
Scalable Identity and Key Management for Publish-Subscribe
Protocols in the Internet-of-Things

Prashant Anantharaman
pa@cs.dartmouth.edu
Dartmouth College
Hanover, NH, USA

Kartik Palani
palani2@illinois.edu

University of Illinois at
Urbana-Champaign
Champaign, IL, USA

Sean Smith
sws@cs.dartmouth.edu
Dartmouth College
Hanover, NH, USA

ABSTRACT
Publish-Subscribe protocols such as the Message Queuing Teleme-
try Transport (MQTT) protocol are considered scalable, lightweight,
and one-size-fits-all solutions for the Internet-of-Things (IoT) net-
working. MQTT has been widely adopted in the Industrial IoT to
automate distributed power grid equipment such as smart meters
and sensors. Such protocols are being adopted rapidly, without
much attention being paid to security. Although these protocols
support client-side TLS certificates, operators often do not enable
these features, fearing performance and availability issues. More-
over, managing these certificates would be yet another challenging
problem.

We present MaQaTooT, a key-management and communication
scheme based onMacaroons for the IoT and Smart Grid applications.
MaQaTooT offers a technique to authenticate devices throughout
their lifecycle, while sustaining the lightweight nature of MQTT,
and also keeping the communication confidential and maintain-
ing its integrity. Furthermore, it allows us to revoke keys reliably.
To validate our key-management scheme, we built a prototype
client for the Firefly RK3288 ARM Development Board and a key-
management server for a GNU/Linux machine. We demonstrate
that its performance on the prototype client fits the 4 ms latency
limit of Industrial IoT protocols. We also verified our session-key
establishment protocol using Proverif to ensure that the protocol
never leaks the shared secrets.

CCS CONCEPTS
• Security and privacy → Security protocols.

KEYWORDS
Macaroons, Key Management, Security, MQTT
ACM Reference Format:
Prashant Anantharaman, Kartik Palani, and Sean Smith. 2019. Scalable Iden-
tity and Key Management for Publish-Subscribe Protocols in the Internet-
of-Things. In 9th International Conference on the Internet of Things (IoT
2019), October 22–25, 2019, Bilbao, Spain. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3365871.3365883

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoT 2019, October 22–25, 2019, Bilbao, Spain
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7207-7/19/10. . . $15.00
https://doi.org/10.1145/3365871.3365883

1 INTRODUCTION
The pervasive nature of the Internet-of-Things (IoT) has provided
attackers with a new set of devices to exploit andmisuse. Developers
have deployed several of their IoT devices, such as web cameras,
refrigerators, and oil and gas pipelines on the Internet with public
IP addresses and barely any authentication. These devices speak
to their administrators, and among each other, using a messaging
pattern known as publish-subscribe protocols.

As the name suggests, publish-subscribe protocols comprise
two message types — publish, when a device writes a message to
a channel, and subscribe, when a device subscribes to a channel
and wants to receive all the messages sent to that channel. Two
extensively used publish-subscribe protocols in the Industrial IoT
are the Message Queuing Telemetry Transport (MQTT) protocol
and the GOOSE IEC61850 protocol, used in Power Grid substations
to control relays in real time.

Based on adoption data [10], we decided to further analyze im-
plementations of the MQTT protocol. On Shodan, a port-scanning
website, we analyzed the public IP addresses responding to MQTT
messages [11]. Over 65% of these servers were returning a “Connec-
tion Accepted”message, implying that they do not need a client-side
TLS certificate or a password.

Bringing security guarantees to publish-subscribe protocols such
as MQTT presents specific challenges. First, updating all the clients
as well as the servers is a massive undertaking. The purpose of
the server or the broker is to receive messages from the clients,
maintain lists of subscribed clients, and forward the messages to the
subscribers. Any security scheme proposed for publish-subscribe
protocols must not require any updates to the servers.

Second, publish-subscribe protocols do not present the senders’
identifiers along with messages. A receiver does not know which
device sent the messages. All messages are encrypted and some-
times signed using TLS between the clients and the server, but
the server decrypts the message to check the channel it has to be
sent to and then forwards the messages. Any device connected to
the server can publish messages to channels. As mentioned earlier,
anyone can post messages to channels on over 65% of the servers
running MQTT.

Third, in case of a server compromise, any adversary can read
any messages as the server decrypts the packets before they are

This material is based upon work supported by the Department of Energy’s Office
of Cybersecurity, Energy Security, and Emergency Response and the Department of
Homeland Security’s Security Science & Technology Directorate under Award Number
DE-OE0000780.

1

https://doi.org/10.1145/3365871.3365883
https://doi.org/10.1145/3365871.3365883

IoT 2019, October 22–25, 2019, Bilbao, Spain Anantharaman et al.

Key-Management Server
or Controller

Subscribers and
Publishers

MaQaTooT Device
Module

Application
Logic

MQTT Client

MaQaTooT Device
Module

Application
Logic

MQTT Client

Macaroon
Database

Data

Encrypted
Data

Data

Encrypted
Data

MQTT encrypts the
packet using TLS

MQTT encrypts the
packet using TLS

Server-side
Logic

MQTT Server or Broker

Decrypt TLS
packet

Data
Store

keys and
macaroons

Figure 1: An overview of publish-subscribe system components. These systems comprise controllers that aggregate all the data.
We reuse these controllers to introduce a key-management server. The MQTT server or broker forwards all the messages to
the correct subscribers. The shaded component has access to encrypted data only. The components with the thick borders are
introduced by MaQaTooT.

forwarded. A server compromise leads to serious privacy leakages.
In the case of Industrial IoT, a server compromise leads to adver-
saries learning how the components function. The adversary could
later use this information to send messages to these devices that
could damage them.

Finally, since Industrial IoT devices communicate real-time sen-
sor data and need to receive commands in real-time, the latency
limitations are fundamental to any scheme designed to secure them.
For example, the GOOSE protocol specifies a maximum latency of
4 ms. We cannot use a key-management system that violates these
latency requirements.

Our key-management scheme, MaQaTooT, addresses the above
concerns with existing publish-subscribe protocols and proposed
security solutions for them. MaQaTooT involves embedding devices
with multiple keys known as Macaroons [3]. One of these maca-
roons is long-term and specifies all the channels the device needs to
access. The channel-specific macaroons are short-term and expire
often. The messages also include a Hashed Message Authentication
Code (HMAC) to ensure that the message was not altered in transit.

Our system appends the senders’ identifier to each message, so
that the devices know the sender. The channel-specific keys and
device-specific keys help devices to communicate with each other
without servers and adversaries without access to the channel-
specific keys. MaQaTooT protects against data leakages in active
server compromises.We use J-PAKE [6] to establish the session keys
based on the shared keys, and we use symmetric-key cryptography
to ensure that we stay within the latency requirements. Devices
ignore any messages that are not encrypted using the correct keys,
thereby providing properties of authentication, confidentiality, and
integrity.

Our Contributions:MaQaTooT brings forth several contribu-
tions to the Internet-of-Things and Smart Grid Security communi-
ties:

• We build a key-management scheme for publish-subscribe
protocols that is compliant with the availability requirements
of smart grid and IoT protocols.

• Our tool requires minimal effort to incorporate as a separate
layer on client as well as administrative applications.

• We verify that the session-key establishment protocol does
not reveal the shared secrets between key-management servers
and devices using the Proverif cryptographic protocol veri-
fier.

Organization: We have organized the rest of the paper as fol-
lows. Section 2 describes publish-subscribe IoT protocols and re-
views macaroons. In Section 3, we propose an architecture for our
system MaQaTooT and describe our communication protocols. In
Section 4, we analyze the effectiveness of our system with respect
to latency requirements and programmer effort, and we also prove
that our protocol does not leak the shared secrets. We review re-
lated work in Section 5 and present pitfalls in prior work. Finally,
Section 6 presents conclusions.

2 BACKGROUND
2.1 Publish-Subscribe Protocols
Unlike traditional server-client protocols, in the publish-subscribe
paradigm of messaging the information provider (publisher) is de-
coupled from the consumers of that information (subscriber). All
publishers and subscribers are essentially clients, and the server
only handles authentication and message forwarding.

In the most straightforward setting, described in Figure 1, there
exists a publisher, a server (or a broker) and subscribers. The sub-
scriber makes one or more subscriptions at the server, and the
server keeps track of how these packets need to be forwarded when
a device publishes a message.

Publishers send data to the server, and the server then forwards
them to the subscribers. In Industrial IoT networks comprising sen-
sors and actuators, sensors publish data to their respective channels,
whereas an administrator or a device with administrative privileges
publishes commands to be handled by the actuators.

TheGeneric Object Oriented Substation Events protocol (GOOSE)
and MQTT are the most prominent publish-subscribe protocols

2

Scalable Identity and Key Management for Publish-Subscribe Protocols in the Internet-of-Things IoT 2019, October 22–25, 2019, Bilbao, Spain

Key Management Server/
Controller

Device D

Global Root
R

Nonce

ManufacturerA

Device Did

Channel list

Timestamp

Public Macaroon Mid

Secret key kid

Nonce

ManufacturerA

Public Macaroon MA

Secret key kA

Shared Secret
Kid

(A) (B)

Manufacturer core
identity public
macaroon MA

Root secret key k0

HMAC

Manufacturer
 secret kA

Nonce

ManufacturerA

Device Did

Channel list

Timestamp
HMAC

Device secret kid

Device core identity
public macaroon <MA,Mid>

Figure 2: (A) Macaroons can be chained in a way similar to certificates. The key-management server can append the caveats
granted to devices and compute the secret key kid . (B) A Global Root key is used to sign the first caveat in the Macaroons. The
Macaroon <MA, KA> is granted to the Key-Management Server. Device D presents <Mid > to the key-management server. The
key-management server verifies the Macaroon, computes kid and performs a handshake. This figure is adapted from Figure 1
in our earlier paper [2].

used in the Industrial IoT. The protocol is used in the command and
control of Power Grid substations, and it supports operations such
as analog and digital statuses, circuit statuses, breaker control, and
transformer temperatures. All GOOSE communications use Ether-
net. GOOSE suffers from similar issues as MQTT — authentication
is not enforced, senders’ addresses aren’t included, and it does not
include encryption [7].

We analyzed the MQTT deployments on the Internet on Shodan
and found that over 65% of these implementations did not use au-
thentication by default. Although the MQTT specification requires
TLS communications, the server decrypts all the packets it is for-
warding. The publish-subscribe model without any authentication
also means that any device can subscribe to any channel, and any
device can publish to any channel. MaQaTooT aims to address all
these issues.

2.2 Macaroons
IoT devices are resource constrained. To satisfy the latency re-
quirements of IoT protocols, we use macaroons instead of using
traditional elliptic-curve cryptography [3]. Macaroons are flexible
authentication credentials, which consist of two portions. The first
is a public portion which comprise a nonce and data elements, to-
gether known as caveats. Macaroons also include a private part — a
secret that is computed by iteratively running the HMAC algorithm
on each of the caveats.

MACAROON_GENERATE
(device Did , manufacturer M , key k1, caveats C)

1. M : k2 := HMAC256 (NM)k1
2. M : k3 := HMAC256 (Did)k2
3. M : k4 := HMAC256 (M)k3
4. M : ki+1 := HMAC256 (Ci)ki for i = 4,5...n
5. M : kid := HMAC256 (timestamp)kn
6. M → D : NM ∥ Did ∥ M ∥ Ci ∥ timestamp ∥ kid

Figure 3: Macaroon Generation Procedure.

Figure 2-A shows the functioning of Macaroons. There are two
ways to construct a macaroon. First, the manufacturer can use the
Global Root signing key to build HMACs with all the caveats one
by one iteratively. The final HMAC is considered to be the shared
secret.

The second way to construct a Macaroon is when the key-
generation authority does not have the root key, but has some
intermediate key. As shown in Figure 2-A, we can compute HMACs
on the rest of the caveats in the public portion of the Macaroon
iteratively, and grant the final key generated, kid , to the device as
its secret. Figure 3 shows the procedure to generate a Macaroon. We
use k0 as the root secret and use it to sign the Nonce. The obtained
HMAC is used to sign the following caveats iteratively.

In Figure 3, (NM ∥ Did ∥ M ∥ Ci ∥ timestamp) is the public
portion of the MacaroonMpub , whereas kid is kept private [3]. We
compute the HMAC of the Nonce NM first, and then compute the
HMAC iteratively on the Device ID Did , the Manufacturer ID M ,
and the Caveats Ci , and finally append the timestamp to specify
the expiry of the Macaroon.

Revoking keys. Macaroons make use of epoch counters in the
timestamp. Each Macaroon includes the validity caveat, specify-
ing when the Macaroon expires. Macaroons can also expire by
blacklisting the public portion and the corresponding secret keys.
The key-management server checks against the blacklist before
authenticating devices.

3 PROPOSED ARCHITECTURE
In our design of MaQaTooT, we address the following questions:

• How can we build a key-management scheme that is secure
against attacks such as replay attacks and man-in-the-middle
attacks?

• Can we revoke keys reliably?
• Can we prevent the server from leaking data when it is
compromised?

3

IoT 2019, October 22–25, 2019, Bilbao, Spain Anantharaman et al.

3.1 Overview

Operation

Negotiate session
keys Setup

Decommission
device

New device shows up
or revoke old keys

Abandon device and
revoke keys

Decommission
device and
revoke keys

Receive Session key

and Channel keys
Revoke keys,

negotiate new
keys

Occurs at company maintaining devices

Occurs on the device and
key management server

Occurs on the device and
key management server

Figure 4: Lifecycle of IoT devices using MaQaTooT.

The challenges with Industrial IoT devices are unique because
they are hard to reach physically. Companies often need to “roll
trucks” to replace a malfunctioning device. As shown in Figure 2, we
propose embedding a symmetric key kid in the IoT devices during
setup. Only the device and the key-management server are aware
of this key. They use this symmetric key to establish a session key.
The device can use this key to communicate throughout its lifecycle
and the key-management server can also safely revoke these keys
and grant a new one.

Scaling any architecture to all devices in an Industrial IoT net-
work is a challenge. We propose using two identities associated
with each device [2].

• Core-Identity Macaroon.
Each device receives a Macaroon during setup, to identify
the device uniquely. The device uses this core-identity Mac-
aroon later to authenticate and receive the other short-lived
Macaroons.

• Association-Attribute Macaroons.
Whenever the channel-specific keys expire, the device ini-
tiates a negotiation using its core-identity macaroons to
establish the keys for all the channels the device needs to
access. These are short-lived and expire on a regular basis.

Figure 4 shows the entire lifecycle of devices using MaQaTooT.
Devices are embedded with their core-identity macaroons when
they are set up. The device and the key-management server negoti-
ate a session key using J-PAKE, and the key-management server
grants the channel-specific keys and macaroons for the device to
use. Once the keys expire, the device negotiates the key again with
the key-management server. When the device is past its life, the
key-management server blacklists the device and revokes all the
keys granted.

Each device has a device-specific channel on the MQTT server,
where the device uses the session key established using J-PAKE. On
this channel, the key-management server then communicates the
association-attribute macaroons and keys, which are short-lived.

SHORT_LIVED(device Did ,
key Kid , caveats C , channels S , Controller A)

1. Did → A: Mid ∥ timestamp ∥ HMAC256(Mid ∥

timestamp)kid
2. A: kid := CALC_KEY(Mid)
3. A: k2 := HMAC256 (Nnew)kid
4. A: k3 := HMAC256 (Did)ki
5. A: k4 := HMAC256 (Sj)ki ∀j ∈ S
6. A: ki+1 := HMAC256 (Ci)ki for i = 4,5,6...n
7. A: ksj := HMAC256 (timestamp)kn
8. A→ Did : Mid ∥ Nnew ∥ Did ∥ Ci ∥ timestamp ∥ ksj

Figure 5: Procedure to grant short-lived macaroons. The
device presents its core-identity macaroon and receives its
association-attribute macaroons for channels. The commu-
nication between the controller or key-management server
and the device is encrypted using the session key.

3.2 Components
The architecture of MaQaTooT is shown in Figure 2-B. MaQaTooT
consists of two components:

MaQaTooT Device Module. The MQTT implementation on
the device needs to communicate with the key-management server
and receive the association-attribute macaroons. The device sends
the public portion of the Macaroon to the key-management server
to authenticate itself. The key-management server can generate the
key based on the public part of the Macaroon sent by the device
and the secret key provided by the Global Root.

Key-Management Server. The key-management server serves
multiple purposes. First, it provides short-lived association attributes
to all the devices trying to establish a connection. Since the core-
identity macaroons granted to the devices are an “attenuation”
of the macaroons given to the key-management server, the key-
management server can compute the secret and establish a channel.

Second, the key-management server can also revoke keys when
devices are compromised. If an adversary gains access to the keys of
a device and its subsequent channels, the key-management server
has to revoke the keys for all those channels and alert all the con-
nected devices to use the new keys. This functionality of the key-
management server is central to the integrity of all the devices
connected to the server.

3.3 Protocols
• Session-Key Agreement.
Since we have a pre-shared key in the form of the Macaroon
public k2, we need to make use of a protocol that can gen-
erate session keys from a pre-shared key. We use J-PAKE
to generate the session key for a fixed amount of time [6].
The session key has to be renegotiated at the end of this
pre-agreed amount of time.

• Granting of Short-lived Macaroons.
Figure 5 shows how short lived Macaroons are generated
by the key-management server A. A device Did sends its
identifier MacaroonMid along with the timestamp.

• Sending messages using Macaroons.
Figure 6 shows the procedure to send normal messages using
MaQaTooT. The device looks up the channel-specific key,

4

Scalable Identity and Key Management for Publish-Subscribe Protocols in the Internet-of-Things IoT 2019, October 22–25, 2019, Bilbao, Spain

uses it to compute the HMAC, and then appends the HMAC
to the data. Both are encrypted using AES256 and sent to the
broker. The J-PAKE algorithm is used to establish session
keys between the key-management server and the device,
for the device-specific channel only.

OPERATION(device D , broker B , receiverGroup G)
1. D : kc := дetChannelKey(G)

2. D : mdata := data | timestamp
3. D : mmac := HMAC256(mdata)

4. D → B: mf inal := enc (mdata |mmac)kc
5. B → G : mf inal

Figure 6: Procedure to send messages using macaroons. The
messages are encrypted using core-identitymacaroon secret
key for the device channel and channel-specific keys for
other channels.

• Key Revocation.
When the key-management server realizes that an adver-
sary has compromised a device, the server calls the API to
revoke the keys it granted to the device. Revoking a key
involves blacklisting the previous key and granting a new
key to be used in subsequent communications. If the key-
management server withdraws the core-identity macaroon,
then the newly generated Macaroon needs to be installed
in the device manually. When the association attributes for
a channel need to be revoked, the server looks up all the
devices that are associated with the channel, and revokes
the keys for all devices with access to the channel.

3.4 Threat Model
An adversary can fully control devices and servers. From a compro-
mised server, an adversary can block any messages going through
the server, or even forward messages to incorrect channels. The
adversary cannot, however, decrypt any of the messages sent to
the server by any of the clients, since we do not store any of the
keys on the server. We assume that the adversary cannot break the
cryptographic protocols we use.

A compromised device presents a more significant challenge. A
device has access to its channel and channels set up to communicate
with other devices. An adversary cannot, however, listen to all the
channels on the device or send arbitrary messages on any channel
on the server.

As long as none of the devices with access to keys are compro-
mised, MaQaTooT provides confidentiality guarantees — something
that is missing in most implementations of the protocol.

3.5 Assumptions
To make the above security claims, we make a few assumptions.
We assume that the software implementations on various devices
deployed will not send the secret keys to adversaries and that the
software is exploit-free. Buffer overflows in the application on the
device or the server could lead to an adversary gaining control of a
device and put our security guarantees in jeopardy.

3.6 Limitations
MaQaTooT has some limitations as well. It does not address any
side-channel attacks. Systems built with MaQaTooT would still be
vulnerable to several unmitigated side channels. MaQaTooT also
does not hidemetadata. An adversary connected to the server would
know which channels are active and which are not, but would not
know anything about the contents of these messages.

In case of active server compromises, MaQaTooT does not pre-
vent an adversary from altering the code on the server and prevent-
ing messages from being forwarded. An adversary could perform a
denial-of-service attack in that manner.

3.7 Architecture
Publish-subscribe applications comprise devices, controllers and
brokers. For our implementation, we leave the broker completely
untouched. We add code on the controller and the device as shown
in Figure 2. Table 1 shows all the methods available through the
API that MaQaTooT exposes.

3.8 Implementation
We implemented the device client and key-management server
APIs for MaQaTooT in Python. Most developers using the MQTT
protocol want to use an off-the-shelf MQTT broker and do not wish
to alter it. We do not change the MQTT broker code and instead
use the Mosquitto MQTT broker [9]. Our implementations make
use of the API calls described in Table 1.1

3.9 Summary
This section presented the design and implementation of MaQa-
TooT. It is an innovative key-management and scalable-identity
scheme for large-scale IoT networks such as the ones using publish-
subscribe protocols. MaQaTooT adds features that we found to be
missing in current implementations of publish-subscribe protocols
such as MQTT and GOOSE. Our design does not expose any device
communication on the MQTT server, even in case of a compro-
mised server, while providing for authentication, integrity, and
confidentiality of the communications. Only devices with access to
the channel-specific macaroons can access these communications.

4 RESULTS AND DISCUSSION
When we evaluate our system, we look to answer the following
questions:

• Can we satisfy the latency requirements for various publish-
subscribe protocols used in industrial control systems?

• How well does our key-management scheme scale in terms
of CPU and memory overheads?

• How much programmer effort is needed to convert existing
publish-subscribe systems to use our scheme?

• How do we verify that the shared secret (the core-identity
macaroon) between the devices and the key-management
server is never leaked while establishing session keys?

5

IoT 2019, October 22–25, 2019, Bilbao, Spain Anantharaman et al.

Function Semantics

Key-Management Server
generate_macaroons(device, manufacturer) This function generates a nonce and iteratively computes HMACs to generate the final Macaroon.

revoke_macaroon(macaroon) Takes a macaroon as an argument, checks the validity of the macaroon, and then revokes it by
blacklisting.

login_device(core-identity macaroon, channel id) The key-management server receives the public portion of the macaroon and computes the secret
key. The device is logged in if the macaroon is valid.

check_access(message, channel, secret_key) When the key-management server receives a message, it checks the validity of the message on a
channel based on the key. If the message was invalid, then a malicious device may have connected
to the server, and the key-management server alerts the administrators.

Device
login(core-identity macaroon) When the device doesn’t have any channel specific macaroons, the device logs in with its core-

identity macaroon. The device presents the public part of the core-identity macaroon to the
key-management server.

logout(core-identity macaroon) When a device is being decommissioned or being shutdown for a planned outage, the device
logs out by presenting its core-identity macaroon and authenticating itself. The key-management
server revokes its channel-specific keys.

encrypt_communication(association macaroon,
channel_id)

The device uses the session key to communicate with the key-management server on the private
channel. If the device wants to communicate on the specific channels with other devices, the
device uses the secret keys granted with the association-attribute macaroons.

Table 1: The MaQaTooT API includes methods for both of our major components. The API does not alter the basic functional-
ities of the MQTT implementation, but builds on top of them.

Algorithm Key Creation Key Verification
time time

Elliptic Curves
Ed25519-256 bits 25.79 ms 29.34 ms
Macaroons
SHA-1-HMAC 662 µs 513 µs
SHA-256-HMAC 761 µs 566 µs

Table 2: Comparing the performance of Macaroons and
Elliptic-curve keys.

4.1 Performance
To understand the performance overheads MaQaTooT introduces
to MQTT clients, we performed our experiments on an ARM Firefly
RK3288 development board with a 1.8 GHz processor. We wanted
to test on a board that resembled an IoT device and its resource-
constrained nature. We measured the CPU overheads, the memory
used by our macaroon objects and the time delays in generating
and verifying Macaroons and compared them to the elliptic-curve
cryptography scheme proposed by Singh et al. [16].

The GOOSE protocol specification prescribes a maximum latency
of 4 ms. Table 2 shows that although the elliptic-curve algorithm
takes much longer to create and verify attribute certificates, SHA1
and SHA256-based HMACs take less than 1 ms to create and verify,
conforming to the specifications GOOSE requires. We also found
that our macaroon objects consumed only 64 bytes of memory in
most of our tests.

1OurAPI implementations can be found at https://github.com/prashantbarca/maqatoot.

4.2 Programmer Effort
To measure programmer effort, we evaluate how many additional
lines of code are required by developers to instrument their client-
side code. The client-side implementation authenticates itself with
the core-identitymacaroon and then receives the association-attribute
macaroons. The key-management server or controller is usually
replaced by an administrator in typical implementations of the
MQTT protocol, and hence we do not measure lines of code needed
to instrument them.

We selected two IoT applications on GitHub, and implemented
them with MaQaTooT. Table 3 shows that MaQaTooT requires
little developer effort to protect IoT devices and data, averaging an
additional 35 lines of code.

Application Lines of code
before

Lines of code after
adding MaQaTooT

Passive infrared
sensor [14]

75 102

Ultrasonic sen-
sor [5]

160 203

Table 3: Applications implemented with MaQaTooT. We
added theMaQaTooT device API calls to various open source
applications.

6

Scalable Identity and Key Management for Publish-Subscribe Protocols in the Internet-of-Things IoT 2019, October 22–25, 2019, Bilbao, Spain

4.3 Protocol Verification
We verified our shared-secret session-key-establishment protocol
built on top of J-PAKE using the Proverif cryptographic-protocol-
verification tool. Proverif is a protocol verifier that can perform
reachability analysis and takes typed pi-calculus files as input.
We can express the communication between the key-management
server and the device in pi-calculus and query to check if a passive
attacker can decipher the secret from the conversation. Abdalla et
al. demonstrated the security of J-PAKE in 2015 [1].

We found that the shared secret for a specific MQTT channel
is never leaked by our protocol. Figure 7 shows the result of our
query on Proverif.

Figure 7: Proverif Verification result of our session-keyman-
agement protocol.

5 RELATEDWORK
Elliptic-curve cryptography for MQTT has been studied widely [4,
16]. Both the papers tackle the difficult problem of understanding
how to perform elliptic-curve cryptography but fail to tackle the
vital problem of key management and key revocation, and they
analyze the performance only through simulations of CPU time
and memory. Shin et al. make use of a pre-shared key technique
using Diffie-Hellman Key Exchange [15]. Lesjak et al. propose using
a hardware controller to perform Transport Layer Security client
authentication [8]. The authors start with the assumption that
the MQTT Server and the clients would have certificates already
set up in them. Again, Lesjak et al. do not discuss key revocation
or management in their paper. These implementations of public-
key cryptography for MQTT ignore the issue of an active-server
compromise and lead to all the communications being leaked [12].
Our paper adequately tackles both these issues.

Neto et al. make use of attribute-based and identity-based cryp-
tography to enable authentication and authorization throughout
the lifecycle of Internet-of-Things devices [13]. Since they rely on
public key cryptography, they do not meet the latency and time
constraints that are critical in the industrial control systems and
power grid applications of publish-subscribe protocols.

6 CONCLUSIONS
In this paper, we presented MaQaTooT, a novel technique to man-
age keys using Macaroons in publish-subscribe IoT protocols. We
demonstrated our technique on the MQTT protocol and showed
that our method only requires a few additional lines of code. We
adhere to the latency requirements of Industrial IoT protocols while
providing authentication, integrity, and confidentiality guarantees,
along with resilience to active-server compromises.

In the future, wewould like to explore using a fully-homomorphic
symmetric encryption scheme instead of the AES encryption we
employ in this paper. We also want to apply our technique to power

grid devices making use of the GOOSE protocol, to demonstrate
our methods in the power grid domain. A possible addition to our
device code could be a feature to verify that an adversary has not
altered the system.

REFERENCES
[1] Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. 2015. Security of

the J-PAKE password-authenticated key exchange protocol. In IEEE Symposium
on Security and Privacy. IEEE, San Jose, CA, USA, 571–587. https://doi.org/10.
1109/SP.2015.41

[2] Prashant Anantharaman, Kartik Palani, David Nicol, and Sean W Smith. 2016. I
Am Joe’s Fridge: Scalable Identity in the Internet of Things. In Proceedings of IEEE
International Conference on Internet of Things (iThings). IEEE, Chengdu, China,
129–135. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.
47

[3] Arnar Birgisson, Joe Gibbs Politz, Ulfar Erlingsson, Ankur Taly, Michael Vrable,
and Mark Lentczner. 2014. Macaroons: Cookies with Contextual Caveats for De-
centralized Authorization in the Cloud. In Proceedings of Network and Distributed
System Security Symposium. San Diego, CA, USA.

[4] Abebe Abeshu Diro, Naveen Chilamkurti, and Prakash Veeraraghavan. 2017.
Elliptic Curve Based Cybersecurity Schemes for Publish-Subscribe Internet of
Things. In Proceedings of International Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness. Springer International Publishing,
Dalian, China, 258–268.

[5] Alex Ellis. 2017. MQTT sender/receiver for PIR sensor. https://github.com/
alexellis/iot-mqtt-pir. Accessed: 2019-May-10.

[6] Feng Hao and Peter Y. A. Ryan. 2011. Password Authenticated Key Exchange
by Juggling. In Security Protocols XVI, Bruce Christianson, James A. Malcolm,
Vashek Matyas, and Michael Roe (Eds.). Springer, Berlin, Heidelberg, 159–171.

[7] Nishchal Kush, Ejaz Ahmed, Mark Branagan, and Ernest Foo. 2014. Poisoned
GOOSE: Exploiting the GOOSE Protocol. In Proceedings of the Twelfth Australasian
Information Security Conference - Volume 149 (AISC ’14). Australian Computer
Society, Inc., Darlinghurst, Australia, 17–22. http://dl.acm.org/citation.cfm?id=
2667510.2667513

[8] C. Lesjak, D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P. Priller, T. Ebner, T.
Ruprechter, and G. Pregartner. 2015. Securing Smart Maintenance Services:
Hardware-security and TLS for MQTT. In Proceedings of 13th International
Conference on Industrial Informatics (INDIN). IEEE, Cambridge, UK, 1243–1250.
https://doi.org/10.1109/INDIN.2015.7281913

[9] Roger A Light. 2017. Mosquitto: Server and Client Implementation of the MQTT
Protocol. The Journal of Open Source Software 2, 13 (2017), 265.

[10] Sergey Lyubka. 2016. Why MQTT is getting so popular in IoT. https://mongoose-
os.com/blog/why-mqtt-is-getting-so-popular-in-iot/. Accessed: 2019-May-09.

[11] John Matherly. 2015. Complete Guide to Shodan. https://www.shodan.io/. Ac-
cessed: 2019-May-10.

[12] R. Neisse, G. Steri, and G. Baldini. 2014. Enforcement of Security Policy Rules for
the Internet of Things. In Proceedings of 10th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob). IEEE, Larnaca,
Cyprus, 165–172. https://doi.org/10.1109/WiMOB.2014.6962166

[13] Antonio L. Maia Neto, Artur L. F. Souza, Italo Cunha, Michele Nogueira,
Ivan Oliveira Nunes, Leonardo Cotta, Nicolas Gentille, Antonio A. F. Loureiro,
Diego F. Aranha, Harsh Kupwade Patil, and Leonardo B. Oliveira. 2016. AoT: Au-
thentication and Access Control for the Entire IoT Device Life-Cycle. In Proceed-
ings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM
(SenSys ’16). ACM, New York, NY, USA, 1–15. https://doi.org/10.1145/2994551.
2994555

[14] Mark Paluch. 2015. IoT Distancemeter. https://github.com/mp911de/iot-
distancemeter. Accessed: 2019-May-10.

[15] S. Shin, K. Kobara, Chia-Chuan Chuang, and Weicheng Huang. 2016. A Security
Framework for MQTT. In Proceedings of Conference on Communications and
Network Security (CNS). IEEE, Philadelphia, PA, 432–436. https://doi.org/10.1109/
CNS.2016.7860532

[16] M. Singh, M. A. Rajan, V. L. Shivraj, and P. Balamuralidhar. 2015. Secure MQTT
for Internet of Things (IoT). In Proceedings of Fifth International Conference on
Communication Systems and Network Technologies. IEEE, Gwalior, India, 746–751.
https://doi.org/10.1109/CSNT.2015.16

7

https://doi.org/10.1109/SP.2015.41
https://doi.org/10.1109/SP.2015.41
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.47
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.47
https://github.com/alexellis/iot-mqtt-pir
https://github.com/alexellis/iot-mqtt-pir
http://dl.acm.org/citation.cfm?id=2667510.2667513
http://dl.acm.org/citation.cfm?id=2667510.2667513
https://doi.org/10.1109/INDIN.2015.7281913
https://mongoose-os.com/blog/why-mqtt-is-getting-so-popular-in-iot/
https://mongoose-os.com/blog/why-mqtt-is-getting-so-popular-in-iot/
https://www.shodan.io/
https://doi.org/10.1109/WiMOB.2014.6962166
https://doi.org/10.1145/2994551.2994555
https://doi.org/10.1145/2994551.2994555
https://github.com/mp911de/iot-distancemeter
https://github.com/mp911de/iot-distancemeter
https://doi.org/10.1109/CNS.2016.7860532
https://doi.org/10.1109/CNS.2016.7860532
https://doi.org/10.1109/CSNT.2015.16

	Abstract
	1 Introduction
	2 Background
	2.1 Publish-Subscribe Protocols
	2.2 Macaroons

	3 Proposed Architecture
	3.1 Overview
	3.2 Components
	3.3 Protocols
	3.4 Threat Model
	3.5 Assumptions
	3.6 Limitations
	3.7 Architecture
	3.8 Implementation
	3.9 Summary

	4 Results and Discussion
	4.1 Performance
	4.2 Programmer Effort
	4.3 Protocol Verification

	5 Related Work
	6 Conclusions
	References

