
Weird Machines in Package Managers: A Case
Study of Input Language Complexity and Emergent

Execution in Software Systems
Sameed Ali

Dartmouth College
Hanover NH, USA

sameed.ali.gr@dartmouth.edu

Michael E. Locasto
Narf Industries

New Jersey, USA
michael.locasto@narfindustries.com

Sean Smith
Dartmouth College
Hanover NH, USA

sws@cs.dartmouth.edu

Abstract—Unexpected interactions of linguistic elements of
software often produce unexpected composable computational
artifacts called weird machines. Using the RPM package manager
as a case study, we provide a systematic approach to discover
and classify the semantics of latent functionality existing within
the input space of complex systems. We demonstrate latent
functionality present within the RPM package management in-
frastructure via the construction of a Turing-complete automaton
residing within the RPM package management infrastructure.

Index Terms—weird machines, exploit, software security, emer-
gent computation

I. INTRODUCTION

The increasing complexity of software systems often leads
to unexpected computational abilities within them. These
computational abilities manifest themselves as unintended
composable computing primitives that remain undiscovered
within software systems. Also referred to as weird machines
(e.g., [1]), these primitives pose a serious risk for building
secure systems because they can be utilized by an adversary
to carry out unauthorized computation within a target system.
In addition to subverting a user’s judgment about the safety
of input, the ability to carry out arbitrary computation via
what appears to be benign metadata (e.g., [2]) not only greatly
increases the impact of otherwise minor security vulnerabil-
ities, but also makes it possible to realize exploits that do
not leverage well-known exploitation vectors like memory
corruption.

However, once a vulnerability is found that can program a
weird machine, researchers then build tools that retroactively
test the existence of those specific types of weird machines.
Such tools, for example, might prevent ROP gadgets, return-
to-libc attacks, memory corruptions (buffer overflows and the
like) etc. This raises an interesting question, how can we
increase assurance that software design is secure from weird
machines from the start? Further, what is the relationship

This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Agreement No. HR00112090032.
and HR001119C0121. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Defense Advanced Research Projects
Agency (DARPA).

between input language complexity and the existence of weird
machines? And how can the interaction of various features of
a complex system give rise to them?

To answer these questions, we investigate the RPM package
management infrastructure as a complex system. We investi-
gate how the various components of the system interact with
each other and analyze its metadata to see how it can be used to
program a weird machine. By considering the RPM package
management infrastructure, we investigate the possibility of
taking a design or an early-state prototype and forecasting
where and how computation may arise and be programmed
within it. We argue that designs of sufficient complexity
necessarily generate unintended programming primitives and
seek to shed light on that complexity boundary.

To that end, this paper makes the following contributions:
• It presents a well-documented case-study of the discovery

of latent functionality within the RPM package manage-
ment infrastructure.

• It provides an analytical method for assessing software
systems at design time to discover the presence of weird
machines within them.

• It sheds light on the computational power of metadata in
package managers and demonstrates how it is powerful
enough to embed computation within itself.

A. Motivation

Malicious users are known to utilize unintended compu-
tational abilities in software systems for adversarial ends;
Figure 1 illustrates the general model. For instance, script-
less attacks [3] have been demonstrated on web browsers,
allowing an attacker to perform computation on a victim’s
browser without relying on memory corruption or other such
vulnerabilities. Attackers in the wild have also utilized such
computing artifacts to increase the impact of otherwise less
severe vulnerabilities. For example, the iMessage zero-click
exploit (CVE-2021-30860) [4] constructed and executed ar-
bitrary boolean logic circuits built using the linguistic features
of the JBIG2 image compression, to give itself the ability to
execute arbitrary code via the construction of these circuits
in the victim’s machine. This attack was possible due to the



Valid Input

Adversarial Input

Application
Interface

Weird Machine

Intended known
functionality

Arbitrary 
latent 

functionality

State space of valid inputs Interface to the system State space of the 
functionality of the system

Fig. 1: This diagram illustrates weird machine vulnerabilities. We show the state space of a valid program’s input language, its
relationship to the application interface, and its relationship to the functionality present within a complex system. Every valid
input, when consumed by the application, triggers some functionality within the complex system. Typical LangSec vulnerability
families explore how crafted but invalid input can cause the victim to behave incorrectly, or how differential parsing of inputs
can cause two victims to behave differently. In contrast, a weird machine provides an interface to the latent functionality
already present within a complex system via a valid input. The box labeled weird machine shows how it is already a part of
the application interface but remains unknown. A weird machine is discovered when a mapping between the latent functionality
of a complex system and a set of valid inputs that trigger that functionality is made apparent.

emergence of unexpected computing artifacts present inside
the victim’s environment. These computing artifacts were
generated from an interaction of otherwise benign linguistic
features of a complex system. Similar attacks (discussed
further in Section VIII-A) not only demonstrate the potential
of unexpected behavior in complex systems, but also provide
strong evidence for our argument that unintended computa-
tional abilities present a latent risk in complex systems which
needs to be addressed for the construction of secure software
systems. Therefore, to build trustworthy and secure systems
it remains vital to know and clearly limit the computational
possibilities expressed by a software system and their interac-
tions.

B. Scope

Although we acknowledge the risks posed by common
exploitation techniques and supply chain attacks on software
systems, in this paper our research question is only concerned
with discovering unexpected computation that presents itself
inside the metadata of the RPM package management infras-
tructure, rather than orthogonal vectors.

This paper is, thus, not concerned with common exploitation
techniques, such as those based on memory corruption or
faulty logic bugs. Similarly, the paper is also not directly

aimed at addressing supply chain attacks on package man-
agement software. The focus of this investigation lies more in
discovering computational functionality that may exist within
unexpected data formats — for instance, the metadata of a
software package — and the challenges it poses for building
secure systems.

To investigate the viability of well-formed metadata as a
threat vector for advanced exploits, we shall limit ourselves
to those scenarios where an attacker can only modify the
metadata of RPM packages in a repository. Such scenarios
may arise when a package maintainer can write arbitrary RPM
metadata but does not want to tamper with the packaged ap-
plication’s binary or source code. A malicious maintainer may
choose not to tamper with the application binary for stealth
reasons, or because software-integrity checks are carried out
on the application binary contained within a package on the
target system. A defender looks for malicious computation
inside code but expects metadata to be simple, and thus benign.
Our goal is to investigate this assumption and discover pro-
grammable functionality that can be achieved by an adversary
who is only allowed to manipulate the package metadata.
Therefore, although the aforementioned threat model may
seem impractical and overly permissive, it is deliberately



chosen to limit our scope to the computational power present
in the package metadata.

Furthermore, although we mention a scenario of a malicious
package maintainer, we are more concerned with what a main-
tainer could achieve via only manipulating package metadata
than the supply-chain security issues such a scenario poses.
Consequently, supply chain security risks or risks due to the
uncertain provenance [5], [6] of code or repositories [7] do
not lie within the scope of this work. Moreover, we will not
be considering obviously Turing complete embedded scripting
languages present within the RPM package manager runtime
such as Lua or Bash programming languages. Rather, we
are concerned with discovering the latent functionality that
resides within the metadata and its interactions with the RPM
package management infrastructure. Our research is primarily
concerned with the ability of the RPM package manager to
behave as a weird machine i.e. the ability for a package
manager as a complex system to have undiscovered computing
primitives within it that allow unintended computation via
well-formed and valid input.

C. Threat Model

We assume a malicious package repository maintainer who
has the ability to manipulate the metadata of packages stored
on the repository. The maintainer can add, remove, or edit
metadata of the packages. However, they do not have the
ability to manipulate the contents of the binary data contained
inside the software packages. Although perhaps contrived,
this threat model is deliberately designed to ensure that our
investigation remains solely focused on the computational
potential of the package metadata and the RPM package
management infrastructure. Further, we assume that the victim
machine has this malicious repository already included in its
list of repositories and that the victim updates their packages
at some regular interval and installs the available upgrades (if
any).

II. APPLICATION PACKAGING

Over the years, application packaging has become widely
used in most commonly used operating systems. Application
packaging is the software infrastructure that allows the dis-
tribution and installation of software on operating systems.
Modern operating systems have their own application packag-
ing infrastructure such as RPM used by Fedora, pacman by
Arch, APT by Debian or Ubuntu; homebrew or macports by
macOS, pkg by the FreeBSD OS, and the Windows package
manager on Windows [8]. Package managers are also included
in application development frameworks (e.g., [9], [10]) that
are used to build apps hosted on app stores of major end-user
desktop operating systems such as Windows or Mac OS.

Additionally, programming language frameworks often
come bundled with their own package managers. Python’s
pip, Rust’s cargo, Ruby’s gem and Nodejs’s npm are a few
examples of package managers that are part of a programming
language’s development framework. These package managers
are responsible for managing dependencies such as the set of

required libraries for a software project. They also provide
the added functionality to package applications developed in
that framework as a software package; and the ability to install
packages uploaded by others on public repositories on the host
system.

Although the distribution and installation of software pack-
ages may seem like a simple task, the application packaging
infrastructure comes with a surprisingly large set of features
such as:

• Building software from source code
• Installing, removing, and updating software from source

code or software binaries
• Querying software for detailed information and its instal-

lation status
• Verifying the integrity of the packaged software and

resulting software installation on the file system
• Modifying and notifying other packages that another

package has been installed
• Managing and maintaining software logs for installation,

upgrade, and removal of software packages
• Managing conflicts and dependency requirements of soft-

ware packages
This large set of features requires the application packaging in-
frastructure to be expressive. Additionally, package managers
provide assurances of increased reliability and reproducibility
of operations to end-users and system administrators. End-
users and system administrators have, in turn, developed an
increased reliance on expecting such reproducibility and reli-
ability from the package managers. In particular, they do not
expect to see differing outcomes when installing and removing
an identical set of packages across identical systems but with
a differing installation/removal order. Prior investigations on
package management, however, have revealed such unexpected
behavior [11]. Moreover, package managers have the capabil-
ity to perform maintenance and upgrades of themselves and
are, thus, self-modifying code [12]. This makes modeling their
behavior challenging as self-administered machines can, in
theory, incorporate complex feedback loops within themselves.
Although they may not seem so at first glance, package
managers are complex software systems.

A. RPM

The RPM package manager is used in Fedora, CentOS,
OpenSUSE, and Oracle Linux operating systems. The RPM
package manager packages software in ‘RPM’ files. These
files are binary files which include a compressed archive
consisting of the actual software, along with metadata. The
metadata consists of information about the package such
as its dependency requirements, version number, name, and
signature. Figure 2 shows the layout of an RPM package file.
The metadata is contained within the headers for the binary
file and the archive consists of the software application files.

When the user requests a package to be installed, the
RPM package manager reads the metadata from the RPM
package into memory. It then uses this metadata to check if
the package can be installed on the system by checking if all



����������������������

��������

���
����������

���
�����������

���
����������������


�	����

���� ����������������

�����������������

������
��������

Fig. 2: Internals of an RPM package file.

dependencies are satisfied and the package does not conflict
with any currently installed package on the system.

If multiple RPM files are requested to be installed, then
they are all processed one after another and a transaction set
is created. The user is then asked to approve the transaction
set for installation. Internally, the RPM runtime starts by
parsing the RPM package binary. The binary is parsed by
loading it in memory and then the RPM metadata is read
from its headers. If the package’s dependencies are met and
a conflicting package is not installed on the system, then the
package manager proceeds to install the package.

B. Background on RPM

The RPM runtime consists of various components which
interact together to provide the package management service.
The RPM package manager’s components are:

• A database to keep a record of the installed packages.
• The RPM package installer application — rpm/yum on

the command line.
• A shell for installing, removing, and upgrading packages.
• A packaging language (RPM spec file) to define the RPM

packages file.
• An embedded scripting language (RPM macro language)

in the RPM spec file format.
• An event-based callback mechanism for packages to

interact with each other (RPM trigger functionality).
• A dependency checker for packages.
• Package repositories on a remote server.

These various components of RPM are often complex
software. For example, the Berkeley DB database is used by
the RPM package manager to record package information and
is stored in /var/lib/rpm.

C. The RPM Spec File

The package management process starts with the package
maintainer who takes a software and defines its dependencies,
requirements, version information and other such metadata
information in a file called the RPM spec file.

This spec file is then used by the RPM build scripts to
generate a “.rpm” file. Listing 1 shows an example of such a
spec file. In this example, lines 7 to 20 show how dependencies
and conflicts are defined inside an RPM spec file. When
a RPM binary is built from the spec file, this metadata is
included within its headers. The RPM dependency manager
relies on this metadata for resolving package dependencies
and conflicts among packages. The dependencies are of three
types: very weak, weak, and strong. Strong dependencies
are specified by the “Requires” and “Conflicts” clause in
the spec file as shown in Listing 1. If a package is chosen
for installation and its strong dependencies are not satisfied,
the installation or update is aborted. On the other hand, the
package manager tries to install the weak dependencies, but
silently ignores them if including them in an update or installa-
tion results in a dependency conflict. The weak dependencies
are specified by “Recommends” and “Supplements” clause.
The “Recommends” clause, lists a forward weak dependency,
which means if a package is chosen for install those listed in
its metadata in the ”Recommends“ clause will also be included
if they don’t cause a dependency conflict. The “Supplements”
clause, on the other hand, is a backward weak dependency
which means if an package Y is selected for installation and
in the metadata of another package X, there is the supplements
clause listing Y, then package X will be included in the set of
packages to install provided X does not cause any dependency
conflicts. The very weak dependency requirements, specified
by “Suggests” and “Enhances”, are ignored by default. These
dependencies are shown as suggestions for when a user selects
a package for installation.

In addition, the spec file also provides macros, which are
a limited embedded scripting language built into the spec file
format to ease development for the packaging developer. The
macros run when the packages are built from the spec file
and allow the developers to define simple text expansions by
writing code in the embedded macro language.

In addition to that, the RPM spec file consists of sections
called triggers, which contain scripts that are executed when
certain conditions are met [13]. Listing 1 shows an example
of such a trigger that is executed when a package of name
“pkg-x” having a version number less than five is installed.

III. MODEL OF COMPUTATION

Cellular automata have long been investigated due to their
ability to produce complex behaviors from simple rules. The
Rule 110 one dimensional cellular automaton, in particular,



1 Name: An Example RPM Spec file
2 Version: 1
3 Release: 1
4 Summary: This package install a script that prints Hello World.
5 License: None
6

7 Provides: Example
8

9 # strong dependency specifications
10 Requires: pkg-A
11 Conflicts: pkg-unzip > 2
12

13 # weak dependency specification
14 Recommends: pkg-B
15 Supplements: pkg-D
16

17 # obsoletes another package
18 Obsoletes: pkg-Y
19

20 %prep
21 # prepare source code here.
22

23 %build
24 # code to build software goes here.
25 cat > hello-world.sh <<EOF
26 #!/usr/bin/bash
27 echo Hello world
28 EOF
29

30 %posttrans
31 # code that runs at end of a transaction goes here.
32

33 %install
34 # install package code goes in this section.
35 mkdir -p %{buildroot}/usr/bin/
36 install -m 755 hello-world.sh %{buildroot}/usr/bin/hello-world.sh
37

38 %post
39 # code which runs after new package install goes here.
40

41 %triggerin -- pkg-x < 5
42 # trigger runs if pkg-x is less than version 5.
43

44 %files
45 # files installed by this package are listed in this section.
46 /usr/bin/hello-world.sh

Listing 1: This code shows an example RPM spec file. It shows the various scriptlets and trigger sections within the spec file.
Comments within each section of the listing describe under what conditions the trigger/scriplet is executed. For brevity, not
all scriptlets and triggers have been included.



is Turing complete [14]. We have chosen to implement this
automata in the package management infrastructure to show
its computational potential. This section details the formal
definition of this automaton.

A. Formal Definition of the Rule 110 Cellular Automaton

The Rule 110 cellular automata is defined by a finite
alphabet Σ consisting of the elements {0|1}, an infinite row
of cells {Ci|i ∈ Z} where each cell can take a value from Σ,
and a transition rule r : Σ3 → Σ listed below:

r(1, 1, 1) → 0
r(1, 1, 0) → 1
r(1, 0, 1) → 1
r(1, 0, 0) → 0
r(0, 1, 1) → 1
r(0, 1, 0) → 1
r(0, 0, 1) → 1
r(0, 0, 0) → 0

A configuration of the Rule 110 cellular automata is the
function F : Z → Σ. It specifies what symbol is contained
in each cell at index i. If an automaton is in configuration
F , its next configuration F ′ can be obtained by applying the
transition rule r to every cell Ci ∈ Z as shown below:

F ′
i = r(Fi−1, Fi, Fi+1)

At each discrete time step, the automata updates the values
of each cell by applying the transition rule to the cell and its
two neighbors.

Since the Rule 110 cellular automata is Turing Complete,
for an arbitrary Turing machine M with an arbitrary input
(finite tape configuration) w, it is possible to construct an
initial configuration w′ (with a finite number of steps from the
leftmost 1 to the rightmost 1) such that the Rule 110 machine,
acting on w′, is equivalent to M acting on w.

IV. IMPLEMENTATION

We constructed the Rule 110 automaton by encoding the
transition rules in the dependency requirements of RPM pack-
ages and their package version numbers. The configuration
state of the automata is represented by a set of packages
installed on the victim’s machine. For the purposes of this
section, we represent a cell at index i at step s of the automaton
by a package named:

cell s i

At step k of our RPM implementation of the automaton, a
cell is considered to contain “1” if and only if a package
representing that cell is installed on the system otherwise we
assume that the cell contains “0”.

The rules of the Rule 110 automaton are encoded within the
dependency requirements contained in the metadata of each
package representing a cell. An RPM spec file showing this
metadata information is illustrated in Listing 2.

The dependency requirements consist of two types: one
is a supplements requirement and another, is a conflicts re-
quirement. The supplements requirement instructs the package

manager to include the current package if any of the packages
mentioned in the supplements clause are updated or installed.
However, since the supplements clause is a weak dependency,
if including the package causes a dependency conflict then the
supplements requirements silently ignores it. This allows us to
run a check on packages representing cells that had at least one
live (that is, nonzero) neighbor in the previous step. Further, to
ensure only those packages that satisfy the transition rules are
installed in the next step, we additionally added the conflict
dependency requirements. The conflict requirements enforce
that a package is not installed if any of the three rules that
cause a cell to die in the next configuration are satisfied.
This ensures that a package is only installed in the next
configuration if and only if it satisfies the transition rules.

Initially, the victim client gets set up with a sequence of
packages cell 0 i corresponding to the initial state of the
Rule 110 machine. The repository remembers the step s of
the simulation (initially 0) and the indices of the leftmost ls
and rightmost rs non-zero cells.

Each time the victim client tells its package manager to
install updates, it carries out a step of the Rule 110 machine.
(We observe that many clients are configured to automatically
update at regular intervals.)

At step s with indices ls and rs, the repository constructs
packages cell s j for ls − 1 ≤ j ≤ rs + 1, following our
schema. The repository also increments the version number
of packages in s− 1.

The client’s RPM dependency manager fetches the packages
and computes which ones satisfy the dependency requirements
and selects this subset for installation. As the RPM package
manager carries out package installations, the weird machine
transitions from one configuration state to another and carrying
out computation. The repository updates s at each step (and
can keep the limits ls and rs safe by decrements/increments).

It is important to note that there are no limitations on
the number of packages that can be installed on a system.
Therefore, the size of the set of packages encoding the
configuration of the automaton is also unbounded. As a result,
it is possible to encode and simulate the Rule 110 automaton
with any initial configuration — and thus any Turing machine
— within the RPM infrastructure.

V. EVALUATION RESULTS

In order to experimentally evaluate the practicality of carry-
ing out computation by package installations, we carried out
multiple experiments. In our first, we simulated the Rule 110
automaton and tested for correctness. Our second experiment
tested the practicality of the computation mechanism by exper-
imentally evaluating if installing a large number of packages
was feasible and did not result in system instability or the
package manager throwing some other kind of error. Our last
experiment measured the time it took to simulate n steps of
the Rule 110 automaton with non-empty inputs.

A. Experiment 1
To experimentally evaluate our hypothesis, that it was pos-

sible to use the metadata to simulate the Rule 110 automaton



1 Name: cell_1_0
2 Version: 1
3 Release: 1
4 Summary: This package represents a cell in the cellular automata.
5 License: None
6

7 # If neighbors are alive, then try to install this package.
8 Supplements: cell_0_0
9 Supplements: cell_0_1

10 Supplements: cell_0_-1
11

12 # These dependency requirements define the transition rule for the cell
13 Conflicts: (cell_0_-1 and cell_0_0 and cell_0_1)
14 Conflicts: (cell_0_-1 unless (cell_0_0 or cell_0_1)) or (True unless (cell_0_0 or

cell_0_-1 or cell_0_1))↪→

Listing 2: This RPM spec file shows the metadata contained in an RPM package representing one particular cell of the Rule
110 cellular automata. The configuration of the Rule 110 cellular automaton is encoded as a set of installed packages in the
system. Each RPM package representing a cell has the rules of the Rule 110 Cellular automata encoded in it as dependency
requirements. The index of the cell is encoded in the package name. The dependencies requirements are designed to ensure
that a package representing a cell will be installed if and only if the cell at that index should have the value “1”. “True” is a
package that is preinstalled on the system.

by installing empty RPM packages with crafted metadata, we
created and set up an attacker controlled RPM repository and
configured the victim RPM client to use that RPM repository
as its source.

Further, the client was set up to regularly update its pack-
ages at a regular interval. The malicious repository, was then
updated at regular intervals with an updated set of packages.
We observed that the expected set of packages got installed
when the client made its periodic call for package upgrades.
As we expected, the dependency requirements ensured only
the valid states of the automaton got installed on the system.

a) Experiment 2: Next, in order to test our second
hypothesis that installing a large number of packages will
not make the system unstable and is a possible way to carry
out computation, we experimentally evaluated simulating the
Rule 110 automaton with a non-empty initial state. All non-
empty Rule 110 patterns expand rapidly and our goal was
to experimentally evaluate if installing a large number of
packages could be handled by the package manager without
throwing any errors or the system becoming unstable.

We simulated the Rule 110 automaton—and to ensure a
large number of packages were accumulated on the system,
we made sure to not remove those packages that were no
longer needed to compute the next step of the automaton.
We ran our experiments overnight and accumulated more than
25000 installed packages on the test operating system without
encountering any system instability.

b) Experiment 3: Our third experiment was to quantify
how long it took to simulate n steps of the Rule 110 au-
tomaton. We measured the time it took to reach the nth step
of the Rule 110 automaton by taking the sum of the time
it took to install packages representing each step along the

way. The Rule 110 was initialized with a non empty state and
allowed to expand without any limitations on memory. The
results of our measurements are shown in the Figure 3. We
found that evaluating the next state is fairly quick (in the order
of minutes) even as the automaton expands rapidly.

0 20 40 60 80 100 120
0

50

100

150

200

250

Number of Steps

Ti
m

e
Ta

ke
n

(s
)

Fig. 3: This plot shows the time it took to simulate n steps of
the Rule 110 automaton on the test machine.

c) Experimental Setup: We carried out these experiments
on a virtual machine (with access to 1 GB of RAM, and 1
vCPU) running a CentOS 8.3 operating system with RPM
version 4.14 on an laptop computer equipped with 16GB of
memory and an Intel Core i7-7500U CPU.

d) Alternative construction: While investigating methods
to loop, we also investigated the RPM trigger mechanism. The



RPM triggers, are programs — typically bash scripts — that
are run when the trigger conditions are satisfied. Allowing
the ability to embed a code snipped in the metadata, however,
opens up possibilities for unexpected complexity. For instance,
a package could install another packages via running a second
package install command via a background process. From our
experiments, we discovered that is another way to loop in the
weird machine.

VI. ANALYTICAL METHOD

This section describes the analytical method for discovering
a latent functionality within a complex system.

A. Documentation

Unexpected computational behavior is made possible due to
the existence of computing primitives that already exist within
a complex system. Discovering these computing primitives is
challenging. To discover them, a rigorous understanding of the
operational semantics of the components of the system under
consideration is, therefore, necessary.

This task is extremely challenging for systems lacking in
documentation — which is often the case with large complex
systems. But even for well-documented systems, one requires
additional documentation to break down its layers of abstrac-
tions to fully understand how it operates. Documenting the
assumptions held by the constituent components of a system,
and the contracts assumed among them help provide a deeper
understanding of the behavior of the constituent components of
the system. Often the assumptions made by such components
are left unstated in the official documentation. Sometimes, the
contracts between the components are assumed to always hold
true, or very enforced loosely. Consequently, a sound method-
ology for discovering latent functionality requires thoroughly
documenting the various components of a complex system,
and their interaction with each other.

Understanding a complex system’s behavior requires an in-
depth understanding of the operational semantics of each of
its components. Thus, the goal of documenting a complex
system is to describe in detail the various inputs, outputs, and
any effects (including side effects) a component may cause.
The purpose of such documentation is to gain analytical depth
in understanding the operational semantics of the constituent
components of a system.

In addition, the interaction of these components with each
other, and the contracts these components assume each other
to hold, needs to be documented. Attention needs to be paid
to the data that is sent between components. If the format
of the data is expressive enough, it may allow information to
be encoded in it. All possible ways a component can interact
with another component should be documented, including any
communication that may occur between a component due to
the observation of side effects of an action performed by
another component. Diagrams illustrating these relationships
should be drawn out for ease of understanding. Additionally,
known bugs should be looked at and analyzed as they indicate
oversights in system design.

For RPM, we began our analysis by first identifying the
independent components responsible for handling the package
building and installation process namely, the yum dependency
resolver, the RPM binary package file parser (to understand
how the package metadata is encoded in the binary package),
and the package builder (to understand how the spec file
is converted into a binary package). Next, we identified
the inputs, outputs, and any side effects for each of these
components. For the RPM package builder, the input was the
RPM spec file and the output was the generated binary RPM
package. The generated binary package file was the input for
the RPM binary file parser which reads the encoded metadata
information from it and uses it to determine if a package can
be installed and, lastly, the yum dependency resolver which
reads the local repository cache, the local database of installed
packages and the binary file of the package to install and
determines which other packages need to be installed to satisfy
the dependency requirements of the package.

To gain a better understanding of the function and in-
teraction of the identified components, we read the source
code of each component. Doing so allowed us to understand
how the dependency information written in a spec file gets
encoded into the binary RPM package and how this encoded
information is interpreted by the dependency resolver. Further,
by carefully reading the available documentation, we took note
of the features of the RPM spec file — such as the various
kinds of dependencies (weak/strong and forwards/backwards),
the macro language of the RPM spec file, and the RPM
triggers. Documenting these features allowed us to gain a
better understanding of how a user can express complex
dependency information in an RPM package. In addition, we
documented the side effects that occur when a package is
installed, such as file writes to the local file system, updates
to the database of installed packages, and the conditions that
activate triggers that are active in a system.

Documenting these features not only helps in gaining a
deeper understating of inner workings of the complex system,
but also provides a concise and structured reference for the
exploration and discovery phase which follows afterward.

B. Exploration

The discovery of latent functionality is a discovery of the
operational semantics of the constituent components of a
complex system. It is, therefore, important that before the
exploration phase is started the collected documentation is
thorough and covers all areas within the purview of discover-
ing unexpected system behavior.

At this stage, the assumptions held within a component and
across components that were documented earlier need to be
ascertained experimentally to ensure that they actually hold
in the system. Any discrepancies between what is discovered
experimentally and what was noted earlier needs to be added
to the documentation for future reference. Afterward, each
component needs to be looked at individually and analyzed
for computing potential i.e. what are the possible ways it
can transform the given input to its output. Crafted data



should be sent to that component to experiment and test out
its computing potential. Special attention should be paid to
components which have a looping mechanism within them.
If there are any looping mechanisms in a component, such
as a scheduler, or an update mechanism, they should be
experimented with to see if it’s possible to give an input that
can make the loop’s action dependent on the input. Such an
input could be a faulting instruction, an input causing infinite
recursion, or an input causing the loop action to fail and try
again repeatedly. In addition, experiments should be carried
out to test the computational power of the actions the loop
repeats. It may be possible to carry out computation by only
modifying the data given as input to the actions the loop
performs rather than trying to control the loop itself. Lastly,
similar experiments need to be carried out for intra-component
interactions. Components, along with those parts of the system
which are a result of intra-component interaction and have the
ability carry out any computation, need to be identified and
documented via experimentation. In particular, we are looking
for primitives in the system that can provide: conditional
behavior, memory, and a mechanism to loop. These parts
constitute the computing primitives which, when composed
together, cause unexpected behavior to arise within a complex
system.

For RPM, this process involved generating packages with
custom metadata via a spec file and observing if the depen-
dency logic could be manipulated to embed a control logic
of our choice. To test this hypothesis our, we first established
simple logic gates by embedding the control logic of the gates
in the dependency requirements. The inputs to these logic
gates were a pair of the packages specified in the dependency
requirements, and the package representing the logic gate was
installed if the gate’s output was positive. The set of installed
packages on the client machine functioned as the memory of
the weird machine, and the dependency requirements as the
conditional behavior.

Further, we tried to combine the RPM macro language with
the RPM triggers to investigate if they could be paired with the
logic gates to generate loops. The macro language, however, is
only evaluated at build time and was thus limited in its ability
to be paired with triggers. We were thus unable to combine the
macro language with the other computing primitives. However,
we noted that using the RPM triggers it was possible to launch
a background process to run a second package installation
command when the trigger conditions were satisfied. We
noted that automated package upgrades are fairly common in
practice and such a scheduled update mechanism could also
function as a loop for the weird machine.

C. Primitive Selection

Once the primitives have been identified and documented,
experiments need to be carried out to see if multiple primitives
can be composed together to perform computation. Combining
primitives is fraught with challenges, as such composition is
not something the system designers consider during system
design and can lead to instability in the system at hand.

For example, we considered the possibility of combining
the RPM macro language with RPM triggers so they could
activate on conditions generated by the macros. This was,
however, not possible as RPM macros only run at build time.
Thorough experimentation should, therefore, be conducted and
all combinations of primitives should be tried out.

Attention should be paid to identifying the model of com-
putation, the location of the internal “memory” of the model,
the parts of the system which functions as the control logic of
the model, the data which functions as the input to it, and to
the output expressed by it. Alternative models of computation
should also be kept in mind.

For instance, in one experiment we tested if RPM macros
could function as string rewriting systems; in another, we
tested if RPM triggers, combined with the set of packages
installed on the system, could function as a neural network
by encoding the activation functions in the trigger condition.
Although different models of computation are equivalent, it
gets easier to discover latent functionality by being aware of
various ways computation can be carried out.

In our case, we found implementing boolean logic circuits
the most intuitive. After we succeeded in building simple
logic gates, we tried to build more complicated circuits by
combining the logic gates sequentially as a sequence of
package installation instructions. We noted that a package
installed in the system is remembered by the system this could
function as a memory for the weird machine. The dependency
requirements functioned as the control logic and the package
version information that is stored inside a system operated as
the data of the weird machine. After identifying and combining
the various logic gates into arbitrary circuits, we were able to
implement the Rule 110 automaton.

VII. DISCUSSION

Our results demonstrate the presence of latent functionality
in the RPM package management infrastructure. They demon-
strate that it is possible to carry out computation by only
manipulating the metadata of RPM packages.

To our knowledge, this work presents the first methodology
for detecting latent functionality to aid system designers
and maintainers of large complex systems by preemptively
discovering latent functionality within their systems. We not
only provide a general approach for searching for such latent
functionality within their systems; but also provide a well-
documented case-study of a complex system to aid their
discovery process. Having a well-documented methodology
is the first major step towards building automated techniques
and our hope is that by documenting a detailed methodology
alongside the discovered automaton, we pave the way for
future research to build them.

Whereas prior research (e.g. [2], [15]) has shown that
metadata such as those of the ELF binary format and of the
IA32 page table handler was computationally powerful enough
to program weird machines, the computations of those weird
machines were largely restricted to a single system. Our results
demonstrate that weird machines are possible in networked



systems with multiple machine components (e.g., here, the
victim machine and an adversarial RPM sever). The existence
of networked weird machines also suggests future work is
needed to discover them in cloud environments. Further, we
show it is not only possible to carry out arbitrary computation
by manipulating the metadata RPM package manager, but
also that an adversary can also exfiltrate the results of the
computation on the victim machine via encoded package
dependency requests. This is possible because whenever the
package manager installs a set of packages it requests those
packages from the malicious server. The server is, thus, aware
of the state of the Rule 110 automaton as it computes. We
also demonstrate that empty RPM packages are a threat and
injecting code into the supply chain of software systems is
possible without modifying the binary payload of packages.
These results suggest a need for a through analysis of a
complex system at design time to detect the existence of weird
machines. In contrast to prior work, in order to assist the
aforementioned analysis, we also provide an analytical method
for uncovering the underlying operating semantics of the weird
machine to assist this goal.

VIII. RELATED WORK

A. Weird Machines

Computational capabilities that unexpectedly arise in soft-
ware systems are a long-time favorite of hackers and com-
puter scientists alike, who have constructed Turing machines
from components of the most unexpected software systems.
An example of such a feat is the construction of a Turing
machine utilizing the ELF file format’s metadata [2]. Such
unexpected computational abilities have been characterized as
weird machines in prior literature (e.g. [1], [16], [17]) and have
been discovered in various software systems. For example,
unexpected computational abilities have been discovered in
places as varied as the memory de-duplication mechanism of
the Windows 10 operating system, Microsoft’s PowerPoint,
and the BGP protocol [15], [18], [19].

Weird machines is an area of research that aims to formalize
an exploit from the perspective of computer science’s formal
language theory [17]. An exploit, seen from this perspective,
can be viewed as a program utilizing properties of an existing
system in unexpected ways to carry out computation. An
exploit is thus constructive proof that a computation that was
thought to be impossible is possible in a given system.

Advanced exploits have also used the weird machine con-
struction to access unconstrained computational abilities and
have increased their severity tremendously as a result (e.g., [3],
[4], [20]). Consider for example the recent iMessage zero-click
exploit (CVE-2021-30860) [4] which works by constructing
such a weird machine to achieve its goals. It works by
discovering a way — albeit by utilizing an integer overflow
vulnerability — to construct and execute arbitrary boolean
logic circuits, thereby giving it the ability to execute arbitrary
code in the form of boolean circuits. It is important to
note that although this particular exploit utilizes an integer
overflow to achieve its goals, it is the construction of boolean

circuits that allows it to carry out arbitrary computation. This
vulnerability could have been less powerful, had the weird
machine construction not been possible. Without the ability to
compute via the weird machine the adversary would not have
been able to calculate an arbitrary memory offset which they
can overwrite thereby considerably limiting the severity of the
vulnerability.

Researchers have applied weird machine formalism with
success to discover and formalize exploitability in a variety of
scenarios (e.g., [2], [15], [16], [21–23]). Our research adds to
this growing literature of weird machines by demonstrating the
computational potential of the metadata of the RPM package
management infrastructure.

B. Software Supply Chain Attacks

Another orthogonal family, software supply chain attacks
tries to insert malicious code into software by compromising
the supply chain of the software. Such an attack could occur,
for example, by compromising a library on which the software
is dependent on or by compromising a server in the trusted
distribution channel.

Whereas, in prior years, due to the large number of rootkit-
based malware, the attention of software supply-chain research
was directed more towards ensuring boot loader security [24],
[25], recent incidents [26], [27] have led to an increased
concern about the software supply of ordinary software as
well. Supply-chain attacks on commodity software date back
to at least, 2008, when attackers breached servers hosting Red
Hat Enterprise Linux’s package repositories and tampered with
the hosted packages [28], [29]. Since, then, attackers have
developed more novel, easier-to-execute supply-chain attack
techniques. For instance, in 2016, Python repositories were
victims of a novel supply-chain attack; this time the attack was
carried out via typosquatting [30], which is an attack technique
where malicious packages are uploaded with similar names
to widely used packages in hopes that they will be used by
unsuspecting users [31]. A similar typosquatting supply-chain
attack was discovered in 2018 when malicious python libraries
were found stealing GPG and SSH keys [32].

Although prior work in software supply chain security (e.g.
[33]) also analyzes package metadata to look for malicious be-
havior, they do not consider the possibility of weird machines
present in them. An analysis that looks for signals such as the
presence of install scripts, comparing payloads with known
malware, maintainer accounts with expired email domains,
and/or packages with inactive maintainers would fail to detect
a weird machine because the operating semantics of the
weird machine are unknown to everyone except the attacker.
Discovering weird machines is challenging precisely because
of their hidden semantics. It is only after a weird machine
is discovered, and its operating semantics known, that prior
proposed techniques would be able to detect it. For instance,
in the case of our RPM weird machine, without knowing
the operating semantics of the weird machine, it becomes
impossible to distinguish the weird machine from a valid set
of package dependencies. Therefore, the proposed techniques



in prior supply chain security literature are orthogonal to
the problem we address which is to discover the operating
semantics of the weird machine in the first place.

C. Orthogonal Exploitation Techniques

Naturally, much prior work explores techniques orthogonal
to weird machines. Memory corruption vulnerabilities are one
of the most common ways software systems are exploited
today [34]. The first known memory-corruption exploit was
documented by AlephOne [35] which explained how a stack-
based memory corruption could be used to alter the control
flow of the target program. Soon after, heap-based buffers were
exploited to redirect the control flow of a software program.
Perhaps the most famous example of this would be the
Netscape browser’s JPEG vulnerability [36]. Other additions
to the exploitation arsenal were made by the discovery of
alternative ways to overwrite control data residing in memory
via format-string based exploits [37] or SEH overwrite based
exploits [38].

ACKNOWLEDGMENT

We would like to thank the shepherd and the anonymous
reviewers for their valuable feedback.

REFERENCES

[1] T. Dullien, “Weird machines, exploitability, and provable unexploitabil-
ity,” IEEE Transactions on Emerging Topics in Computing, vol. 8, no. 2,
pp. 391–403, 2017.

[2] R. Shapiro, S. Bratus, and S. W. Smith, “{“Weird}{Machines”} in
{ELF}: A spotlight on the underappreciated metadata,” in 7th USENIX
Workshop on Offensive Technologies (WOOT 13), 2013.

[3] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk,
“Scriptless attacks: Stealing more pie without touching the sill,” Journal
of Computer Security, vol. 22, no. 4, pp. 567–599, Apr. 2014.

[4] mitre, “CVE-2021-30860,” https : / / cve.mitre.org / cgi - bin /
cvename.cgi?name=CVE-2021-30860, 2020.

[5] A. Benameur, N. S. Evans, and M. C. Elder, “{MINESTRONE}: Testing
the {SOUP},” in 6th Workshop on Cyber Security Experimentation and
Test (CSET 13), 2013.

[6] W. K. Sze and R. Sekar, “Provenance-based integrity protection for
windows,” in Proceedings of the 31st Annual Computer Security Ap-
plications Conference, 2015, pp. 211–220.

[7] X. Liao, S. Alrwais, K. Yuan, L. Xing, X. Wang, S. Hao, and R. Beyah,
“Lurking malice in the cloud: Understanding and detecting cloud
repository as a malicious service,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 1541–1552.

[8] D. Nelon, “Windows Package Manager 1.1,” https : / /
devblogs.microsoft.com/commandline/windows-package-manager-1-1/,
2020.

[9] A. Inc, “Swift Package Manager,” https : / /www.swift.org/package-
manager/, 2020.

[10] Microsoft, “How Visual Studio generates an app package mani-
fest,” https : / / docs.microsoft.com/en- us /uwp/schemas /appxpackage /
uapmanifestschema/generate-package-manifest, 2020.

[11] J. Hart and J. D’Amelia, “An analysis of rpm validation drift.” in LISA,
vol. 2, 2002, pp. 155–166.

[12] S. Traugott and L. Brown, “Why order matters: Turing equivalence in
automated systems administration.” in LISA, 2002, pp. 99–120.

[13] rpm.org, “Trigger scriptlets,” http://ftp.rpm.org/api/4.4.2.2/triggers.html,
2020.

[14] M. Cook, “Universality in elementary cellular automata,” in Complex
Systems, vol. 15, 2004, pp. pp.1–40.

[15] J. Bangert, S. Bratus, R. Shapiro, and S. W. Smith, “The {Page-Fault}
weird machine: Lessons in instruction-less computation,” in 7th USENIX
Workshop on Offensive Technologies (WOOT 13), 2013.

[16] P. Anantharaman, V. Kothari, J. P. Brady, I. R. Jenkins, S. Ali, M. C.
Millian, R. Koppel, J. Blythe, S. Bratus, and S. W. Smith, “Mismor-
phism: The heart of the weird machine,” in Cambridge International
Workshop on Security Protocols. Springer, 2019, pp. 113–124.

[17] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shubina,
“Exploit programming: From buffer overflows to weird machines and
theory of computation,” USENIX; login, vol. 36, no. 6, pp. 13–21, 2011.

[18] A. Zwinkau, “Accidentally Turing-Complete,” https://beza1e1.tuxen.de/
articles/accidentally turing complete.html, 2020.

[19] M. Chiesa, L. Cittadini, G. Di Battista, L. Vanbever, and S. Vissicchio,
“Using routers to build logic circuits: How powerful is bgp?” in 2013
21st IEEE International Conference on Network Protocols (ICNP).
IEEE, 2013, pp. 1–10.

[20] J. Wampler, I. Martiny, and E. Wustrow, “Exspectre: Hiding malware in
speculative execution.” in NDSS, 2019.

[21] J. Vanegue, “The weird machines in proof-carrying code,” in 2014 IEEE
Security and Privacy Workshops. IEEE, 2014, pp. 209–213.

[22] D. Evtyushkin, T. Benjamin, J. Elwell, J. A. Eitel, A. Sapello, and
A. Ghosh, “Computing with time: Microarchitectural weird machines,”
in Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2021, pp. 758–772.

[23] P.-L. Wang, F. Brown, and R. S. Wahby, “The ghost is the machine:
Weird machines in transient execution,” in 2023 IEEE Security and
Privacy Workshops (SPW), 2023, pp. 264–272.

[24] B. Kauer, “Oslo: Improving the security of trusted computing.” in
USENIX Security Symposium, vol. 24, 2007, p. 173.

[25] R. Wojtczuk and C. Kallenberg, “Attacking uefi boot script,” in 31st
Chaos Communication Congress (31C3), 2014.

[26] S. Ikeda, “In Act of Hacktivism Open Source Project Maintainer
Uses Code to Wipe Russian and Belarusian Computers,” https : / /
www.cpomagazine.com / cyber - security / in - act - of - hacktivism - open -
source-project-maintainer-uses-code- to-wipe- russian-and-belarusian-
computers/, 2020.

[27] Gentoo, “Project Infrastructure Incident reports,” https://wiki.gentoo.org/
wiki/Project:Infrastructure/Incident reports/2018-06-28 Github, 2020.

[28] E. Mills, “Red Hat Fedora servers compromised,” https://www.cnet.com/
news/privacy/red-hat-fedora-servers-compromised/, 2020.

[29] redhat, “OpenSSH blacklist script,” https://www.redhat.com/security/
data/openssh-blacklist.html, 2020.

[30] D.-L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta, “Ty-
posquatting and combosquatting attacks on the python ecosystem,” in
2020 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2020, pp. 509–514.

[31] G. Dan, “Devs Unknowingly Use Malicious Modules Snuck into Official
Python Repository,” https : / /www.redhat.com/security /data /openssh-
blacklist.html, 2020.

[32] C. Cimpanu, “Two malicious Python libraries caught stealing SSH
and GPG keys,” https://www.zdnet.com/article/two-malicious-python-
libraries-removed-from-pypi/, 2020.

[33] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila,
and L. Williams, “What are weak links in the npm supply chain?”
in Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice, ser. ICSE-SEIP ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
331–340. [Online]. Available: https://doi.org/10.1145/3510457.3513044

[34] CWE, “CWE Top 25 - 2021,” https://cwe.mitre.org/top25/archive/2021/
2021 cwe top25.html#cwe top 25, 2020.

[35] A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, pp. 14–16, 1996.

[36] S. Designer, “JPEG COM Marker Processing Vulnerability,” https://
www.openwall.com/articles/JPEG-COM-Marker-Vulnerability, 2020.

[37] A. Sotirov, “Bypassing memory protections: The future of exploitation,”
in USENIX Security, 2009.

[38] M. Miller, “A brief history of exploitation techniques and mitigations
on windows,” 2007.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30860
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30860
https://devblogs.microsoft.com/commandline/windows-package-manager-1-1/
https://devblogs.microsoft.com/commandline/windows-package-manager-1-1/
https://www.swift.org/package-manager/
https://www.swift.org/package-manager/
https://docs.microsoft.com/en-us/uwp/schemas/appxpackage/uapmanifestschema/generate-package-manifest
https://docs.microsoft.com/en-us/uwp/schemas/appxpackage/uapmanifestschema/generate-package-manifest
http://ftp.rpm.org/api/4.4.2.2/triggers.html
https://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
https://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
https://www.cpomagazine.com/cyber-security/in-act-of-hacktivism-open-source-project-maintainer-uses-code-to-wipe-russian-and-belarusian-computers/
https://www.cpomagazine.com/cyber-security/in-act-of-hacktivism-open-source-project-maintainer-uses-code-to-wipe-russian-and-belarusian-computers/
https://www.cpomagazine.com/cyber-security/in-act-of-hacktivism-open-source-project-maintainer-uses-code-to-wipe-russian-and-belarusian-computers/
https://www.cpomagazine.com/cyber-security/in-act-of-hacktivism-open-source-project-maintainer-uses-code-to-wipe-russian-and-belarusian-computers/
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_reports/2018-06-28_Github
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_reports/2018-06-28_Github
https://www.cnet.com/news/privacy/red-hat-fedora-servers-compromised/
https://www.cnet.com/news/privacy/red-hat-fedora-servers-compromised/
https://www.redhat.com/security/data/openssh-blacklist.html
https://www.redhat.com/security/data/openssh-blacklist.html
https://www.redhat.com/security/data/openssh-blacklist.html
https://www.redhat.com/security/data/openssh-blacklist.html
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://doi.org/10.1145/3510457.3513044
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html#cwe_top_25
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html#cwe_top_25
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability

	Introduction
	Motivation
	Scope
	Threat Model

	Application Packaging
	RPM
	Background on RPM
	The RPM Spec File

	Model of Computation
	Formal Definition of the Rule 110 Cellular Automaton

	Implementation
	Evaluation Results
	Experiment 1

	Analytical Method
	Documentation
	Exploration
	Primitive Selection

	Discussion
	Related Work
	Weird Machines
	Software Supply Chain Attacks
	Orthogonal Exploitation Techniques

	References

