several substations
offline by opening electrical relays remotely.

One of the earliest recorded SCADA system attacks was in 1982 [9].
A trans-Siberian gas pipeline ran software that incorporated a Trojan
horse. The malware executed when pipeline operators were conducting
a routine pressure test, increasing the pipeline pressure and causing an
explosion.

In 2017, a Saudi Arabian petrochemical plant was targeted by the
Triton malware [29]. As in the Ukraine attacks, the attackers pivoted
from the information technology network to the operational technology
network to infect engineering workstations. The Triton malware repro-
grammed the Triconex industrial safety system to induce an automatic
shutdown.

In contrast, the Stuxnet malware entered a highly-secure air-gapped
operational technology network in Natanz, Iran via an infected USB
drive [16]. The malware injected a rootkit into a Siemens programmable
logic controller that sent malicious commands to uranium hexafluoride
centrifuges while reporting normal readings to plant operators. In 2010,
it was reported that Stuxnet destroyed almost 20% of Iran’s centrifuges.

Meanwhile, researchers have discovered several vulnerabilities that
could have been exploited by attackers. For example, Lee et al. [21]
have demonstrated several simulated attacks on DNP3 systems. Crain
and Sistrunk [11] have discovered several vulnerabilities in DNP3 vendor
implementations.

SCADA systems often have buffer overflow weaknesses [40]. In ad-
dition to the buffer overflows discovered by Crain and Sistrunk [11],
researchers have found heap-based buffer overflows in WellinTech King-
View servers that are widely used in China. Triangle Microworks [26]
reported buffer overflows in their DNP3 library that could be exploited
using crafted packets.

2.3 Language-Theoretic Security
Language-theoretic security is a programming paradigm that man-

dates that all inputs received by a program must be treated as sentences
in a formal language, such as one generated by a regular or context-free
grammar. Moreover, all inputs must be validated by a recognizer for the
formal language before they are processed.

Most protocol specifications constitute pages of verbose text with-
out machine-recognizable grammars. Developers have to read through
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the entire specifications and implement code that conforms to the un-
documented grammars. As a result, they often leave certain features
unimplemented and/or do not implement features correctly. For exam-
ple, a stack overflow bug was found in the Triangle Microworks DNP3
library [26]. The CVE description of the bug acknowledges that it was
due to “poor validation of user-supplied data.”

In a language-theoretic security methodology, a protocol specification
is expressed in terms of a formal grammar. A parser-combinator toolkit
such as Hammer [28] is used to implement a parser based on the gram-
mar. Parser combinators make it easy to implement grammars using
programming languages.

Several attempts have been made to implement parsers for SCADA
protocols. Bratus et al. [7] were the first to implement a parser for the
popular DNP3 protocol. However, they discovered that the Hammer
toolkit constructs were inadequate to implement the protocol and had
to incorporate additional constructs. The resulting DNP3 parser is in-
corporated in the communications validity detection tool described in
this work.

Anantharaman et al. [4] have developed a tool that filters invalid and
malformed IEEE C37.118 packets using a language-theoretic security
parser. This parser is also incorporated in the communications validity
detection tool with the caveat that the parser is only used to detect
anomalous traffic and not perform filtering. When malformed packets
are detected, only alerts are sent because availability in SCADA systems
is of paramount importance. Specifically, a packet that is filtered as a
false negative could prevent a SCADA device from performing a time-
critical task with adverse consequences.

Millian et al. [23] have demonstrated how a power grid utility network
could be converted to use language-theoretic security-compliant proto-
col implementations. They explored the steps it would take to include
language-theoretic security filters, i.e., software that would not allow
any malformed traffic to pass. In contrast, given the risk posed by false
negatives, this work allows all traffic to pass while operators are alerted
to malformed inputs.

2.4 SCADA System Forensics
After a cyber attack occurs, digital forensic practitioners apply various

techniques and tools to gather evidence to retrace the attack steps and
prevent similar attacks in the future. Wright et al. [38] have proposed
a model for investigating cyber attacks on SCADA systems. The model
has four sequential steps: examination of evidence sources, identifica-
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tion of an attack, collection of evidence and documentation of evidence.
The communications validity detection tool described in this research
follows these forensic analysis steps. The tool gathers evidence from
network packets and identifies packets that violate specifications as po-
tential crafted packets. This evidence is logged in a local database.

Valli et al. [35] have proposed a framework for creating Snort signa-
tures for various vulnerabilities. They examined multiple vulnerabilities
in SCADA protocols such as DNP3 and Modbus to create signatures.
They performed attacks in a test environment and constructed a system
to generate Snort rules from packet captures. The communications valid-
ity detection tool differs from this framework in a fundamental manner.
Rules are not created for known attacks; instead, parsers that validate
all inputs are developed for SCADA protocols.

Ahmed et al. [2] have discussed the challenges encountered when in-
vestigating attacks on SCADA systems. They point out that oper-
ators would rather keep SCADA systems online than turn them off
for evidence gathering. Therefore, SCADA systems need live forensic
tools [1, 24]. Additionally, intrusion detection tools based on prior data
or rule sets may be too strict for forensic tools, causing the tools to
raise too many false alarms. Also, substation devices are often very
resource-constrained and storing forensic data on the devices may not
be an option.

The communications validity detection tool described in this research
addresses these challenges in various ways. First, the tool connects to
a live network tap interface. A router or switch duplicates all network
traffic and sends the duplicated traffic to the tap interface, enabling the
tool to validate the packets. Second, since the tool runs its own analysis,
it ignores the packets it creates, which reduces false alarms. Finally, the
tool employs a PostgreSQL database to store forensic data.

2.5 Software-Defined Networks
Software-defined networks (SDNs) allow for packet processing, for-

warding and filtering at virtual switches [14]. These networks disassoci-
ate network forwarding rules in a data plane and routing rules in a con-
trol plane. In the case of an operational technology network, a software-
defined network would manage network access control and Ethernet for-
warding for SCADA devices. Kalra et al. [20] describe a software-defined
operational technology network that meets the network performance and
cyber security requirements. However, their cyber security requirements
only overlap with a portion of the semantic errors considered in this re-
search, namely, issues with missing and newly-added devices.
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Urias et al. [34] explore how software-defined operational technology
networks can be used to deceive attackers and learn about their tech-
niques. However, the work described in this chapter is closest to the
approaches of Chang et al. [10] and Kalra et al. [20]. Chang and col-
leagues use software-defined operational technology networks to collect
network situational awareness information. They gather system logs
and event logs from operational technology networks in near real time
using software-defined networks. However, this technique can only de-
tect network configuration issues and malicious devices in the networks.
The work described in this chapter goes beyond the systems proposed
by Chang et al. and Kalra et al. by providing situational awareness
about SCADA-system-specific semantic issues and the syntactic validity
of SCADA protocols.

Since software-defined networks traditionally support only network-
header-based filtering, they are conducive to providing situational aware-
ness via event logging. More research is needed to understand how to
build on existing software-defined networking technologies to validate
the syntactic correctness of SCADA protocol packets.

2.6 Anomaly Detection
Anomaly detection techniques are classified as specification-based [5],

signature-based [37] or learning-based [22, 25]. Specification-based tech-
niques employ manually-specified behavior to detect anomalies. Signa-
ture-based techniques look for packets that appear to be replicating
known attacks. Learning-based techniques use statistical or machine
learning techniques to identify normal and abnormal operations.

These anomaly detection techniques can be used in conjunction with
the communications validity detection tool to gather forensic data. Al-
though the anomaly detection techniques can identify fuzzing attacks,
they are ineffective against zero-days because they cannot protect against
attacks they have not encountered before. In contrast, the communica-
tions validity detection tool can identify attacks that have not been seen
previously while also detecting malicious SCADA commands.

The communications validity detection tool can be used in conjunction
with device fingerprinting techniques [18] to prevent forgery attacks.
Physics-based defenses [33] can also be used with the tool. In fact,
the communications validity detection tool neither fingerprints SCADA
devices nor considers the underlying physics of the devices; instead, it
focuses on SCADA network protocols.

Berthier et al. [5] use specification-based intrusion detection, which
analyzes the security properties at the transport, network and applica-
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tion layers; the technique is demonstrated using metering infrastructure
protocols. Hong et al. [19] combine host-based and network-based in-
trusion detection to obtain better detection coverage. However, neither
technique can identify zero-day attacks that employ novel crafted pack-
ets.

Ren et al. [30] categorize smart grid network traffic into transport, op-
erations and content traffic, and proceed to construct multilevel anomaly
detection frameworks. The communications validity detection tool uses
some similar techniques while differing in the core approach. Ren and
colleagues rely on the Zeek (formerly Bro) intrusion detection system to
provide attack alerts whereas the communications validity detection tool
employs language-theoretic security-compliant parsers to detect attacks.
The attacks detected by the parsers are significantly different from those
detected by Zeek.

Of course, the Zeek intrusion detection system could be used in con-
junction with the communications validity detection tool. Zeek would
detect brute-force attacks and SQL injection attacks whereas the com-
munications validity detection tool would detect misconfigurations and
crafted input attacks that target electric power sector protocols.

3. Tool Design
The following technical goals were set for the communications validity

detection tool to support forensic data collection in SCADA networks:

Live Forensics: The tool must be connected to SCADA network
traffic to continuously monitor and collect forensic data. When
suspicious network activities are encountered, operators can review
the collected data.

Syntactically-Invalid Message Detection: The tool must de-
tect messages that violate protocol specifications.

Semantically-Incorrect Packet Detection: The tool must de-
tect communications flow violations based on SCADA network
configuration files.

Non-Human-Triggered Action Detection: Most SCADA sys-
tem commands with physical effects such as opening and closing
breakers and relays are triggered by human operators. Since a com-
promised device can send these SCADA commands over a network,
the tool must detect and visualize all commands with physical ef-
fects.
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The following design goals were set to ensure that the communications
validity detection tool would be extensible and usable:

Adaptive: The tool must not depend on attack scenarios and
heuristics, but should detect crafted packet attacks. Since zero-
day attacks exploit patterns and vulnerabilities that have not been
seen before, the language-theoretic security paradigm is leveraged
to detect new attacks.

Scalable: The tool must support a range of smart grid protocols
and application program interfaces to support future protocols.
The tool must detect syntactically-malformed packets for all the
supported protocols. The tool must have a flexible architecture
so that unsupported SCADA protocols can be handled by adding
parsers with minimal effort.

Distributed: Since copious amounts of data are generated at each
substation, as much data analysis as possible should be performed
locally at the substations. The control center would primarily
perform aggregated operations. This is vital to reduce SCADA
network overhead during tool operation.

Usable: The tool must provide alerts in a useful and visually-
appealing manner while not overwhelming operators with infor-
mation.

3.1 Design Techniques
Several techniques are leveraged to realize the design goals of the com-

munications validity detection tool. First, the tool uses a comprehen-
sive set of language-theoretic security-compliant parsers for the protocols
commonly used in smart grid substations. The supported protocols in-
clude DNP3, IEEE C37.118 and IEC 61850. The parsers are adaptive in
that they do not rely on previous attack samples to detect crafted input
attacks.

Second, the tool employs a producer-consumer model in each imple-
mentation. This design, which uses an Apache Kafka broker, renders
the tool highly scalable. Future protocol support merely involves adding
consumers. The producers extract the payload portions of the packets
and broadcast them to all the consumers simultaneously.

Third, the tool uses a distributed master-minion system, where min-
ions are placed at substations and the master is positioned at the control
center. Figure 1 shows the distributed master-minion system. Minions,
which are connected to substation routers, collect traffic from two in-
terfaces. The shaded boxes show the communications validity detection
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Figure 1. Distributed master-minion system.

devices. Note that the master performs data aggregation and correlation
whereas the minions perform data collection and parser checks.

Finally, the tool incorporates strong visual components such as web
user interfaces and command-line interfaces. The web user interfaces
present smart grid operators with alerts and visual representations of
specific traffic, giving operators the ability to monitor network traffic
that may be well-formed but not sent by operators. For example, an
attacker could use a relay device compromised via a side-channel attack
to send DNP3 commands to other circuit breakers. Operators can eas-
ily detect such attacks using the visual component that displays DNP3
protocol commands.

3.2 Continuous Data Collection and Monitoring
The communications validity detection tool engages a novel paradigm

of continuous data collection and monitoring. Most forensic investiga-
tion tools are deployed after attacker actions are complete. Instead, the
communications validity detection tool is deployed in SCADA networks
to continuously monitor network traffic. If a cyber attack is suspected,
an operator can retrace the attacker’s actions using the tool database.

A live network tap interface must be created by duplicating all the
traffic going through a router. The duplication ensures that the commu-
nications validity detection tool does not add significant overhead to the
network. The tool asynchronously processes all the packets forwarded
by the router, alerting to suspicious packets. The alerts are continuously
pushed to the database along with observed network traffic metadata.
Leaving the tool connected to a SCADA network tap before a cyber
attack to support forensic investigations enables operators to reproduce
attacker steps rapidly.
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Figure 2. Publish-subscribe minion model.

3.3 Distributed Data Collection
Data is collected by minions at the substations. The minions collect

and store data at the substations as well as across them. The data
mostly includes SCADA commands, but could also include ARP, NTP
and DNS routing data.

Since the minions and master are part of substation networks, network
traffic originates from these devices as well. However, the data does not
contribute to the forensic data gathered by the parsers because all traffic
originating from the tool is whitelisted.

3.4 Publish-Subscribe Minion Model
A key goal is to run a given packet received from the network through

the parsers in parallel to check if the packet conforms to any of the
supported protocols. This is accomplished using a publish-subscribe
model for minions.

Figure 2 shows the publish-subscribe minion model. The producers
process network packets and forward them to the Apache Kafka broker,
which broadcasts them to all the consumers. The consumers perform
their analyses and store the results in a PostgreSQL database. Op-
erators can consume information from the PostgreSQL database using
web user interfaces or command-line interfaces. This publish-subscribe
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Table 1. Parsers included in the current tool version.

Protocol Language Availability

DNP3 C/C++ Yes [7]
IEEE C37.118 C/C++ Yes [4]
IEC 61850 MMS Python Not yet
IEC 61850 GOOSE Python Not yet
SEL Fast Message Python Not yet
SES-92 C/C++ Not yet

model provides the flexibility to add future protocols and other analyzers
without much effort.

Producers. The Apache Kafka producers accept inputs in two for-
mats. They accept packet capture files or attach directly to live network
interfaces. In either case, the producers read each packet, convert it
to a string and send it to all the consumers. The producers do not do
pre-processing because each consumer analyzes the packet at a different
layer of the protocol stack.

Consumers. The Apache Kafka consumers receive all the packets
from the producers and process them in various ways as described below.
As shown in Figure 2, the consumers store the results of their analyses
in a PostgreSQL database.

3.5 Detecting Syntactically-Invalid Packets
Table 1 shows the language-theoretic security-compliant parsers cur-

rently deployed in the tool; the remaining parsers will be available in
the near future. Parser construction required the specifications of all
the SCADA protocols of interest to be procured or purchased.

After carefully analyzing the specifications, protocol state machines
and message formats corresponding to the protocols were created. The
protocol state machines specify the correct sequences of packets as well
as prohibited sequences. The message formats specify the structures of
packets conforming to the protocols. The message formats were subse-
quently converted to formal grammars.

Parser-combinators, such as Hammer, were used to convert the formal
grammars to code that visually resembles the formal grammars. Fig-
ure 3 shows a code snippet in the IEC 61850 GOOSE protocol parser.
Note that h.sequence() is a function provided by the Hammer parser-
combinator toolkit.
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IECGoosePdu = h.sequence(gocbRef, timeAllowedToLive, datSet, goID, T,

stNum, sqNum, simulation, confRev, ndsCom,

numDatSetEntries, allData)

Figure 3. Code snippet in the IEC 61850 GOOSE protocol parser.

The language-theoretic security-compliant parsers detect packets that
violate the formal protocol specifications. Although it is difficult to iden-
tify specific semantic bugs where well-formed packets crash applications,
state-of-the-art fuzzers should be able to find such bugs. The parsers or
syntax validators cannot detect other types of attacks. However, previ-
ous research has determined that most zero-day attacks are crafted input
attacks such as buffer overflows that are handled by the parsers [3].

The parsers are Apache Kafka consumers that accept raw byte strings.
The parsers process the byte strings and decide whether or not the corre-
sponding packets are safe. Often, the packets may conform to protocols
that are not yet supported. However, packets can be shortlisted by
checking the packet metadata (first two bytes of payloads and Ethernet
frames) to see if they conform to a supported protocol.

The consumers run in Docker containers to ensure functional separa-
tion. A parser returns the parsed object if the parse is successful and
null if the parse has failed. The parsed object is essentially an abstract
syntax tree. The parser interacts with the abstract syntax tree to store
information. Based on the data extracted by the parsers, all instances
of failed parses due to malformed packets are saved in a local database.
After ascertaining if a particular packet is making a setpoint change, the
new setpoint value is also stored in the database.

3.6 Setpoint Monitors
Operators use human-machine interfaces to interact with SCADA de-

vices. The human-machine interfaces communicate with SCADA devices
using various protocols.

Monitoring and changing setpoints are important actions performed
by operators. The setpoint monitoring consumer of the communications
validity detection tool records the setpoints transmitted over HTTP and
DNP3 to SCADA devices. Along with the setpoints and their values,
the setpoint monitoring consumer also stores the source and destina-
tion MAC addresses, IP addresses and ports. The consumer adds these
records to the database and the setpoints can be visualized on a timeline.
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Figure 4. Configuration mismatch detection.

3.7 Detecting Semantically-Incorrect Packets
SCADA operators maintain several configuration files. The files spec-

ify setpoint mappings from point numbers in a human-readable format.
Configuration files also specify IP and MAC addresses of all the SCADA
network devices. To ensure availability, SCADA operators do not strictly
enforce the configurations on routers and switches that filter traffic.

The configuration files are accessed during communications validity
detection tool setup. Operators upload the files using a web user inter-
face. The tool stores the configurations in the database, enabling the
consumers to use them to make semantic decisions. When the configura-
tions change, the tool enables operators to make modifications manually
via the web user interface or by uploading new files.

The communications validity detection tool detects two types of se-
mantic violations. The first type of semantic violations are due to de-
vices that generate network traffic, but are not present in the network
configurations. These could be rogue devices introduced by attackers.
Adversarial code on devices can also change their network interfaces, so
the tool detects them as new devices. The tool checks the IP and MAC
addresses of every device in the SCADA network.

The second type of semantic violations involve setpoint mappings.
Each SCADA device has a list of configured points and the types of
communications (digital or analog). The parsers extract the setpoint
information. The configuration files are checked to ensure that each
setpoint is valid. Semantic violations are logged and alerts are sent to
operators. The misconfigurations can be due to malicious code execut-
ing on SCADA devices or human error. The communications validity
detection tool assists operators in detecting such semantic error condi-
tions.

Figure 4 shows the configuration mismatch detection module. The
module consumes network packets, configuration files and setpoint con-
figuration files, and finds mismatches in the files.



170 CRITICAL INFRASTRUCTURE PROTECTION XV

3.8 User Interfaces
The communications validity detection tool provides two types of user

interfaces, web interfaces and command-line interfaces:

Flask-Based Web User Interfaces: Important features of a
SCADA system forensic tool are supporting the visualization of
actions and logging them. The communications validity detection
tool incorporates a robust visual component to aid operators in
detecting problems in a SCADA network. This is provided by
Python Flask-based web user interfaces.
The web user interfaces assist operators in setting up the commu-
nications validity detection tool in a SCADA network. Operators
may use the interfaces to upload various network and setpoint con-
figuration files to the tool. After operators start capturing traffic
using the tool, the configuration files provide insights into miscon-
figurations and missing devices.
Timeline interfaces are also provided to enable operators to check
DNP3 protocol actions. Although most DNP3 actions are au-
tomated, some critical functions such as OPERATE, DIRECT-
OPERATE and WRITE are triggered by humans. Operators can
continuously monitor the user interfaces to ensure that all the crit-
ical functions were initiated by them and not by malicious pro-
grams. Operators can also monitor network interface visuals to
check if devices have not communicated in some time and to pin-
point unidentified devices.
The overall states of crank paths are presented as one-line di-
agrams. Multiple substations are connected using crank paths.
During a power failure, crank paths enable troubleshooters to re-
store power to one substation at a time. Using various codes, the
user interfaces identify whether substations are clean and have the
communications validity detection tool running on them. A web
user interface running on a master provides a single location for
monitoring tool instances running on SCADA devices. The same
interface helps pinpoint network and communications validity de-
tection tool problems.

Command-Line Interfaces: The command-line interfaces en-
able operators to initialize the communications validity detection
tool and specify live network capture interfaces for running the
tool. Packets from the interfaces are provided to all the producers
and consumers. The command-line interfaces also enable individ-
ual producers and consumers to be restarted. Several commands
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Table 2. Sampling of commands supported by command-line interfaces.

Command Description

map Start the communications validity detection tool against a
packet capture file or network interface.

dnppoints Print the observed DNP3 setpoints. The command provides
several options for querying the database based on various
timeframes and for DNP3 commands such as OPERATE and
DIRECT-OPERATE.

cmds Print the Telnet commands observed using the communications
validity detection tool. Cyber attacks often leverage Telnet in-
terfaces on SCADA devices to gain entry.

malformed Print the observed malformed packets for all protocols. The
command provides an overall summary or protocol-specific sum-
mary with the bytes observed in the protocols.

flows Print the TCP and UDP connections entering and leaving a
substation.

layer2 Print the MAC addresses of the observed devices.

certs Print the observed SSL certificates.

roles Print the SCADA device roles inferred by the communications
validity detection tool. The device roles are inferred based on
communications patterns and MAC addresses.

stop Stop the communications validity detection tool and all the pro-
ducers and consumers launched by the tool.

are available for querying multiple portions of the database, such
as setpoints, Telnet commands and malformed packets for any pro-
tocol. Table 2 shows a sampling of commands supported by the
command-line interfaces.

4. Tool Evaluation
Experiments were conducted to evaluate the communications validity

detection tool. The experiments were conducted on a workstation with
an Intel Xeon E31245 3.30 GHz processor with four cores and 16 GB
RAM. Apache Kafka version 0.10 and Hammer toolkit version 1.0-rc3
were employed in the experiments.

The following metrics were employed to evaluate the communications
validity detection tool:

Correctness of the implemented language-theoretic security parsers.
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Resilience of the implemented language-theoretic security parsers
to fuzzing.

Resilience of the network interfaces of the tool to fuzzing.

Detection of crafted packet attacks for the supported protocols.

Ability to handle high SCADA network traffic rates.

Visualization of operator actions.

4.1 Parser Correctness
To verify that the parsers cover a wide range of features in SCADA

protocols, data collected from a SCADA tested was input to the parsers.
In addition to running live network captures, the communications valid-
ity detection tool can replay and process packet capture (PCAP) files.

A dataset provided by Yardley [39] was used. The dataset contained
data from 20 substations and three control centers. The substations
and control centers did not belong to an actual utility, but they were
otherwise realistic, simplified physical substations with SCADA commu-
nications and power equipment in a field-deployed testbed.

The experimental substations were spread over two square miles rep-
resenting three independent crank paths. The substations were fed
by three generators connected by real overhead and underground ca-
bles. Also included were high-voltage substations handling electricity at
13 kV. Each substation had at least four relays and a remote terminal
unit. The three control centers had real-time automation controllers and
human-machine interfaces from at least four manufacturers.

The dataset comprised five hours of traffic. Although most of the
substations and control centers ran the DNP3 protocol. At least one
substation ran each of the other SCADA protocols: IEEE C37.118, IEC
61850 MMS, IEC 61850 GOOSE, SEL Fast Message and SES-92.

Table 3 shows the parser correctness results. The parsers ran with a
minimum accuracy of 94.5% and most of them had accuracies of 98% or
higher. The experiments demonstrate that the parsers successfully cover
an extensive feature set of the six SCADA protocols. However, several
practical DNP3 implementations provide experimental and error-prone
features that are not supported at this time.

4.2 Resilience to Fuzzing
Fuzzing SCADA devices can lead to crashes and denial-of-service at-

tacks if the parsers are vulnerable [32]. The communications validity
detection tool includes a set of parsers to ensure the syntactic validity
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Table 3. Parser correctness results.

Protocol Number of Packets Total Packets
Substations Parsed Number of Parsed

Successfully Packets Correctly

DNP3 25 1,888,861 2,007,277 94.5%
IEEE C37.118 2 1,619,479 1,619,582 99.9%
IEC 61850 MMS 1 35,635 36,262 98.2%
IEC 61850 GOOSE 1 4,501 4,511 99.7%
SEL Fast Message 1 45,802 46,737 98.1%
SES-92 2 488,147 503,244 97.0%

of SCADA network packets. Since the tool is designed to detect crafted
packet attacks on SCADA protocols, it was necessary to ensure that
fuzzing does not crash the tool itself.

Fuzzing the communications validity detection tool was intended to
serve two purposes. The first is parser resilience in that the parsers do
not crash on any input (well-formed, malformed or random). The second
is network resilience in that the network interfaces of the consumers can
handle large volumes of SCADA network traffic.

Parser Resilience. In this set of experiments, separate fuzzers had
to be used for the C/C++ and Python parsers. The C/C++ parsers
were fuzzed using AFL++ [17] and the Python parsers were fuzzed using
pythonfuzz [27], both coverage-guided fuzzers. To create a fuzzing tar-
get for AFL++, additional C files were created that invoked the parsers.
AFL++ required the programs with instrumentation to be compiled us-
ing an afl-cc compiler. Next, afl-fuzz was executed on the binaries
generated with a seed folder. A corpus of valid packets was created for
the seed.

Each fuzzer was executed for 48 hours. Table 4 shows the parser
fuzzing results. None of the fuzzing executions led to any crashes or
unresponsive parsers. Each pythonfuzz target ran at least one million
permutations through the parsers. In comparison, the AFL++ targets
ran a minimum of three million executions through the parsers.

Network Resilience. In the experiments, the parsers were imple-
mented as Apache Kafka consumers. The consumers received raw bytes
from the producers that they parsed to decide if they were safe or not.
Since the parsers included network interfaces, they were fuzzed using
fuzzotron [12]. The fuzzing experiments sought to determine if the net-
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Table 4. Parser resilience results.

Protocol Parser Resilience

Number of Unique Crashes Hangs
Packets Paths

DNP3 3.62 million 623 0 0
IEEE C37.118 112 million 5 0 0
IEC 61850 MMS 2.2 million 13 0 0
IEC 61850 GOOSE 1.2 million 254 0 0
SEL Fast Message 1 million 6 0 0
SES-92 637 million 6 0 0

work interfaces were resilient and could withstand several connections
and drops in connections every second.

The fuzzotron tool targeted the ports used by each consumer. Specif-
ically, it created and dropped connections to the ports, often violating
the TCP state machines. Once connections were established, fuzzotron
sent random bytes on the open TCP ports.

Table 5. Network resilience results.

Protocol Network Resilience

Number of Crashes
Connections

DNP3 900,000 120
IEEE C37.118 900,000 0
IEC 61850 MMS 900,000 0
IEC 61850 GOOSE 900,000 0
SEL Fast Message 900,000 5
SES-92 900,000 6

The network interfaces were fuzzed using fuzzotron while setting a
maximum limit on the number of attempts. Table 5 shows the total
numbers of connections that fuzzotron attempted to establish with the
consumers. The numbers of network timeouts or crashes were recorded.
Three consumers encountered no timeouts or crashes. The other three
consumers had at most 0.1% of the packets cause crashes. Most of the
crashes were due to heavy network loads. None of the crashes could be
reproduced.
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4.3 Crafted Packet Detection
Malformed DNP3 packets from the Aegis fuzzer [31] were employed

to evaluate the communications validity detection tool against crafted
packets. The dataset comprised 198 malformed DNP3 packets that were
generated by mutating well-formed DNP3 packets. The malformed pack-
ets leveraged some of the DNP3 vulnerabilities identified by Crain and
Sistrunk [11]. Most of the vulnerabilities were structural or syntactic.

Since the Aegis fuzzer only supports the Modbus and DNP3 protocols,
mutations of well-formed packets corresponding to the IEEE C37.118,
IEC 61850 MMS, IEC 61850 GOOSE, SEL Fast Message and SES-92
protocols were created. The mutated packets mostly conformed to the
protocols, but violated the specifications in certain locations. A dataset
comprising 198 packets was generated for each protocol.

The mutated packets were fed to the producers, which passed the
packets on to their consumers. The communications validity detection
tool was able to detect all the mutated packets as malformed. Also, none
of the malformed packets caused any of the parsers to crash.

4.4 Parser Performance
Parser performance was assessed by measuring the time taken to de-

cide whether packets are well-formed or malformed. The same dataset
used to evaluate parser correctness was employed.

Figure 5 shows the parser performance results. The times required by
most of the parsers was constant with minor variations. The times are
in the order of microseconds for the IEEE C37.118, IEC 61850 MMS and
IEC 61850 GOOSE parsers whereas they are in the order of milliseconds
for the DNP3 and SES-92 parsers. The time taken does not directly de-
pend on packet size. Also, latency is introduced by the publish-subscribe
model.

The Python-based parsers performed much better than the parsers
implemented in C. The tool incorporated Python code even for the C
implementations to ensure seamless interoperability across the contain-
ers. However, this feature was found to add latency.

4.5 Visualization Capabilities
One of the core features of the communications validity detection tool

is the visual component for operators to confirm actions. Several scenar-
ios were developed to validate the operator interfaces. Network configu-
rations were created for the test network using three relays, two remote
terminal units and one real-time automation controller from three man-
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Figure 5. Parser performance results.

ufacturers. This was exclusively a SCADA system network because the
relays did not control any live power settings.

Figure 6 shows the network user interface. Unidentified devices are
shaded and the numbers at the edges indicate the numbers of packets
observed. Various devices were removed from the network configuration
and the communications validity detection tool was applied to the net-
work. The tool was successfully able to detect all the network devices
not present in the configurations. Additionally, the network configura-
tion mismatch analyzer triggered the appropriate alerts.

The DNP3 timeline user interface was evaluated by crafting a scenario
where a malicious program injects DNP3 WRITE commands in the net-
work. In this scenario, operators must monitor the DNP3 timeline to
ensure that no malicious WRITE or OPERATE commands enter the
network (only human users should trigger these commands).

When the DNP3 WRITE commands were injected, the communi-
cations validity detection tool raised alerts and generated the timeline
shown in Figure 7. An operator viewing the timeline on a web user inter-
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Figure 6. Network user interface.

Figure 7. Web user interface with DNP3 WRITE commands in a 10-minute window.

face would see immediately that a network device is sending malicious
commands.

5. Discussion
The communications validity detection tool filters packets to decide if

they match the headers of a specific protocol and then run the associated
parser on the packets. If the parser fails, the result is logged. This
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approach is effective for most protocols, but it proved challenging for
the SEL Fast Message and SES-92 protocols. These protocols do not
have a fixed set of bytes designated as the header. Instead, the parsers
have to be executed to determine if the packets conform to one of the
two protocols. Although the parsers may detect several crafted packet
attacks for the two protocols, several packets could be missed.

For example, suppose a single packet is processed by the DNP3, IEC
61850 MMS and SES-92 parsers. Then, the question is, if the packet
header does not match the DNP3 and IEC 61850 MMS protocols and
the SES-92 parser does not parse the packet successfully, whether the
packet should be as logged an invalid SES-92 packet. This is problematic
because the packet could correspond to any protocol, such as DNS or
NTP, for which a parser has not been developed.

The Hammer parser-combinator toolkit was employed to construct
parsers for SCADA protocols. Hammer uses two data structures, parser
objects to define a parser and a parsed abstract syntax tree to provide
the parsed output for a specific input. Hammer provides functions to
free the parsed abstract syntax tree but does not provide a mechanism
to free parser objects. This issue was discovered during the fuzzing
efforts because some of the fuzzers reached their memory limits much
earlier than anticipated. Discussions are underway with the Hammer
development team about facilitating fuzzing by adding functions to free
parser objects.

Formally verifying the language-theoretic parsers is another challenge.
No formal parsing algorithms are available to handle the context-sensitive
languages used in SCADA communications. Efforts have been made to
construct parsers that extend beyond regular grammars and context-
free grammars. The Hammer parser-combinator tool provides bindings
to parse languages with context-sensitive properties. However, Hammer
has not been verified. Therefore, the parser implementations were fuzzed
extensively to ensure that no bugs had been introduced.

Although the communications validity detection tool was designed
as a forensic analysis toolkit to gather data from SCADA networks, it
can also be deployed for network intrusion detection and prevention.
The primary reason for not pursuing this direction is that latency of a
few milliseconds was introduced due to tool limitations. Protocols such
as IEC 61850 GOOSE specify that the latency must not exceed 4ms.
This latency requirement would be violated if the communications va-
lidity detection tool in its current state were to be used as an intrusion
prevention system. However, the tool could be repurposed for such ap-
plications with engineering improvements and parsers running on field
programmable gate array (FPGA) hardware.
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TCP reassembly poses another challenge to parsing. Although most
SCADA packets are small enough not to be fragmented, the DNP3 and
IEC 61850 MMS protocols have large packets in rare conditions. In its
current state, the communications validity detection tool cannot handle
fragmented packets. However, introducing a TCP reassembly engine in
the parsers would introduce significant overhead. It would require main-
taining the TCP state as well as buffering packets before decisions can
be made. Nevertheless, future plans involve creating a TCP reassembly
engine to go with the proposed FPGA-based parser implementations.

6. Conclusions
The communications validity detection tool presented in this chapter

is designed to monitor SCADA networks for crafted input and malformed
packet attacks. It incorporates language-theoretic security-compliant
parsers and continuous monitoring and data collection to gather forensic
data from SCADA networks.

The parsers incorporated in the communications validity detection
tool cover a range of SCADA protocols and experimental evaluations
using a large dataset of SCADA network traffic demonstrate their ef-
ficacy. Fuzzing experiments with the tool demonstrate the resilience
of the parsers and the use of the tool in SCADA networks. Graphical
user interfaces are also provided to facilitate security decision making by
SCADA system operators.

Future research will formally verify the parsers and build a new toolkit
to generate verified parsers. Other research will focus on new pars-
ing algorithms for context-sensitive grammars and well as implementing
highly-parallelized parsing algorithms on FPGAs to reduce latency. Ad-
ditionally, attempts will be made to understand SCADA operator needs
with regard to the tools needed to detect attacks on SCADA networks.

Any opinions, findings and conclusions or recommendations expressed
in this chapter are those of the authors and do not necessarily reflect
the views of the U.S. Air Force or DARPA.
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