
Mismorphism: The Heart of the Weird Machine

Prashant Anantharaman1, Vijay Kothari1, J. Peter Brady1,
Ira Ray Jenkins1, Sameed Ali1, Michael C. Millian1,

Ross Koppel3, Jim Blythe2, Sergey Bratus1, and
Sean W. Smith1

1 Dartmouth College, Hanover, NH, USA
2 Information Sciences Institute, University of Southern California,

Los Angeles, CA, USA
3 Sociology Department, University of Pennsylvania, Philadelphia, PA, USA

Abstract. Mismorphisms—instances where predicates take on different
truth values across different interpretations of reality (notably, different
actors’ perceptions of reality and the actual reality)—are the source of
weird instructions. These weird instructions are tiny code snippets or
gadgets that present the exploit programmer with unintended computa-
tional capabilities. Collectively, they constitute the weird machine upon
which the exploit program runs. That is, a protocol or parser vulnera-
bility is evidence of a weird machine, which, in turn, is evidence of an
underlying mismorphism. This paper seeks to address vulnerabilities at
the mismorphism layer.
The work presented here connects to our prior work: Language-theoretic
security, LangSec, provides a methodology for eliminating weird ma-
chines: By limiting the expressiveness of the input language, separating
and constraining the parser code from the execution code, and ensur-
ing only valid input makes its way to the execution code, entire classes
of vulnerabilities can be avoided. Here, we go a layer deeper with our
investigation of the mismorphisms responsible for weird machines.
In this paper, we re-introduce LangSec and mismorphisms, and we de-
velop a logical representation of mismorphisms that complements our
previous semiotic-triad-based representation. Additionally, we develop
a preliminary set of classes for expressing LangSec mismorphisms, and
we use this mismorphism-based scheme to classify a corpus of LangSec
vulnerabilities.

1 Introduction

(

– need to stress that we don’t use the power of the predicates much in this
paper... we’re mostly dealing with propositional variables.

– clarify definition of predicate if needed
– we might want to present situations where an interpretor interprets a predi-

cate with incomplete information as one in which variables are not assigned
or propositional variables cannot be evaluated (rather than introducing U as

2 Anantharaman et al.

a value that all variables can take on, as opposed to the final interpretation
value)... or we should represent U as being a fixed value that is unknown to
the interpretor.

- vk)

Mismatches between the perceptions of the designer, the implementor, and
the user often result in protocol vulnerabilities. The designer has a high-level
vision for how they believe the protocol should function, and this vision guides
the creation of the specification. In practice, the specification may diverge from
the initial vision due to practical constraints, e.g., hardware or real-time require-
ments. The implementor then produces code to meet the specification based on
their perceptions of how the protocol should function and, in some cases, how
the user will interact with it. However, incorrect assumptions may produce vul-
nerabilities in the form of bugs or unintended operation. A user—informed by
their own assumptions and perceptions—may then interact with a system or
service that relies upon the protocol. A misunderstanding of the protocol and its
operation can drive the user toward a decision that produces an unintended out-
come. Ultimately, the security of the protocol rests on the consistency between
the various actors’ mental models of the protocol, the protocol specification, and
the protocol implementation.

A mismorphism refers to a mapping between different representations of
reality (e.g., the distinct mental model of the protocol designer, the protocol
implementor, and the end user) for which properties that ought to be preserved
are not. In the past, we have used this concept and an accompanying semiotic-
triad-based model to succinctly express the root causes of usable security fail-
ures [18]. We now apply this model to protocol design, development, and use. As
mentioned earlier, many vulnerabilities stem from a mismatch between differ-
ent actors’ representations of protocols and the protocol operation in practice,
e.g., the HeartBleed [9] vulnerability embodies a mismatch between the protocol
specification, which involved validating a length field, and the implementation,
which failed to do so. Therefore, it is natural to adopt the mismorphism model
to examine the root causes of protocol vulnerabilities. That is precisely what we
do in this paper.

The notion of mismorphism closely parallels the views expressed by Bratus
et al. [5] in their discussion of exploit programming:

“Successful exploitation is always evidence of someone’s incorrect as-
sumptions about the computational nature of the system— in hindsight,
which is 20-20.”

The mindset embodied in this quote forms the foundation for the field of
language-theoretic security, LangSec.4 Exploitation is unintended computation

4 We only give a brief primer of LangSec in this paper. For those who are interested
in learning more we recommend consulting the LangSec website [4] located at http:
//langsec.org.

http://langsec.org
http://langsec.org

Mismorphism: The Heart of the Weird Machine 3

performed on a weird machine [17] that the target program harbors. 5 Weird
machines comprise the gadgets within a program that offer the adversary un-
intended computational capabilities to carry out an attack, e.g., NOP sleds,
buffer overflows. Weird machines were never intended by protocol designers or
implementors but organically arose within the protocol design and development
phases. For instance, consider a designer who intends to design a web server
program. The implementor of the software attempts to sanitize the input, but
unwittingly lets malicious input through. This enables the adversary to supply
unexpected input, resulting in unexpected behavior. The adversary repeatedly
observes instances of unspecified program behaviour and uses these observations
to craft an exploit program that they run on the exposed weird machine; this
weird machine may serve as a Turing machine or otherwise expressive machine
for the supplied input, the exploit program. To the designer, it was just a web
server program; to the exploit programmer it provides an avenue of attack.

LangSec advocates taking a principled approach— one that is informed lan-
guage theory, automata theory, and computability theory— to parser design and
development to eliminate the weird machine. LangSec facilitates the construction
of safer protocols that behave closer to what the way that designers and imple-
mentors envisioned by identifying best practices for protocol construction, such
as parsing the input in full before program execution and ensuring the parser
obeys known computability boundaries for safer computation. It also delivers
tools such as Hammer and McHammer to achieve these goals [13,15].

Momot et al. [14] created a taxonomy of LangSec anti-patterns and used it to
suggest ways to improve the Common Weakness Enumeration (CWE) database.
Erik Poll [16] takes a different approach, classifying input vulnerabilities into two
broad categories — flows in processing input and flaws in forwarding input—
and discusses examples from both categories in detail.

We build upon this prior research, viewing mismorphisms as precursors to
the weird machine. Our work is motivated by the belief that identifying and
categorizing the mismorphisms that produce weird machines is a valuable step in
systematically unpacking the causes of vulnerabilities and ultimately addressing
them.

2 Mismorphisms

Here, we provide a very brief primer on mismorphisms and present a logical
model for capturing them. Our work here builds upon our earlier efforts to build
a semiotic-triad-based mismorphism model [18], which was, in turn, inspired by

5 For the reader interested in learing more about weird machines: Dullien [8] provides
a formal definition for understanding weird machines and shows that it is feasible
to build software that is resilient to memory corruption. Bratus and Shubina [6]
also presents exploit programming as a problem of code reuse, discusses how the
adversary uses code presented by the weird machine to carry out the exploit, and
describes colliding actors’ abstractions of how the code works.

4 Anantharaman et al.

early semiotics work by pioneers Ogden and Richards [7]. The logical represen-
tation presented here blends temporal logic with the notion of interpretation.
Following this section, we demonstrate how this logical model can be used to
classify underlying causes of LangSec vulnerabilities by providing a preliminary
classification using real-world examples.

In the context of this paper, a mismorphism refers to a difference in interpre-
tations between two or more interpretors. That is, we can think of different in-
terpretors (e.g., people) interpreting propositions or predicates about the world.
In general, it is good when the interpretations agree and are in accordance with
reality. However, when a predicate takes on a truth value under one interpreta-
tion but not another interpretation, we have a mismorphism, which may be a
cause for concern. In our earlier applications, we found these mismorphisms were
useful in understanding usable security failures and user circumvention. Here, we
apply them to protocol and parser security. As mismorphisms deal with inter-
pretations of predicates and how interpretations differ between interpretors, it’s
easy to see why formal logic provides a natural foundation to represent them.

We use the words predicate and interpretation in similar—albeit, not identical—
manners to their formal-logic meanings, e.g., as presented by Aho and Ullman [3].
We refer to a predicate as a function from variables to values that belong to some
set R ∪ {U}. Here, R is a set of values and U is a special value that means un-
certain; we will soon explain the need for U , but for now, one can think of U as
an unassigned variable. We refer to an interpretation of a predicate as an assign-
ment of values to variables, which results in the predicate being interpreted as T
(true), F (false), or U (uncertain/unknown). A predicate is interpreted as T if
after substituting all variables for their truth values, every possible substitution
of U values for values in R results in the predicate being interpreted as T ; it is
interpreted as F if after substituting all variables for their truth values, every
possible substitution of U values for values in R results in the predicate being
interpreted as F ; if the interpretation is neither T nor F , it is interpreted as U .

The interpretation must, of course, be done by someone (or perhaps some-
thing) and that someone is the interpretor. In this paper, common interpretors
include the oracle O who interprets the predicate as it is in reality, the designer
D, the implementor I, and the user U . We note that some interpretors may
be people who do not feel they have adequate information to assign values to
variables or to determine the truth value of a predicate. It is imperative we allow
for the uncertain value U to capture such instances.

To represent mismorphisms we need a way to express the relationship be-
tween interpretations of a predicate. Thus, we have the following:

[Predicate] [Interpretation Relation] [List of interpretors]

The interpretation relations over the set of all predicate-interpretor pairs are
k-ary relations where k >= 2 is the number of interpretors there are in the in-
terpretation relation— and each k-ary relation is over the interpretations of the
predicate by the k interpretors. The three interpretation relations we are con-
cerned with in this paper are: the interpretation-equivalence relation (=

interp.
), the

Mismorphism: The Heart of the Weird Machine 5

interpretation-uncertainty relation (
?
=

interp.
), and the interpretation-inequivalence

relation (6=
interp.

).6 These relations are defined as follows where each P represents

a predicate and each Ai represents an interpretor:

• P =
interp.

A1, A2, . . . Ak iff P interpreted by each Ai has a truth value that’s

either T or F (never U)— and all interpretations yield the same truth value.

• P ?
=

interp.
A1, A2, . . . Ak iff P takes on the value U when interpreted by at

least one Ai.

• P 6=
interp.

A1, A2, . . . Ak iff P interpreted by Ai is T and P interpreted by Aj

is F for some i 6= j.

There are a few important observations to note here. One is that the oracle
O will always hold the correct truth value for the predicate by definition. An-

other is that if we only know the
?
=

interp.
relation applies, we won’t know which

interpretor is uncertain about the predicate or even how many interpretor are
uncertain unless k = 2 and one interpretor is the oracle. Similarly, if we only
know that the 6=

interp.
relation applies, we do not know where the mismatch exists

unless k = 2. That said, knowledge that the oracle O always holds the correct in-
terpretation combined with other facts can help specify where the uncertainty or
inequivalence stem from. Last, the =

interp.
relation can not be applicable if either

the
?
=

interp.
or the 6=

interp.
interpretations are applicable; however, P

?
=

interp.
A1, . . . Ak

and P 6=
interp.

A1, . . . Ak can both be applicable simultaneously.

The purpose of creating this model was to allow us to capture mismorphisms—
and it does. Mismorphisms correspond to instances where either the interpretation-
uncertainty relation or interpretation-inequivalence relation apply.

For our purposes, we also consider some natural extensions to this logical for-
malism. In select cases, we may consider multiple interpretors of the same role.
In these instances, we assign subscripts to distinguish roles, e.g., D, I1, I2, O.
Also, there are temporal aspects that may be relevant. Predicates can be func-
tions of time and so can the interpretations. While we use the common v(t)-style
notation to represent a variable as a function of time within a predicate, in se-
lect cases we consider the interpretor as a function of time, e.g., It34 means the
interpretation is done by implementor I4 at time t = t3.

6 Note that for k = 2, if we confine ourselves to predicates that take on only T or F
values, the relation =

interp.
is an equivalence relation in the mathematical sense, as

one might expect, i.e., it obeys reflexivity, commutativity, and transitivity.

6 Anantharaman et al.

3 Preliminary Classification

We describe the various types of mismorphisms using a mathematical notation.
All the vulnerabilities we catalog fall into one of the categories of mismorphisms
we describe below.

3.1 Language is Decidable

Any input language format needs to be decidable for the implementor to be
able to parse and make sure that there are no corner cases when the program
can enter unexpected states or fail to terminate. When the designer assumes
language L is decidable (in the absence of proof that it is), the program may
harbor the potential for unexpected computation.

For one example, the Ethereum platform uses a Turing-complete input lan-
guage to enable its smart contracts. It is demonstrably more difficult to build a
parser for such an input language. Such added complexity led to the Ethereum
DAO disaster [20], in which all ethers were stolen, forcing the developers to
perform a highly controversial hard fork. As a result, some developers built a
decidable version of Solidity called vyper [10].

We define such a language mismorphism by the form:

L is decidable
?
=

interp.
O,D (1)

A diagrammatic representation of the above formalism can be found in Fig-
ure 1.

3.2 Shotgun Parsers

Shotgun parsers perform input data checking and handling interspersed with
processing logic. Shotgun parsers do not perform full recognition before the data
is processed. Hence, implementors may assume that a field x has the same value
at time t and time t + δ, but the processing logic may change the value of the
field x in an input buffer B.

This mismorphism relation is seen below:

B(t) = B(t+ δ) 6=
interp.

O, I (2)

Implementors expect the buffer to be intact across time, but that is not
observed to be the case. Shotgun parsing can cause mismorphisms in two distinct
ways. First, when a partially validated input is treated as though it is fully
validated. Implementor 1 performs shotgun parsing, and knows input is only
partially validated. Implementor 2 works on execution, and assumes the input is
fully validated by the time the code segment is executed. This type of a shotgun
parser mismorphism can be represented as the following:

B is accepted 6=
interp.

I1, I2 (3)

Mismorphism: The Heart of the Weird Machine 7

Implementor I

Designer D

d(SPEC)|O = F

d(IMPL)|O = F

d(x): x is decidable

Oracle O

d(IMPL)|I = T

d(SPEC)|D = T

d(SPEC) ≠ O, D

interp.
d(IMPL) ≠ O, I

interp.

Designer believes

specification is decidable;

in reality it is not.

Implementor believes

implementation is decidable;

in reality it is not.

Fig. 1. One class of mismorphism where implementors and designers both disagree
with the reality that the language is actually undecidable.

Second, the same implementor performs shotgun parsing, and execution. But
interprets the same protocol differently during different times. This type of a
mismorphism can be represented as the following:

B is accepted 6=
interp.

It1 , It2 (4)

3.3 Two parsers for same protocol aren’t equivalent

Designers of protocols intend for two endpoints to have the exact same func-
tionality, and build identical parse trees. The Android Master Key bug is an
apt example for this type of a mismorphism [11]. The parsers for the unzipping
function in Java and C++ were not equivalent, leading to a parsing differential.

We describe this relation as:

Parsers P1, P2 are equivalent 6=
interp.

O,D, I (5)

8 Anantharaman et al.

3.4 Implementor is unaware that some fields need to be validated

Designers of protocols introduce new features in the specification of the protocol,
sometimes not describing fully or accurately. The designer introduces a field x in
the protocol, but the interpretor does not entirely understand how to interpret
it. The Heartbleed vulnerability was an example of this. The designers included
the heartbeat message, but the implementors did not completely understand it
and missed an additional check to make sure the length fields matched [9].

sanity check C is performed 6=
interp.

O,D, I (6)

3.5 Types of fields in the buffer is fixed for the life cycle of the
buffer

The types of values that have already been parsed must remain constant. Some-
times, implementors assume field x is treated as type t(x) throughout execution.
in reality, field is treated as type t(x) and t′(x).

type(x) is fixed 6=
interp.

O,D, I (7)

A summary of the vulnerabilities along with their mismorphisms is in Table 1.

Mismorphism: The Heart of the Weird Machine 9

Table 1: Summary of LangSec vulnerabilities and causes

Vulnerability Underlying Mismorphisms
ShellShock Description:

Bash unintentionally executes commands that are concate-
nated to function definitions that are inside environment
variables.

Mismorphism:

sanity check C is performed 6=
interp.

O,D, I

The sanity check C here makes sure that once functions are ter-
minated, the variable shouldn’t be reading commands that follow
it.

Rosetta Flash Description:

SWF files that are requested using JSONP are incorrectly
parsed once they are compressed using zlib. Compressed SWF
files can contain only alphanumeric characters [19].

Mismorphism:

sanity check C is performed 6=
interp.

O,D, I

The specification of the SWF file format is not exhaustively vali-
dated using a grammar. The fix uses conditions such as checking
for the first and last bytes for special, non-alphanumeric charac-
ters.

HeartBleed Description:

The protocol involves two length fields, one that specifies
the total length of the heartbeat message; the other specifies the
size of the payload of the heartbeat message.

Mismorphism:

sanity check C is performed 6=
interp.

O,D, I

Sanity check C involves verifying the length fields l1 and l2 match.

10 Anantharaman et al.

Android Master Key Description:

The Java and C++ implementations of the cryptographic
library performing unzipping were not equivalent.

Mismorphism:

Parsers P1, P2 are equivalent 6=
interp.

O,D, I

Ruby on Rails - Omakase Description:

The Rails YAML loader doesn’t validate the input string
and check that it is valid JSON. And it doesn’t load the entire
JSON; instead it just starts replacing characters to convert JSON
to YAML [12].

Mismorphism:

sanity check C is performed 6=
interp.

O,D, I

Sanity check C should first recognize and make sure the JSON is
well-formed, before replacing the characters in YAML.

Wireshark ASN.1 Bug Description:

The same integer length value was treated as unsigned by
some parts of the code, and signed by others, leading to weird
behavior.

Mismorphism:

type(x) is fixed 6=
interp.

O,D, I

The types of all the parsed fields must be fixed. The parse tree
must be used as much as possible to process the parsed input.

Mismorphism: The Heart of the Weird Machine 11

Nginx
HTTP Chunked Encoding

Description:

Large chunk size for the Transfer-Encoding chunk size trig-
ger integer signedness error and a stack-based buffer overflow [1].

Mismorphism:

B is accepted 6=
interp.

I1, I2

The shotgun parser works on execution without validating the
value of the length field which could be much larger than allowed
causing buffer overflows. All implementors must work with the
same knowledge, and the input must first be recognized fully.

Elasticsearch
Crafted Script Bug

Description:

Elasticsearch runs Groovy scripts directly in a sandbox. At-
tackers were able to craft a script that would bypass the sandbox
check and execute shell commands.

Mismorphism:

L is decidable
?
=

interp.
O,D

Developers of Elasticsearch had to explore the option of abandon-
ing Groovy in favor of a safe and less dynamic alternative.

12 Anantharaman et al.

Mozilla
NSS Null Character Bug Description:

If domain names included a null character, there was a discrep-
ancy between the way Certificate Authorities issued certificates
and the way SSL clients handled them. Certificate Authorities
issued certificates for the domain after the null character, whereas
the SSL clients used the domain name ahead of the null character.

Mismorphism:

Parsers P1, P2 are equivalent 6=
interp.

O,D, I

Although having a null character in a certificate is not accepted
behavior, certificate authorities and clients do not want to ignore
requests that contain them. So they follow their own interpreta-
tions, resulting in a parser differential.

Adobe Reader
CVE-2013-2729

Description:

In running length encoded bitmaps, Adobe Reader would
write pixel values to arbitrary memory locations since there was
a bounds check that was skipped.

Mismorphism:

B is accepted 6=
interp.

I1, I2

The code used a shotgun parser where the implementor of the
processing logic assumed all fields were validated. The bounds
check was never performed.

Mismorphism: The Heart of the Weird Machine 13

OpenBSD - Fragmented
ICMPv6 Packet
Remote Execution

Description:

Fragmented ICMP6 packets cause an overflow in the mbuf
data structure in the kernel may cause a kernel panic or remote
code execution depending on packet contents [2].

Mismorphism:

sanity check C is performed 6=
interp.

O,D, I

Implementors of the ICMP6 packet structures in OpenBSD did
not understand how to map it to the existing mbuf structure, and
then validate it.

4 Conclusion

In this paper, we proposed a novel approach to categorizing the root causes of
protocols vulnerabilities. We applied a semiotic-triad-based model of mismor-
phism, along with a newly developed logical model to create a preliminary set
of mismorphism classes to understand those underlying LangSec vulnerabilities.
We also created a corpus of vulnerabilities and used the classification scheme to
classify the mismorphisms.

LangSec theorizes solutions to most input handling problems presented in
this paper. LangSec offers parser-combinator toolkits and advocates for its use.
Parser-combinator toolkits allow for efficient conversion of a protocol design
specification into a parser. Unfortunately, this doesn’t automatically translate
to solutions for all the categories of mismorphisms we have encountered. In
addition to an overview of the work presented in this paper, we aim to discuss
tools that would help address and prevent mismorphisms created by designers
and implementors of programs.

Acknowledgement

This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-16-C-0179 and Department of Energy
under Award Number DE-OE0000780.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the United States Air Force, DARPA, United States Government or any agency
thereof.

14 Anantharaman et al.

References

1. CVE-2013-2028 Nginx HTTP Server 1.3.9-1.4.0 Chunked Encoding Stack Buffer
Overflow | Rapid7, https://www.rapid7.com/db/modules/exploit/linux/http/
nginx_chunked_size

2. OpenBSD’s IPv6 mbufs remote kernel buffer overflow, https://www.secureauth.
com/labs/advisories/open-bsd-advisorie

3. Aho, A., Ullman, J.: Foundations of Computer Science: C Edition, Chapter 14
(July 1994), http://infolab.stanford.edu/~ullman/focs.html

4. Bratus, S.: LANGSEC: Language-theoretic Security: “The View from the Tower
of Babel”, http://langsec.org

5. Bratus, S., Locasto, M., Patterson, M., Sassaman, L., Shubina, A.: Exploit pro-
gramming: From buffer overflows to weird machines and theory of computation.
{USENIX; login:} (2011)

6. Bratus, S., Shubina, A.: Exploitation as code reuse: On the need of formalization.
it-Information Technology 59(2), 93–100 (2017)

7. C. Ogden and I. Richards: The Meaning of Meaning. In: Harcourt, Brace and
Company (1927)

8. Dullien, T.F.: Weird machines, exploitability, and provable unexploitability. IEEE
Transactions on Emerging Topics in Computing (2017)

9. Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., et al.: The matter of heartbleed. In: Proceedings
of the 2014 conference on internet measurement conference. pp. 475–488. ACM
(2014)

10. Ethereum: Pythonic Smart Contract Language for the EVM, https://github.

com/ethereum/vyper

11. Freeman, J.: Exploit (& Fix) Android “Master Key”, http://www.saurik.com/

id/17

12. Helmkamp, B.: Rails’ Remote Code Execution Vul-
nerability Explained, https://codeclimate.com/blog/

rails-remote-code-execution-vulnerability-explained/

13. Hermerschmidt, L.: McHammerCoder: A binary capable parser and unparser gen-
erator, https://github.com/McHammerCoder

14. Momot, F., Bratus, S., Hallberg, S.M., Patterson, M.L.: The Seven Turrets of Ba-
bel: A Taxonomy of LangSec Errors and How to Expunge Them. In: Cybersecurity
Development (SecDev), IEEE. pp. 45–52. IEEE (2016)

15. Patterson, M.: Parser combinators for binary formats, in C, https://github.com/
UpstandingHackers/hammer

16. Poll, E.: Langsec revisited: input security flaws of the second kind. In: 2018 IEEE
Security and Privacy Workshops (SPW). pp. 329–334. IEEE (2018)

17. Shapiro, R., Bratus, S., Smith, S.W.: ” weird machines” in elf: A spotlight on the
underappreciated metadata. In: WOOT (2013)

18. Smith, S.W., Koppel, R., Blythe, J., Kothari, V.: Mismorphism: a semiotic model
of computer security circumvention. In: Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security. p. 25. ACM (2015)

19. Spagnuolo, M.: Abusing JSONP with Rosetta Flash, https://miki.it/blog/

2014/7/8/abusing-jsonp-with-rosetta-flash/

20. Torpey, K.: The DAO Disaster Illustrates Differing Philoso-
phies in Bitcoin and Ethereum, https://www.coingecko.com/buzz/

dao-disaster-differing-philosophies-bitcoin-ethereum

https://www.rapid7.com/db/modules/exploit/linux/http/nginx_chunked_size
https://www.rapid7.com/db/modules/exploit/linux/http/nginx_chunked_size
https://www.secureauth.com/labs/advisories/open-bsd-advisorie
https://www.secureauth.com/labs/advisories/open-bsd-advisorie
http://infolab.stanford.edu/~ullman/focs.html
http://langsec.org
https://github.com/ethereum/vyper
https://github.com/ethereum/vyper
http://www.saurik.com/id/17
http://www.saurik.com/id/17
https://codeclimate.com/blog/rails-remote-code-execution-vulnerability-explained/
https://codeclimate.com/blog/rails-remote-code-execution-vulnerability-explained/
https://github.com/McHammerCoder
https://github.com/UpstandingHackers/hammer
https://github.com/UpstandingHackers/hammer
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/
https://www.coingecko.com/buzz/dao-disaster-differing-philosophies-bitcoin-ethereum
https://www.coingecko.com/buzz/dao-disaster-differing-philosophies-bitcoin-ethereum

	Mismorphism: The Heart of the Weird Machine

